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Abstract. The following document gives additional information with respect to
the paper Exemplar-specific Patch Features for Fine-grained Recognition. Specif-
ically, we present qualitative results of patch detection responses on unseen test
images in local learning scenarios (Sect. 1). In addition, we give an analysis of
resulting dimensionality for image representations using our patch discovery ap-
proach (Sect. 2). The effect of trade-off parameter λ during model combination
on the final accuracy is depicted in Sect. 3. Experimental settings are given in
detail, to complement our released source code (Sect. 4). Finally, patch detector
responses on training images are visualized in Sect. 5. The provided information
is not necessary to understand the main paper.

1 Patch detector responses on images using local models

In the main submission, we visualized detection responses on unseen test images for
the discovered patches in global learning scenarios (Fig. 4). Here, we complement this
? A. Freytag and E. Rodner were supported by a FIT scholarship from the DAAD.
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Fig. 1: Detection responses of patch detectors for different numbers of neighbors.
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Table 1: Number of discovered patch detectors for global learning and local learning using the
supervised bootstrapping technique presented in the main submission.

Remove CUB-2011-14 CUB-2011-200
Singletons global k = 20 k = 40 k = 80 global k = 20 k = 40 k = 80

# detectors y 2,136 46 113 276 40,659 34 76 170
n 2,936 140 286 569 40,659 134 267 535

Ratio y 1 2.15% 5.29% 12.92% 1 0.08% 0.19% 0.42%
n 1 4.78% 9.62% 19.37% 1 0.33% 0.66% 1.32%

analysis by visualizing responses for local models with different neighborhood sizes.
Results are displayed in Fig. 1.

Obviously, a certain minimum number of neighbors is necessary to reliably identify
patterns relevant for informative image representations, e.g., the red dot in the lower
birds face is not found with only 5 neighbors. In addition, we observe that easily iden-
tifiable properties, e.g., the characteristic black-white pattern on the birds neck in the
middle row, can be already detected with extremely small neighborhood sizes, which
underlines the suitability of the global matching scheme. On the other hand, less dis-
tinctive parts like the black wing of the woodpecker can only be modeled with larger
numbers of neighbors queried.

2 Dimensionality of learned representations

In Sect. 5.1 of the main submission, we analyzed in detail several steps of our discov-
ery pipeline and the resulting recognition accuracies for global and local models. Here,
we give a short overview on the average number of patch detectors for the global and
local approaches in Table 1. We explicitly added results for discovery with and with-
out removal of singletons, i.e., non-representative detectors without any further corre-
spondence during bootstrapping. Note the significant decrease in number of dimensions
from global to local approaches. Please note further that in contrast to previous tech-
niques [1,3], no selection of discriminative detectors is involved here. Nonetheless, we
found our discovered representations to be already compact (see Table 1) and at the
same time informative (see results in the main submission, Table 1).

3 Combination of results for semantic
and discovered parts

In the paper, we showed some results for the combination of our method with the one
given in [2]. The combination is based on combining the predicted class probabilities
in a linear fashion using a weight coefficient λ. In Fig. 2, we show the recognition rates
on the CUB-2011 fine-grained datasets depending on this parameter. Note that for the
CUB-2011-200 dataset a wide range of parameter values leads to an improvement in
recognition rate.
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(a) CUB-2011-14
(global)
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(b) CUB-2011-14
(exemplar)
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(c) CUB-2011-200
(global)
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(d) CUB-2011-200
(exemplar)

Fig. 2: Plots of the fine-grained performance with respect to the combination weight λ:
The red and green line show the performance of [2] and our approach without combina-
tion, respectively. The blue line shows the performance of the combination depending
on the combination coefficient λ (the figure is best viewed in color).

4 Experimental setup

A standard 1-vs-all linear SVM serves as final classification model in our system, where
we used the publicly available code of LibLinear1. We also experimented with non-
linear kernels supported by LibSVM2 and alternatively with explicit embeddings in
higher dimensional spaces supported via homogeneous kernel maps3, but found no su-
perior results over a linear kernel by doing so. The built-in cost-parameter C was kept
with its default value of 1, which allows for moderate generalization abilities. SVM bias
term b was optimized during training.

For training and testing, we used the official splits of the CUB-2011 dataset for
both the full 200 class set and the 14 class subset. As suggested by previous works, we
cropped all images to the provided bounding box, but enlarged the window by 10% if
possible. Final subwindows have been scaled to standard size of 256× 265 pixels.

For the settings of individual parameters during seeding, bootstrapping, selection,
and encoding, we refer to the Matlab scripts provided with the source code released4.

5 Further impressions for image encoding

In the main submission, we visualized detection responses on previously unseen test
images, to get a feeling for how good our discovered patches perform on new images.
Here, we show the complementary version and visualize detection responses on the
training images used during patch discovery. Results are given in Fig. 3, with good
cases in the top rows and failure cases in the bottom row.

1 http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
2 http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
3 http://www.vlfeat.org/
4 Source code is available at http://www.inf-cv.uni-jena.de/fine_grained_
recognition

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.vlfeat.org/
http://www.inf-cv.uni-jena.de/fine_grained_recognition
http://www.inf-cv.uni-jena.de/fine_grained_recognition
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Fig. 3: Detection responses of discovered patch detectors on training images. High scores are
indicated by warm colors. The lowest row displays cases where detectors are distracted by back-
ground patterns. Best viewed in color.
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