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1 Performance of MCMI[min] and AdaptAL

Since MCMI[min] [1] and AdaptAL [2] also maximize a mutual information
criterion and are, thus, similar to our method, we also tried to apply those
methods to our benchmark datasets. Even though we replaced the expensive
logistic regression with Gaussian process inference for being comparable to our
method, they could only be applied to the Butterflies and 13 Natural Scenes
dataset within reasonable time. For the remaining 3 datasets, we randomly sub-
sampled 1000 candidates from the entire dataset, as suggested by [2].

Table 1. Comparison of ITAL with MCMI[min] and AdaptAL in terms of AULC.

Method Butterflies USPS Nat. Scenes MIRFLICKR ImageNet

random 0.7316 0.5416 0.5687 0.4099 0.1494
MCMI[min] 0.6846 0.5293 0.4554 0.4087 0.1413
AdaptAL 0.7716 0.6487 0.6424 0.4643 0.1746

entropy (ours) 0.7512 0.6484 0.6547 0.4703 0.1793
ITAL (ours) 0.7511 0.6522 0.6233 0.4731 0.1841

The results in Table 1 show that MCMI[min] does not work well in a batch-
mode scenario and performs worse than random.

AdaptAL, on the other hand, is the top performer on the Butterflies dataset
and the second-best method on Natural Scenes, directly behind our batch-
entropy approach. These are the two datasets where it could be applied in rea-
sonable time on the entire dataset. The sub-sampling that is necessary on the
remaining three datasets, however, negatively impacts performance, especially
on ImageNet.

To the best of our knowledge, our method is the first one that makes an
information-theoretic approach to batch-mode active learning applicable in re-
alistic scenarios without sub-sampling the dataset.
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2 Simulation of Imperfect Users

As described in section 4.5 of the paper, we have investigated the effect of three
different extreme user behavior models on the performance of the tested BMAL
methods. With regard to our approach, we have evaluated both ITAL with the
user model parameters plabel and pmistake set according to the simulated user
and ITAL with the perfect user assumption, which is faster.

We have selected batches of 4 images for annotation at each round.

Fig. 1. Comparison of different user behavior models on Natural Scenes.

As expected, all methods suffer from imperfect user feedback compared to a
perfect user. While an adequate user model helps ITAL to learn faster during
the first rounds, the difference is small enough to justify the use of the perfect
user assumption even if it is not true in order to gain a significant speed-up. The
case of overly aggressive but error-prone users obviously cannot be handled by
the active learning method alone, but also requires adequate handling of such
scenarios by the classifier.
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3 Sensitivity of Results regarding Feature Dimensionality

To assess to which extent the results presented in the paper are affected by
certain transformations applied to the features, we experimented with different
dimensionalities of the feature space on the MIRFLICKR dataset. To this end,
we have applied PCA to the features extracted from the first fully-connected
layer of VGG16, which comprise 4096 dimensions, and projected them onto
spaces with 64, 128, 256, 512, and 1024 features. Experiments with all BMAL
methods have been conducted on those features for 10 rounds of user feedback
and the area under the learning curve (AULC) for the various dimensionalities
is reported in Fig. 2.

Fig. 2. Area under Learning Curve (AULC) of various BMAL methods on MIR-
FLICKR with varying feature dimensionality.

The results show that the relative performance of the different methods com-
pared to each other is largely insensitive to the number of features. The per-
formance of ITAL is stable up to as few as 128 dimensions, while some other
methods such as TCAL and EMOC already degrade after reducing the number
of features to less than 256. When using 1024 features, ITAL is even able to
catch up to border div, which is the best performing method on this particular
dataset. However, we have used 512 features for our experiments in the paper
due to the increased computational cost incurred by higher-dimensional feature
spaces.
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4 Examples for Failure Cases

To analyze the possible shortcomings of our method, we have picked four queries
from the MIRFLICKR dataset where ITAL had the worst AULC score. These
are depicted in Fig. 3, along with the candidate images selected for annotation
over 4 rounds of feedback and the top results retrieved by the relevance model
after each round.

The first query could be interpreted in multiple ways: The user could be
searching for images of people, of babies, or of adults with babies. All these
options are covered by the candidate images selected by ITAL. Only one of
those image shows a baby alone, which is the actual search objective in this
example. That image, however, has not been annotated confidently as showing
a baby in the MIRFLICKR dataset, so that it remains unnameable here.

The second query shows a swarm of birds on a power pole, but the simu-
lated user actually searches for birds. The features used in our experiment are
apparently not sufficient to capture the semantics of this image well enough for
recognizing that it is about birds. Thus, the selected candidates do not contain
any image of a bird in a different scene and the classifier cannot abstract away
from power poles.

The “night” query, on the other hand, is again an example of erroneous
annotations in the dataset: Several images of night scenes have been selected as
candidates, but have been annotated either as unnameable or even as irrelevant.

Finally, the last query image shows a river and the candidates are actually
quite suitable to identify whether the user is more interested in mountain scenes,
water scenes, river scenes, or natural scenes in general. However, either the fea-
tures or the small number of annotated images seem to be insufficient in this
case for distinguishing between rivers and other bodies of water.
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Query Candidate Batches Top Retrieval Results 
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Fig. 3. Four queries from MIRFLICKR where ITAL performed worst.
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5 Derivation of Eq. (3)

Plugging in the definitions of entropy and conditional entropy into the definition
of mutual information given in eq. (2) leads to the following:

I(R,F | u) = −

[ ∑
r∈{−1,1}n

P (R = r | u) · logP (R = r | u)

]
+

[ ∑
r∈{−1,1}n

f∈{−1,0,1}n

P (F = f | u) · P (R = r | F = f, u) · logP (R = r | F = f, u)

]
.

Expressing P (R = r | u) in the first sum as the marginalization

P (R = r | u) =
∑

f∈{−1,0,1}n
P (F = f | u) · P (R = r | F = f, u)

allows us to merge the two sums:

I(R,F | u) =
∑

r∈{−1,1}n
f∈{−1,0,1}n

[
P (F = f | u) · P (R = r | F = f, u)

· log

(
P (R = r | F = f, u)

P (R = r | u)

)
.

]

Using Bayes’ Theorem we can substitute

P (F = f | u) · P (R = r | F = f, u) = P (R = r | u) · P (F = f | R = r, u) ,

finally leading to eq. (3) from the main paper.
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