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Abstract

Skin cancer is the most common form of cancer, and

melanoma is the leading cause of cancer related deaths.

To improve the chances of survival, early detection of

melanoma is crucial. Automated systems for classifying

skin lesions can assist with initial analysis. However, if we

expect people to entrust their well-being to an automatic

classification algorithm, it is important to ensure that the

algorithm makes medically sound decisions. We investigate

this question by testing whether two state-of-the-art models

use the features defined in the dermoscopic ABCD rule or

whether they rely on biases. We use a method that frames

supervised learning as a structural causal model, thus re-

ducing the question whether a feature is used to a condi-

tional dependence test. We show that this conditional de-

pendence method yields meaningful results on data from the

ISIC archive. Furthermore, we find that the selected models

incorporate asymmetry, border and dermoscopic structures

in their decisions but not color. Finally, we show that the

same classifiers also use bias features such as the patient’s

age, skin color or the existence of colorful patches.

1. Introduction

Skin cancer and especially malignant melanoma is a dan-

gerous and common form of cancer. Diagnosis in the early

stages is essential to improve the survival rate [13]. To en-

sure an early discovery of cancer, patients need to undergo

regular checks by trained medical professionals. However,

there is not enough medical personnel in most regions to

comprehensively offer such a labor-intensive examination.

One possibility to reduce the amount of human labor needed

is the employment of automatic skin lesion classifiers.

Different approaches for automatic skin lesion classifica-

tion exist to support practitioners [29, 14, 12, 5, 6]. One ap-

proach is to automatically extract handcrafted features that

are deemed important by dermatologists, as proposed, for

example, by [19, 7]. These works concentrate on the fea-

tures named in the dermoscopic ABCD rule [42, 27] to earn

the trust of dermatologists and patients.

The ABCD rule is an algorithm for dermatologists to dif-

ferentiate between melanoma and nevi in dermoscopic skin

lesion images. To this end, the dermatologist scores four

features that give the rule its name. The four features are:

Asymmetry, Border, Color and Dermoscopic structures.

Section 4.3 describes how these features are scored. Af-

ter deriving individual feature scores, dermatologists com-

bine them into a total dermoscopy score. A simple thresh-

old of this total score yields high accuracy to distinguish

melanoma from benign nevi.

The algorithmic nature of the ABCD rule allows for

straightforward automatization, where the most challenging

task is the automatic feature extraction. The resulting skin

lesion classifiers are explainable and can be trusted by prac-

titioners and patients alike. However, in recent years, the

state-of-the-art in automatic skin lesion classification has

shifted away from implementations of the ABCD rule to-

wards large ensembles of very deep neural networks. These

networks are often pre-trained on unrelated image datasets

and employ heavy test time augmentations, e.g., [14]. On

the one hand, this shift allowed researchers to construct au-

tomatic skin lesion classifiers that outperform even experi-

enced practitioners [45]. On the other hand, an integral part

of deep learning is automatic feature selection [33], mean-

ing that the researcher has no control over which feature the

model selects. In particular, it is not straightforward to de-

termine whether an automatic classifier still uses the ABCD

rule features or if they heavily rely on bias features, e.g.,

[24, 36, 26, 4].

To determine which features are relevant to a deep neu-

ral network’s decision, most researchers have employed



saliency maps, e.g., [47]. Saliency maps are a method that

highlights areas of the input image that are relevant to a sin-

gle decision. However, we discuss in Section 3, why we

think that saliency maps are not the best solution in our sit-

uation. The most important reason is that features such as

asymmetry do not correspond to an image region. Hence,

saliency maps can not highlight them. Instead, we recom-

mend to use the method proposed by [35]. This method

uses the framework of causality and structural causal mod-

els [28]. It has the advantage that it can determine the rel-

evance of features not represented by regions of the input.

Therefore, it can determine the relevance of, for example,

asymmetry. We provide a detailed description of the method

in Section 3.1.

In this paper, we present three results. First, we con-

duct sanity checks to determine that the method is suitable,

as we are the first to apply it to this kind of data. To this

end, we investigate four features that contain little to no in-

formation relevant for skin lesion classification and demon-

strate that the classifiers do not, or very rarely, base their

prediction on the information in these features. Second,

we show that state-of-the-art classifiers use the asymmetry

and the border features defined in the ABCD rule to classify

melanoma. They rely on dermoscopic structures when de-

termining whether a skin lesion is seborrheic keratosis. By

contrast, the models we analyzed do not use the color fea-

ture that dermatologists deem relevant for melanoma clas-

sification. Third, we find that the classifiers also use the pa-

tients’ age and skin color to classify a skin lesion. Both can

be estimated from an image, for example, from body hair.

Further, we demonstrate that classifiers pick up the spurious

connection between colorful patches and nevi in the images

of the SONIC dataset [38], a bias also reported by [24, 36].

2. Related work

This work aims to achieve three goals. First, we vali-

date that the method described in [34, 35] can be used on

the complex real-life task of skin lesion classification. Sec-

ond, we determine whether state-of-the-art classifiers use

the features listed in the ABCD rule. Third, we investigate

whether automatic classifiers take shortcuts by relying on

spurious correlations in the data.

To the best of our knowledge, previous work only vali-

dates the method of [35] in small- [35], and toy examples

[35, 34]. In contrast, we systematically investigate, whether

the method falsely indicates the use of features that have

little to no information in a real-world scenario.

As far as we know, we are also the first to determine

whether state-of-the-art classifiers use ABCD rule features.

The closest works from the literature do a more general in-

vestigation into which features a classifier relies on. The

authors of these works often use saliency maps, which can

not determine the relevance of some features such as asym-

metry, e.g., [47]. Other related works automatically extract

the features named in the ABCD rule and build a classifier

upon them [19, 7]. The worse performance of these systems

indicates that deep models learn more or other features. By

contrast, we evaluate directly if deep classifiers use the fea-

tures from the ABCD rule.

More related work exists for the critical task of determin-

ing whether classifiers are biased. To investigate the influ-

ence of spurious biases on their results, the authors of [47]

use different saliency methods as local explanations of In-

ceptionNet models [43]. They employ GradCAM [39] as

well as Kernel SHAP [23] and observe that models some-

times base their decisions on background information rather

than the skin lesion. The overview [24] includes a list of

several known artifacts in dermoscopy images. One promi-

nent example is the occurrence of large colorful patches

next to skin lesions. These patches, introduced by the

SONIC dataset [38], form a bias in the ISIC archive [1]. Us-

ing saliency maps, the authors of [36] find that their model

for skin lesion classification “looks” at those patches, which

may affect the predictions. Both these works use saliency

map techniques which are only suitable for certain biases.

They can not detect biases such as the patient’s age or sex.

Moreover, saliency maps leave researchers with the seman-

tic task of interpreting them. The authors of [4] analyze

biases introduced into the ISIC archive by removing med-

ical information. They find that models correctly classify

images even if there is almost no clinically meaningful in-

formation left in the remaining inputs. Thus, they believe

that the classifier relies on spurious biases to inflate its per-

formance. In [26], Muckatiera applies a pruning algorithm

to a skin lesion classifier and derives multiple subnetworks.

The accuracies achieved by these networks differ for vary-

ing age-groups and male and female patients. In contrast,

the approach presented in this paper offers the possibility to

investigate the usage of such features directly. The output

of the method [35] needs neither semantic interpretation nor

comparison.

3. Method

This section is split into two parts. We first describe the

conditional dependence method of [35] and why we chose it

over saliency map methods. Since our selected method uses

conditional dependence tests, in Section 3.2, we describe

the specific tests we employ in our experiments.

3.1. Determining the relevance of features

Deep neural networks rely on automatic feature selec-

tion, complicated network architectures, and optimization

methods. Their excellent performance leads to the wide

adoption of black-box classifiers, which complicates deter-

mining which features of the input image influence the de-

cision.
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Figure 1: The graph of the structural causal model associ-

ated with supervised learning. Ground truth is parametrized

by the label Y . From it, we can sample the training set TS

using the sampling process ST . Additionally, we sample

the feature X and the class X̄ of all features independent of

X , using the sampling process SF . The training process T

maps the training set TS onto the set of weights W . These

weights and some of the features in X̄ are used by the neu-

ral network to produce its prediction Ŷ . The only remaining

question is if the neural network uses the feature X . Here

Reichenbach’s Common Cause Principle [31] can be used.

This figure follows Figure 4 in [35].

To this end, we decide to use the method proposed by

[35]. The authors frame supervised learning as a structural

causal model [28]. They want to determine whether the

classifier uses a specific feature. They use this feature of

interest together with all orthogonal features as a represen-

tation of the input image. Furthermore, they consider the

label, the training set, the classifier’s weights, and its pre-

diction as variables. The structural causal model addition-

ally incorporates the functions connecting these variables,

namely sampling, training, and inference. Figure 1 depicts

the resulting graphical model. For further explanations and

discussions of this method, we refer the reader to [35].

Using this framing, the question whether a function con-

nects the feature of interest X and the prediction of the clas-

sifier Ŷ can be answered by testing for the conditional de-

pendence of the two variables

X 6⊥⊥ Ŷ |Y. (1)

If the question is answered affirmative, the only possible

function connecting the two variables is the classifier. In

this case, we can infer that the classifier uses the feature of

interest for its prediction. The feature either speaks for a

class or leads, for example, to less clear cut decisions. This

framework has certain limitations. First, it can not detect ef-

fects that influence an individual while keeping the distribu-

tion of all individuals the same. Second, the selection of the

independence test is difficult but crucial. Third, the method

represents an image as the set of orthogonal features X∪X̄ .

Semantic features, however, are not orthogonal. Hence, if

we test a feature, we have to decide which information we

include. The length of the border of a skin lesion, for ex-

ample, will contain information on its area. In contrast, the

border feature we describe in Section 4.3 does not.

Other solutions for the task of determining which fea-

tures are used by a deep neural network have been proposed.

The most popular approach is saliency maps [48, 41, 40, 39,

49, 25, 21]. They assign a relevance value to each pixel.

This way, they highlight relevant areas of the input image.

For the task at hand, however, saliency maps are not

ideal. A saliency map only explains a single decision of a

classifier and does not claim generality. Even further, differ-

ent authors have demonstrated, that saliency maps lack sen-

sitivity to parameter values [3], that they are unreliable [20],

and that they are fragile [15]. The main reason, however,

we chose the method of [35] over a saliency map method is

that it can be used for features that are not regions of the in-

put. Out of the twelve features we use throughout this work,

only the colorful patches can be represented as a region of

the input.

3.2. Dependence tests

Since we reduce the question of whether a classifier uses

a feature to a conditional dependence test, in the follow-

ing, we introduce the three dependence tests we are using

throughout this work. In addition, we briefly describe their

advantages and drawbacks.

Partial correlation (PC) For this test, we need to erase the

influence of the labels Y on both X and Ŷ . Since we con-

dition on a categorical variable, this is simply done by cal-

culating

X|Y = X − E(X |Y ), Ŷ|Y = Ŷ − E(Ŷ |Y ). (2)

The test statistic is calculated as the coefficient of determi-

nation [2] between Ŷ|Y and X|Y . To check whether this

correlation is significant, we perform a shuffle test, mean-

ing that we shuffle all values and calculate the coefficient of

determination again. Doing this a thousand times allows us

to approximate the distribution of coefficients of determina-

tion under the assumption of independence. If our observed

value is larger than 99% of these values, we assume that the

correlation is significant.

The main disadvantage of this dependence test is that it

only captures linear connections between the feature of in-

terest and the prediction. However, the test has two main

advantages. First, the test statistic is interpretable. The co-

efficient of determination states which fraction of the vari-

ance in the prediction can be explained by a linear model

of the feature of interest. The second advantage is that this



test only detects if the feature speaks for or against a partic-

ular class and not, for example, if the feature only leads to a

more precise classification. While this is not an advantage

in general, we believe that it is in our application.

Fast conditional independence test (FCIT) This test was

introduced by [8]. The main idea is to check whether one

variable can predict the other variable using a decision tree

regressor. The test is fast and can detect non-linear rela-

tions. However, it is not a mathematical dependence test,

and known failure cases exist [8]. For a more detailed dis-

cussion of this test, we refer the reader to [8].

Hilbert-Schmidt independence criterion (HSIC) The

HSIC test was proposed by [16] and involves calculating

the correlation in a kernel space instead of the input space

to account for nonlinear relationships. Similar to the par-

tial correlation, we use X|Y and Ŷ|Y as well as a shuffle

test to approximate the distribution under the assumption of

independence. The test statistic is given by

HSIC(X|Y , Ŷ|Y ) =
1

(m− 1)2
tr
(

KX|Y
HK

Ŷ|Y
H
)

, (3)

with m being the number of examples, KX|Y
the kernel ma-

trix associated with a Gaussian kernel for the variable X|Y ,

and Hij := 1i=j − m−2 a normalization matrix. Again,

we set the level of significance to 0.01. Since the HSIC test

requires the calculations of large kernel matrices, we per-

form the test only on a random subset of 1,000 samples. To

counteract this restriction, we use a larger variance for the

Gaussian kernel of a ten times the mean distance of all sam-

ples. The main advantage of the HSIC test is that it is a true

mathematical dependence test that can detect nonlinear de-

pendencies. However, the results depend on the variance of

the kernel that has been selected.

4. Experiments

This section discusses the details of our experimental

setup. We test whether state-of-the-art skin lesion classifi-

cation systems use specific features to reach their decision.

Since the classifiers are the same in every experiment, we

start by describing them in Section 4.1. Our experiments

differ in terms of the features we analyze and the datasets

we use. We explain the exact features and datasets corre-

sponding to the respective experiments in Sections 4.2, 4.3,

and 4.4. The results are summarized in Section 5 and dis-

cussed in Section 6.

4.1. Classifiers

In recent years, successful ISIC challenge participants

often used deep learning models pre-trained on ImageNet

[37], test-time augmentations, ensembles, or combinations

thereof [9]. In this paper, we analyze two of these models.

We start by describing them in the following.

The first classifier presented by Perez et al. [29] in-

troduced test time augmentations and won the best paper

award at the ISIC Skin Image Analysis Workshop @ MIC-

CAI 2018. They aggregated the predictions of multiple aug-

mented test examples into one final prediction. We follow

their training scheme on the ISIC 2017 challenge dataset

[10] and use the augmentation scenario ”J” as described in

[29]. We train multiple models using different backbones on

the binary tasks of melanoma (MEL) and seborrheic kerato-

sis (SK) classification. We report results using mean (n) and

maximum (x) aggregation. Further, we use ResNet-152 (R)

[17], Inception-v4 (I) [43], and DenseNet-161 (D) [18] as

backbone networks. For further details and specific hyper-

parameter settings, we refer the reader to [29] and the code

the authors provided. We abbreviate the different models

after the following scheme: Dx26::MEL is a DenseNet-161

trained for melanoma classification using maximum aggre-

gation of 26 augmented examples.

Gessert et al. [14] won both tasks of the ISIC 2019

Skin Lesion Classification Challenge. Their classifier is

a large ensemble mainly based on multi-resolution Effi-

cientNets [44] pretrained on ImageNet. Similar to Perez

et al. [29], they also heavily utilize extensive data augmen-

tations. Their classifier performs multi-label classification

with eight classes and one rejection class. It is trained

on three datasets: HAM10000 [46], BCN20000 [11], and

MSK [10]. We train an ensemble of five EfficientNets (B0)

following the training scheme of Gessert et al. [14]. We

refer to [14] and the authors’ code for specific details and

hyperparameter settings. Following Gessert et al. [14], we

average the predictions of 36 ordered crops of each example

to derive a final prediction. Note that the full model pro-

posed by Gessert et al. [14] contains much more and larger

networks than just the five EfficientNets (B0). Therefore,

we expect our model to perform worse than the original.

However, as this is the default parameter setting in the code

the authors provided, we expect it to be a decent represen-

tation of their classifier.

The classification models of Perez et al. [29] and Gessert

et al. [14] are just examples, but they employ differ-

ent widely-used strategies also contained in other high-

performance models. Hence, we argue that these classi-

fiers are a good representation of current strategies used

in skin lesion classification. They also cover the subdivi-

sion in melanoma classification and skin lesion classifica-

tion in general. Performances achieved by these models in

our setup can be found in the supplementary material.

4.2. Validation of the conditional dependence
method

In the first experiment, we investigate if models use fea-

tures with no or very little meaningful information. The

goal is to validate that the method we chose can handle our



Table 1: Results of the validation of the conditional dependence method. For every classifier and feature/test, we indicate

that the feature is used with a ✓or not used with a ✗. We assume a feature is used if the test reports a significant dependence

at p = 0.01. The models of Perez et al. [29] are denoted by their backbone (ResNet-152 (R), Inception-v4 (I), DenseNet-161

(D)) the aggregation method (mean (n), maximum (x)) and the number of augmented samples. For the ensemble of Gessert

et al. [14] we denote the predicted class as melanoma (MEL), melanocytic nevus (NV), basal cell carcinoma (BCC), actinic

keratosis (AK), benign keratosis (BKL), dermatofibroma (DF), vascular lesion (VASC) and squamous cell carcinoma (SCC).

The star (∗) denotes cases where the labels already explain all of the observed variance.

Orientation Rand. Symmetry Image ID MNIST Class

Classification Model PC FCIT HSIC PC FCIT HSIC PC FCIT HSIC PC FCIT HSIC

Perez et al. [29]:Dx26::MEL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Perez et al. [29]:Dn26::MEL ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Perez et al. [29]:Dn64::MEL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Perez et al. [29]:Ix26::MEL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Perez et al. [29]:In26::MEL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Perez et al. [29]:In64::MEL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Perez et al. [29]:Rx26::MEL ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗

Perez et al. [29]:Rn26::MEL ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Perez et al. [29]:Rn64::MEL ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Perez et al. [29]:Dx26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Perez et al. [29]:Dn26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Perez et al. [29]:Ix26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗∗

Perez et al. [29]:In26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Perez et al. [29]:Rx26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Perez et al. [29]:Rn26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Gessert et al. [14]::MEL ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗

Gessert et al. [14]::NV ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗

Gessert et al. [14]::BCC ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Gessert et al. [14]::AK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Gessert et al. [14]::BKL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Gessert et al. [14]::DF ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗∗

Gessert et al. [14]::VASC ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Gessert et al. [14]::SCC ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

task’s complex data and still produce meaningful results.

We expect that the classifiers do not use any information

contained in the features discussed in this section. If we

later detect the usage of features in the other experiments,

we know that these detections are meaningful. We do not

validate the inverse as there is no consensus on which fea-

tures have to be used by neural networks. We test the fol-

lowing features:

Orientation: For the orientation feature, we estimate the

ellipse with the same second moments as the skin lesion’s

contour and measure the angle between its major axis and

the horizontal axis of the image. Since this feature measures

the lesion’s orientation in the image, it is a property of the

image rather than the lesion. Therefore, it does not contain

any useful information for classifying the lesion.

Random symmetry: We first choose a random axis that

goes through the center of gravity of the lesion segmen-

tation and calculate the intersection over union (IOU) be-

tween the areas of the skin lesion and the skin lesion flipped

along this axis. After repeating this process for the orthogo-

nal axis, we multiply both IOU scores to obtain the feature.

Image ID: Here, we take the position of the image in the

ISIC archive [1]. Although images from the same source

receive consecutive numbers in the archive, this feature con-

tains very little useful information.

MNIST class: We calculate this feature by feeding the seg-

mentation mask of a skin lesion into a classifier for hand-

written digits trained on the MNIST dataset [22]. The de-

tails of the corresponding classifier are provided in the sup-

plementary material. This feature contains almost no useful

information since the similarity between classifying skin le-

sions and classifying hand-written digits is minimal.



Table 2: Results for the clinically meaningful ABCD rule features. For notation see Table 1.

Asymmetry Border Color Derm. Structures

Classification Model PC FCIT HSIC PC FCIT HSIC PC FCIT HSIC PC FCIT HSIC

Perez et al. [29]:Dx26::MEL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓

Perez et al. [29]:Dn26::MEL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓

Perez et al. [29]:Dn64::MEL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓

Perez et al. [29]:Ix26::MEL ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓

Perez et al. [29]:In26::MEL ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Perez et al. [29]:In64::MEL ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Perez et al. [29]:Rx26::MEL ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓

Perez et al. [29]:Rn26::MEL ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Perez et al. [29]:Rn64::MEL ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Perez et al. [29]:Dx26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓

Perez et al. [29]:Dn26::SK ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓

Perez et al. [29]:Ix26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Perez et al. [29]:In26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Perez et al. [29]:Rx26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Perez et al. [29]:Rn26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Gessert et al. [14]::MEL ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Gessert et al. [14]::NV ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Gessert et al. [14]::BCC ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Gessert et al. [14]::AK ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Gessert et al. [14]::BKL ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓

Gessert et al. [14]::DF ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Gessert et al. [14]::VASC ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Gessert et al. [14]::SCC ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓

We choose these features because the first contains no,

and the other three minimal useful information on the skin

lesion. It is reasonable to assume that they should not or

only very rarely be used by the selected classifiers. Further-

more, these meaningless features have a similar structure as

the interesting features we want to test later on. For exam-

ple, orientation and random symmetry have a similar com-

plexity to the asymmetry and border features described in

Section 4.3. Additionally, the MNIST class feature’s com-

plexity is similar to the dermoscopic structures feature from

the same section. We acquire the image ID feature from the

metadata similarly to the age and sex features described in

Section 4.4.

We evaluate the distributions of these features and the

predictions on the HAM10000 dataset [46]. This dataset

contains 10,015 images of seven different classes as well as

ground truth segmentations and different metadata. Exam-

ples include the age and the sex of a patient.

4.3. Clinically meaningful features:

In the second experiment, we investigate the features in-

troduced by the ABCD rule. Dermatologists deem these

features helpful to determine whether a skin lesion is a

melanoma. Here, we describe how dermatologists score

these features and how we automate this scoring.

Asymmetry: This feature’s score is the maximum number

of orthogonal lines that can be found such that the skin le-

sion is almost symmetric to all of them. Since there can be

at most two orthogonal lines in an image, this score is either

zero, one, or two. To automatically evaluate this feature, we

use axes that form an integer degree angle with the image’s

horizontal axis. We consider the lesion to be symmetric if

the intersection over union of the lesion area and the area of

the lesion flipped along the axis is larger than 0.9.

Border: Dermatologists assess the border by dividing it

into eight segments. The number of border segments with a

sharp and abrupt separation from the surrounding area de-

fines this feature’s score. Hence, the score may take values

between zero and eight. Following related work, we instead

use the isoperimetric fraction, i.e. the fraction of the area A

of the skin lesion and the squared length of its perimeter P

border =
4πA

P 2
. (4)

Color: Doctors score the color by counting how many of



Table 3: Results for the known bias features. For notation see Table 1.

Age Sex Skin Color Colorful Patches

Classification Model PC FCIT HSIC PC FCIT HSIC PC FCIT HSIC PC FCIT HSIC

Perez et al. [29]:Dx26::MEL ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

Perez et al. [29]:Dn26::MEL ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓

Perez et al. [29]:Dn64::MEL ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

Perez et al. [29]:Ix26::MEL ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓

Perez et al. [29]:In26::MEL ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Perez et al. [29]:In64::MEL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Perez et al. [29]:Rx26::MEL ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Perez et al. [29]:Rn26::MEL ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Perez et al. [29]:Rn64::MEL ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Perez et al. [29]:Dx26::SK ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓

Perez et al. [29]:Dn26::SK ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Perez et al. [29]:Ix26::SK ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Perez et al. [29]:In26::SK ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Perez et al. [29]:Rx26::SK ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓

Perez et al. [29]:Rn26::SK ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gessert et al. [14]::MEL ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Gessert et al. [14]::NV ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Gessert et al. [14]::BCC ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓

Gessert et al. [14]::AK ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓

Gessert et al. [14]::BKL ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Gessert et al. [14]::DF ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

Gessert et al. [14]::VASC ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓

Gessert et al. [14]::SCC ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

the colors white, red, light brown, dark brown, blue-gray,

and black appear in the skin lesion. To automatically calcu-

late this score, we defined neighborhoods in the HSV space

for each color. The details can be found in the supplemen-

tary material. To calculate the color feature, we count for

how many of these specified color intervals we can find a

pixel of this color in the skin lesion.

Dermoscopic structures: This feature is the number of

different structures that appear in the lesion. The possible

structures are milia like cysts, negative networks, pigment

networks, streaks, and globules. To evaluate this feature,

we rely on data labeled for a corresponding task in the 2018

ISIC challenge [9].

The models should incorporate these features in their de-

cisions to increase the trust in automatic classification sys-

tems. To test this, we use the HAM10000 dataset for the

first three features. To investigate the dermoscopic struc-

tures feature, we use the dataset of the 2018 ISIC Challenge

[9]. This dataset contains 2,594 images and five segmenta-

tion masks for each image corresponding to different der-

moscopic structures.

4.4. Known bias features

In the third experiment, we determine if the following

bias features influence the predictions.

Age: For this feature, we use the metadata of the

HAM10000 dataset. This dataset includes approximations

for the patient’s age rounded to the nearest five years.

Sex: Similar to age, a patient’s sex is also annotated in the

HAM10000 dataset. We extract it as a binary variable.

Skin color: To determine the skin color, we use the ten

by ten pixel area in the top left corner of the image. We

exclude images where this area is black and perform a prin-

cipal component analysis (PCA) on the extracted area of the

remaining images. The loading of the first principal com-

ponent determines the skin color feature. Visual inspection

shows that low values correlate with light skin color. Some

examples can be found in the supplementary material.

Colorful patches: Some ISIC archive images, especially

images from the SONIC dataset [38], contain colorful

patches. The supplementary material contains some exam-

ple images. Rieger et al. [36] note that classifiers might use

these patches as features since all images containing at least

one colorful patch show benign skin lesions. To investigate



this further, we check whether the patch area as a feature in-

fluences the predictions. For this feature, we use the patch

segmentations provided by Rieger et al. [36].

For the evaluation of the first three bias features, we use

the HAM10000 dataset. For the final feature, we instead use

the first 10,000 images from the ISIC archive. This dataset

includes over 9,000 images from the SONIC dataset [38].

The study that recorded this dataset examined nevi in chil-

dren. The resulting images contain a skin lesion and often

large colorful patches. The ISIC 2017 and ISIC 2019 chal-

lenge datasets contain such images. Hence, the selected

models could associate colorful patches with the classes

“benign nevi” or “not melanoma”.

Classifiers should not base their predictions on any of

the features described in this section. They are indicators of

biases introduced in the data acquisition process.

5. Results

Tables 1, 2, and 3 contain the results for the three exper-

iments. The rows of these tables are split into three parts:

the Perez et al. [29] models for melanoma classification, the

Perez et al. [29] models for seborrheic keratosis classifica-

tion, and the Gessert et al. [14] ensemble of EfficientNets.

Since the tests do not agree, we primarily consider majority

votes among them and report whether at least two of three

tests indicate the use of a feature.

Table 1 contains the results of the validation experiment.

All tests indicate that the classifiers do not use the skin le-

sion’s orientation (0 / 23). The majority vote implies the

usage of a feature only twice for all of the features and clas-

sifiers in Table 1 (2 / 92). Both times it is the Gessert et al.

[14] model using the image ID feature. The results in Table

1 match the expectations formulated in Section 4.2 that the

features are not or very rarely used by classifiers.

Table 2 contains the results of the experiment concern-

ing the ABCD rule features. Dermatologists designed the

ABCD rule to distinguish between melanoma and non-

melanoma. The first two columns in Table 2 resemble

this fact. All Perez et al. [29] models trained to identify

melanoma use both the asymmetry and the border features

(both 9 / 9). In contrast, no model classifying seborrheic

keratosis uses these features (both 0 / 9) according to the

majority vote. The ensemble of Gessert et al. [14] uses only

the border feature (6 / 8) but does not rely on the asymmetry

(0 / 8). Only three of the melanoma classifier by Perez et al.

[29] and three of the classifiers of Gessert et al. [14] use the

color feature (6 / 23). Most of the seborrheic keratosis mod-

els of Perez et al. [29] use the dermoscopic structures (4 /

6). In contrast, the other two groups of classifiers rarely use

this feature (1 / 9 and 1 / 8). Additionally, we observe a stark

difference between the PC-test and the HSIC-test regarding

the dermoscopic structures feature. While the former test is

positive only four times, the latter is positive 20 times.

Table 3 contains the results for known biases. The major-

ity of models use the patient’s age (20 / 23). Only four of the

models incorporate the sex (4 / 23). For the skin color fea-

ture, the results differ among the three groups of classifiers.

Only two out of the nine melanoma classifiers of Perez et al.

[29] rely on this feature (2 / 9). All the seborrheic kerato-

sis classifiers use the skin color (6 / 6). The majority of the

classifiers of Gessert et al. [14] also incorporate this feature

(6 / 8). Finally, we investigate the colorful patches and find

that all but one classifier use this feature (22 / 23).

6. Conclusions

In this work, we use the conditional dependence method

described in [35] to analyze state-of-the-art skin lesion clas-

sifiers by Perez et al. [29] and Gessert et al. [14].

We validated that the method [35] produces meaningful

results. It does not or very rarely indicate the use of features

that contain little to no information about the skin lesion.

The features we used for validation have a similar complex-

ity as the relevant features. We say that a classifier uses a

feature if the majority of tests indicate usage.

Regarding the features named in the ABCD rule, we

found that the melanoma classifiers of Perez et al. [29] use

the asymmetry and border features. The corresponding seb-

orrheic keratosis classifiers use the dermoscopic structure

but do not rely on the other features. The classifiers of

Gessert et al. [14] use the border feature. Note that the

color feature was not used extensively by any group of clas-

sifiers. This fact might express an inductive bias in deep

neural networks of shape over color information. Further-

more, regarding the dermoscopic structures, we found that

the nonlinear HSIC detects an influence. However, the lin-

ear PC test indicates that the feature does not speak for any

class. Hence, the existence of many different dermoscopic

structures is likely to make a sample difficult to classify but

not more likely to be classified as any specific class. In

summary, we found that the state-of-the-art classifiers use

some of the ABCD rule features. While this should inspire

some trust, more work is needed to ensure that the classifiers

make medically sound decisions. We encourage authors to

conduct similar experiments on their classifiers.

We further found that the classifiers use bias variables,

namely the age and skin color of a patient and the existence

of colorful patches in the images. These observations are

worrying, and more work is needed before we can employ

automatic classifiers for diagnoses. A solution to this chal-

lenge could be the use of adversarial debiasing strategies

during training, such as [32]. Nevertheless, we have to be

aware that datasets might contain many unknown biases.
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