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Abstract. This document contains additional empirical analyses for the paper
“Fine-tuning Deep Neural Networks in Continuous Learning Scenarios”. The
provided information is not necessary to understand the main paper. Although
some of the evaluated parameter effects are well known, we present our eval-
uations for completeness of our study. The following aspects are covered: (i)
an additional evaluation of continuous fine-tuning with updates of samples from
known classes only (Section S1), (ii) the empirical effect of varying learning rates
on continuous fine-tuning (Section S2), (iii) the empirical effect of different batch
sizes for SGD steps on continuous fine-tuning (Section S3), (iv) the effect of con-
tinuous fine-tuning for different numbers of layers (Section S4), (v) continuous
learning of upper layers with varying update influence (Section S5), (vi) a de-
tailed analysis of the influence of sample weights for updates (Section S6), (vii)
continuous learning with noisy labels (Section S7), and (viii) further visualiza-
tions of shifts for attention regions (Section S8).

S1 Additional Experiments for Fine-tuning with Known Classes

Section 4 of the main paper introduces three fine-tuning scenarios. While the experi-
mental evaluation of the main paper focuses on the more general case (C2), we want
to additionally present an evaluation for case (C1). In scenario (C2) additional training
samples of known as well as new classes are added continuously to an initial train-
ing set. In contrast to this, scenario (C1) only considers additional samples of known
classes.

To evaluate continuous fine-tuning in this setting, we initially trained a CNN with
ten classes and three initial known samples each using the MS-COCO dataset [1]. As
additional training data 100 random samples per class are added in batches of 25 sam-
ples. We perform 10 epochs in every update step and average performance on the cor-
responding test set over 9 runs. The remaining parameters are similar to the ones given
in Section 5.1 and 5.2.

Corresponding results for fine-tuning of only the last two fully connected layers as
well as all layers using a BVLC AlexNet [2] are shown in Fig. S1. It can be seen that
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(a) last two layers
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(b) all layers

Fig. S1: Obtained accuracy by continuously updating with samples of known classes.

the obtained accuracy drops clearly after adding the first additional samples in both
cases. We attribute this behavior to the imbalance of class samples after the first up-
dates. After more samples are added and the training data become more balanced, the
performance rises towards the accuracy obtained by the one-step fine-tuning. We con-
clude that continuous fine-tuning can also be applied to scenarios where only samples
of known classes are added over time. Therefore we mainly study the more interesting
scenario (C2) covering also the occurrence of so far unknown classes.

S2 Comparison of Different Learning Rates

It is well-known that choosing an appropriate learning rate γ for SGD optimization is
crucial for successful learning, e.g., as evaluated by Wilson et al. [3]. If the learning rate
is too small, the optimization is unlikely to sufficiently discover the parameter space and
can hardly diverge from the initial solution. On the other hand, a large value for learning
rates can lead to exploding gradients which prevents the convergence during learning
due to numerical issues. Therefore, we also analyzed the effect of different learning
rates on the success of continuous fine-tuning. As mentioned in Section 5 of the main
submission, we observed no surprising results and excluded them from the main paper.
The following analysis closes this gap and presents the results.

We follow the experimental setup of the main paper as described in Section 5.1.
Continuous fine-tuning is done for the last two fully-connected layers with an SGD
batch size of |S| = 64. The results with different values for the learning rate γ are
shown in Fig. S2. As can be seen, the results are clearly in line with previous findings
for standard learning or one-step fine-tuning scenarios [3]: if the learning rate is too
small (brown curve), the SGD optimization does not converge to a suitable optimum.
Similarly, if the learning rate is too large (blue curve), the SGD optimization does not
converge at all. Based on this evaluation, we selected a learning rate of 0.001 for all
remaining experiments.
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(a) MS-COCO
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(b) Stanford40Actions

Fig. S2: Comparison of different learning rates γ for continuous fine-tuning.

S3 Comparison of Different SGD Mini-batch Sizes

Besides adjusting the learning rate carefully, the optimization process can further be
influenced by choosing an appropriate size |S| for the mini-batches S. A detailed anal-
ysis for the standard training of neural networks was already presented in [3]. Hence,
we were interested in investigating the impact of different batch sizes for continuous
fine-tuning. As for the previous experiment, we excluded our findings from the main
submission due to the lack of space and the unsurprisingness of results. Instead, we
present our findings in the following.

For this analysis, we follow the previous setup and fix all parameters except the
mini-batches’ size |S|. As before, we present experiments when the last two fully-
connected layers are continuously fine-tuned. Results are shown in Fig. S3. As can be
seen, the choice of the batch size has no significant impact on the success of continuous
fine-tuning. Therefore, we use a mini-batch size of |S| = 64 as default choice for all
remaining experiments. An exception is the evaluation of continuous fine-tuning with
a fixed number of SGD update steps (Fig. 4 and Fig. 5 in the main submission) where
each batch is comprised of only |S| = 25 examples.

S4 Comparison of Continuous Fine-tuning for Different Layers

In all previously presented evaluations (in the main submission as well as in this supple-
mentary material document), we either investigated continuous fine-tuning for all layers
of a given network or only for the last two layers. These settings were inspired by the
common practice for one-step fine-tuning, where either all layers are adapted (if enough
data is available) or weights of early layers are fixed and only the final classifier-related
layers are adapted. Nonetheless, continuous fine-tuning applies to the general settings of
adapting an arbitrary subset of parameters given novel data. In the next experiment, we
evaluate continuous fine-tuning when parameters of more and more layers are adapted.
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(a) MS-COCO

0 200 400
40

50

60

70

80

number of added samples

ov
er

al
lr

ec
og

ni
tio

n
ra

te
[%

]

(b) Stanford40Actions

Fig. S3: Impact of SGD batch size |S| on continuous fine-tuning.

For the evaluation, we keep the experimental setup of the previous sections and only
change the number of frozen layers (i.e., layers where parameter values are fixed during
the optimization). Results are shown in Fig. S4. To our surprise, it can clearly be seen
that continuous fine-tuning is possible for all investigated settings and obtained accura-
cies hardly differ. Hence, we conclude that our presented results for either learning the
last two or all layers can be safely transferred to scenarios where different layer sets are
adapted.

S5 Experiments of Section 5.4 with only two Learnable Layers

In Section 5.4 of the main submission, we investigated how continuous fine-tuning with
fixed SGD batch sizes can be improved by different sampling priorities for mini-batch
sampling. To this end, we varied the weighting parameter λ which resembles the trade-
off between preferring known or novel data during sampling. The presented experi-
ments were obtained for the scenario where parameters of all layers are continuously
fine-tuned. For the sake of completeness, we present in the following the same evalua-
tion but adapt only parameters of the last two fully-connected layers.

We keep the experimental setup identical to the one in Section 5.4. Results are
shown in Fig. S5. In can be seen that the obtained results are similar to those of the
main submission (compare against Fig. 4). This further underlines our conclusion that
results can be transferred to continuous fine-tuning scenarios with different numbers of
learnable layers.

S6 Experiments of Section 5.4 with Detailed Accuracy Analysis

In the previous evaluation and the results presented in Section 5.4 of the main paper, we
investigated continuous fine-tuning with fixed SGD batch sizes and priority sampling
for mini-batch selection. From the results, we clearly observed that sampling purely
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Fig. S4: Impact of number of layers to be fine-tuned on continuous fine-tuning.
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Fig. S5: Continuous fine-tuning of all layers with different choices of λ.
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(a) λ = 0.0
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(b) λ = 1.0

Fig. S6: Overall accuracy separately evaluated for known and novel categories under
different settings for the weighting parameter λ in mini-batch sampling. Blue curve
shows the overall accuracy averaged over all test examples from known categories.
Similarly, red and green curves correspond to overall accuracies evaluated on examples
of all novel categories or a single novel category, respectively.

novel data (i.e., λ = 0.0) severely decreased the overall accuracy. In the following, we
further investigate why this happened.

Our hypothesis was that running SGD with data solely from the novel category leads
to dramatic overfitting even when only few SGD steps are computed. In contrast, we
expect that sampling additionally known data serves as regularizer. To test our hypoth-
esis, we evaluate the models learned in Section 5.4 for λ = 0.0 and λ = 1.0 separately
on examples of known categories and novel categories. Results for a single run on the
MS-COCO dataset are shown in Fig. S6. As can be seen, sampling only novel data for
mini-batches (i.e., λ = 0.0) leads to a drastic decrease of accuracy for known classes
(blue curve). While the mean accuracy with respect to novel data increases (red curve),
the accuracy of individual novel categories undergoes drastic changes over time (green
curve shows results for a single novel category). In contrast to that, for λ = 1.0, the ac-
curacy rises for new classes (red curve) and keeps nearly constant for the already known
ones (blue curve). For a single novel category (green curve), a high accuracy is obtained
as soon as examples of this class are added. We conclude that known data prevent the
network from overfitting to newly added data during continuous fine-tuning.

S7 Experiments of Section 5.5 with only two Learnable Layers

In contrast to controlled academic environments, real world learning scenarios are often
faced with label noise, i.e., non-perfect data annotations. A common example is active
learning with unreliable annotators, e.g., if annotators are uncertain, lack knowledge,
or simply do mistakes. Therefore, we analyzed the effect of label noise on continuous
fine-tuning in Section 5.5 of the main paper. The presented experiments were obtained
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(b) Stanford40Actions

Fig. S7: Impact of label noise in update sets on the accuracy obtained by continuous
fine-tuning.

for the scenario where parameters of all layers are continuously fine-tuned. We now
present the same evaluation but adapt parameters of the last two fully-connected while
keeping remaining parameters fixed. Results are shown in Fig. S7. As can be seen, the
results are comparable to those of the main submission (compare against Fig. 6 in the
main paper). Again, we observe that small amounts of noise do not strongly harm the
accuracy obtained by continuous fine-tuning of CNNs.

S8 Additional Visualizations for Section 6

In addition to Section 6 of the main paper, we show further visualizations to investigate
the network’s changes during continuous fine-tuning. The experimental setup as well as
the technique for computing the network’s region of attention are kept as described in
Section 6 of the main submission. Here, we present more examples which we obtained
by visualizing the attention shift of a single filter from the CONV5 layer. Visualizations
with intuitive region shifts towards the action-related objects are shown in Fig. S8.
Examples with no region shifts are shown in Fig. S9. Finally, Fig. S10 shows examples
where the attention regions shifted towards contextual related areas.
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Fig. S8: Visualization of attention shift of a single filter of the CONV5 layer during con-
tinuous fine-tuning with categories from the Stanford40Actions dataset. We show ex-
amples where the attention region of the network before the respective category became
known (magenta box) shifted towards the action-related objects after the availability of
the category (cyan box).
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Fig. S9: Visualization of attention shift of a single filter of the CONV5 layer during con-
tinuous fine-tuning with categories from the Stanford40Actions dataset. We show exam-
ples where the attention region of the network before the respective category became
known (magenta box) did not move significantly after the availability of the category
(cyan box).
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Fig. S10: Visualization of attention shift of a single filter of the CONV5 layer during
continuous fine-tuning with categories from the Stanford40Actions dataset. We show
examples where the attention region of the network before the respective category be-
came known (magenta box) shifted towards contextual related areas after the availabil-
ity of the category (cyan box).
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