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Abstract In this paper we show, how modeling of
spatial dependencies between single parts can be used
to improve the robustness of the localization of multi–
part objects. Spatial dependencies are described by a
probabilistic modeling of the features’ locations, and
connecting them by “coupling rays” into a so called
“coupled structure”. The approach is embedded into a
completely probabilistic framework which allows gen-
eralization to multi–part objects of any kind. We de-
scribe how the localization process can be mapped onto
a corresponding energy minimization problem. An out-
line is sketched for the tracking of coupled structures
in image sequences over time. Finally, the approach is
applied to the problem of localizing facial features and
experimental results are presented.

Keywords: coupled features, probabilistic model,
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features

1 Motivation

Localization and tracking of objects is one major
problem in computer vision. Examples are video
surveillance, multi media application, autonomous
driving and — for a few years — augmented real-
ity. Despite the fact that most objects can be di-
vided into different parts, object localization and
tracking is mostly done in a holistic manner. This
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means that primitives are extracted in the image
(for example, edges, corners, or regions) which are
taken to model the whole object. Such an approach
neglects the fact that a couple of important and sig-
nificant parts of the object could be more easily de-
tected than the whole object itself in one step. For a
multi–part approach it is more natural to define so
calledbelief sensors that are specialized on local-
izing a certain part of the object. One example is to
find a face in an image. This can be done by look-
ing for the two eyes and the mouth whose positions
are not independent from each other. The problem
that needs to be solved now in such a multi–part
approach is how to make use of the a priori known
spatial relationships between the different parts.

In this contribution we show that the localiza-
tion of an object consisting of multiple parts that
have known spatial interpart relationships, can be
done by solving an optimization, i.e. energy mini-
mization problem. The main point is aprobabilis-
tic model that represents the spatial dependencies.
For finding the locations of the features, one has
to determine those parameters of the model that
maximize thea posteriori probability (MAP) of
the model conditioned by the current data.

The work which has inspired us mostly, is the
one on feature networks in [4]. There, the cou-
pling of certain features as well as the composi-
tion of higher level geometric constraints is used
to improve the accuracy of tracking. But in con-
trast to [4], we use a concrete model that is com-
pletely embedded into a probabilistic framework.
It is shown that the probabilistic model is strongly
associated to the elastic, deformable contour model



in the field of active contours [6]. The elastic cou-
pling of features was introduced in [3] for facial
feature tracking by means of springs, and it was
later used in [9] in the context of deformable tem-
plates.

Our work reduces the whole estimation process
to an energy minimization problem. It can also be
compared with active, elastic contours, if the con-
tour points are substituted by higher level features;
to localize faces, these features may represent the
two eyes and the mouth (cf. Section 3). The val-
ues of the model parameters, representing the spa-
tial dependencies, can be estimated in a training
step. In our current work, this is done by using
a labeled training set. For this, the probabilistic
framework is advantageous because of the rich the-
ory already available for parameter estimation, and
the possibility of handling uncertainty, caused by
noisy data.

This paper is organized as follows: first, the
probabilistic model, calledcoupled structure, is
introduced in Section 2.1, together with a maxi-
mum a posteriori approach to localize a multi–part
object. It is shown how the model can be build
up from single so calledcoupling rays. Also a
short outlook is given on how tracking of coupled
structures over time can be embedded into the gen-
eral probabilistic framework, too. In Section 3 the
presented approach is applied to localizing facial
features. Finally, we present experimental results
from a large set of face images and manually high
distorted images in Section 4. The results show
the accuracy and reliability of such a probabilistic
coupled structure, even for the case of very noisy
images.

2 Coupled Structure for Object
Localization

2.1 Probabilistic Model

The model that is described in the following, is
based on the active rays approach that has been
successfully used for contour based object tracking
[1]. There, a 2–D contour is represented by differ-
ent 1–D rays, which originate from one reference
point that lies inside the contour. Now, instead of

interpreting a point on a ray as a candidate for a
contour point, it can be generally seen as the loca-
tion of any given feature. The concept of a contour
in the image plane, which is represented by a given
set of rays, is therefore replaced by a general con-
cept that we callcoupled structure.

The position of a certain feature is given by a
coupling ray %i = (�i; �i)

T with length �i and
angle�i. The pose of the ray is determined by the
angle�i measured with respect to a given reference
line in the image (usually the horizontal line). All
coupled rays originate in a common point called
the coupling center m = (mx;my)

T with its im-
age coordinatesmx andmy (s. Figure 1). So the
model, i.e. the coupled structures is defined by the
n coupling rays and the coupling center

s = (%1; : : : ;%n;m)
T :

Because of the fact that the locations of the
features of the objects under consideration often
change slightly (think of a non-rigid motion of a
face) and that the detection of features is distorted
by noise, it is reasonable to regard the important
quantities of the model in a probabilistic way. This
can be done by modeling the variations in the con-
crete values of the lengths�i and angles�i of a ray
%i by an appropriate probability density function

p%
i
(�i = l; �i = 'j%i):

This representation is intended to show explic-
itly the generality of the approach. For example,
it can be thought of features that have more than
one plausible location along a certain ray. So the
necessity may arise to use multi-modal probabil-
ity density functions. It is worth noting thats may
have more than one coupling centerm and that the
description can be extended to the 3–D case by us-
ing 3–D rays. Here, the description is restricted to
the case of only one coupling center and to features
lying in one plane.

2.2 MAP Based Localization

Now, we treat the coupling structures as a random
vector in IR2n+2. Then, a maximum a posteriori
estimation for localizing the object can be applied.
Spoken in different words, one has to seek for a
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Figure 1: The coupled structure with three cou-
pling rays is shown as it was used for modeling the
spatial relations between facial features. The right
side shows a magnification of one ray to explain
the quantities.

parameter sets� = (%1; : : : ;%n;m)
T which max-

imizes the posterior distributionp(sjf) of s con-
ditioned on the imagef . Using Bayes’ rule one
gets

p(sjf) =
p(f js)p(s)

p(f)
; (1)

wherep(f js) denotes the sensor model andp(s)
the prior of observing a certain configuration of the
model. In a given reference coordinate system we
can calculatep(s) by

p(s) = p(%1) � p(%2) � � � � � p(%n) � p(m): (2)

The independence assumption in (2) is valid, since
the dependencies between different rays are im-
plicitly given by the common coupling centerm.
The joint probability

p(%i) = p(�ij�i)p(�i)

must be estimated from the data in the model gen-
eration process.

If the model undergoes a transformationT , for
example, a rotation in the image plane, the corre-
sponding densityp(T s) is given by

p(T s) = jdet(J
T �1

(s))j p(T �1
s) (3)

with J
T
�1 being the Jacobian of the transforma-

tion T �1. A simple and useful transformation may
also be a global scaling operation, which influences
only the length�i of the ray%i.

To model the sensor characteristicp(f js), a
common method is applied. We express the corre-
spondence of the models with the sensor dataf ,
i.e. the probability of observingf given the model,
by a Gibbs distribution of the form

p(f js) =
1

zext
exp [�Eext(f ; s)] (4)

with zext being a normalizing constant. The term
Eext(f ; s) can be interpreted as anexternal energy
and needs to be specified dependent on the appli-
cation. It should return high positive values for im-
age data which do not correspond to the model, and
low positive values for good matches.

Now, the estimation of the unknown parameter
s
� can be described as an MAP estimation

s
�
= argmax

s

p(f js)p(s)

p(f)
: (5)

2.3 MAP Based Tracking

For tracking a coupled structurest with time in-
dext a MAP based approach can be applied again.
For that we assume that the object dynamics can be
described as a temporal Markov chain, i.e.

p(stjst�1; : : : ; s0) = p(stjst�1):

We also assume the image dataft to be indepen-
dent, both mutually and with respect to the dynam-
ical process , i.e.

p(ft�1; : : : ;f0; stjst�1; : : : ; s0) =

= p(stjst�1)

t�1Y
i=0

p(fijsi):

Now, equation (1) becomes

p(stjft; : : : ;f0) =
1

zt
p(ftjst)p(stjft�1; : : : ;f0)

where

p(stjft�1; : : : ;f0) =

=

Z

st�1

p(stjst�1)p(st�1jft�1; : : : ;f0):



The termzt is a normalizing constant, which does
not depend onst. The treatment of the dynami-
cal process looks quite complicated. One way to
handle this is to make use of the CONDENSATION

algorithm [5], which allows an efficient propaga-
tion of the conditional densityp(stjft; : : : ;f0) over
time.

The dynamical case is not considered here any
further. In the following subsection we give con-
crete examples of the models in the area of local-
izing facial features as well as concrete terms for
the priorp(s) and the sensor modelp(f js).

3 Application to Localizing Facial
Features

To localize the facial features eyes and mouth, it is
intuitive to model their spatial dependencies by a
coupled structuresface that consists ofthree cou-
pling rays with the coupling center being the tip of
the nose. There is one coupling ray for each eye
and one for the mouth (cf. Figure 1).

Since there is only one reasonable position for
each facial feature in a face, the length and the an-
gle of each ray are regarded as Gaussian distributed
random variables, i.e.

p%
i
(�i = l) � N (

��i;
��2i ); and

p%
i
(�i = ') � N (

��i;
��2i ):

Therefore it is sufficient to specify the two
means�;��i and the two variances�;��2i of this
distributions for each ray%i. They are obtained by
segmentation of a sample set of images taken from
frontal views of different persons.

For the priorp(sface) in equation (2) it is neces-
sary to specify explicitlyp(%i). For the joint prob-
ability density functionp(�i; �i) we write

p(%i) = p(�i)p(�i):

This independence assumption was verified by ap-
plying the�2 test to data from 339 face images.
Thus, we get for the priorp(sface) of our model
parameters

p(sface) = p(m)

3Y
i=1

p(�i)p(�i):

Assuming a Gaussian distribution of the two pa-
rameters�i and�i as mentioned earlier and an uni-
form distributionp(m) over the image plane, i.e.
no knowledge is used about the position of the face
in the image, we get a distribution of the form

p(sface) =
1

zint
exp [�Eint(sface)] ;

wherezint is a normalizing constant and

Eint(sface) =

3X
i=1

(
��i � �i)

2

��2i
+

(
��i � �i)

2

��2i
:

The termEint(sface) can be interpreted as aninter-
nal energy of the model [7], that is low for config-
urations that are similar to the modeled mean and
high for large deviations.

Thus the MAP approach can be seen as an en-
ergy minimization problem, with a termEint de-
scribing the deformation ability of the model and a
second termEext (cf. Eq. (4)) given by the image
data conditioned on the model.

In the following we use a straight forward ap-
proach for the external energy definition because
of the observation, that high vertical energies in an
image can be used to identify the unknown posi-
tions of the facial features. One can think of more
sophisticated features, but this is beyond the scope
of this paper.

The energies in the image are computed by us-
ing the DCT (discrete cosine transformation) that
is supported in hardware by many of todays frame
grabbers. To get the vertical energiesbv(j; k)
from each 8�8 DCT block(j; k) the entries of the
first and second column of each DCT block are
summed [8]. Applied to the coupled structure for
each ray%i a certain rectangular areaAi(%i) with
its center at(�i; �i) is defined, for which the ver-
tical energiesbv(j; k) of DCT blocks are summed
up; that results in an total external energy

Eext(f ; sface) =

3X
i=1

1P
(j;k)2Ai(%i

)

bv(j; k)
: (6)

With the prior of the model (2) and the sensor
model (4) defined by the external energy (6) the un-
known parameter sets�facecan be determined using
(5).



Determinings�face, i.e. localizing the facial fea-
tures, was implemented by means of a scalable
search algorithm. The algorithm works directly on
the positions of the facial features in the energy
map. From these positions the parameters of the
coupled structure are determined afterwards.

The coarse structure of the search algorithm can
be outlined as follows. First the algorithm creates
a listL of the entries in the energy map. Each entry
l = (j; k) in the list stores the indicesj andk of
the corresponding entry in the energy map. For all
triples(l1; l2; l3) 2 L�L�L the total energy of the
corresponding coupled structure can be computed
usingl1 as the location of the left eye,l2 as the lo-
cation of the right eye andl3 as the location of the
mouth. The best triple represents directly the loca-
tions of the facial features in the energy map, i.e.
the coupled structure with the lowest total energy.
It is clear that this global search is not applicable.
But fortunately in our case, the search space can be
restricted drastically.

First, the listL can be sorted by decreasing en-
ergy. Since entries with high energy values are
good candidates for presenting the location of a fa-
cial feature, these entries come first inL. Second,
not the whole list is used to build the triples, only
the firstn entries of the list are used. Already the
selection of the 50 best entries is sufficient to per-
form a good, but maybe suboptimal, localization.
As it can be seen in Table 1, forn = 50, a good
trade–off between computational effort and accu-
racy is achieved. By using knowledge about the
task domain, here localization in frontal views of
faces, the search can be accelerated further. So we
do not need to examine triples where the right eye
is on the left of the left eye, or the mouth is above
the eyes, etc.

4 Experimental Results

To demonstrate the applicability of the proposed
approach a sample set of 335 face images was
used. The positions of the eyes and the mouth were
manually labeled in each image of the sample set.
For each of the sample images we created an en-
ergy map containing the vertical energiesbv(j; k)
as they are needed to compute the external energy

bestn 3 5 10
�s 171.51 147.84 62.54
runtime [ms] 16 28 38

bestn 20 50 100
�s 7.74 3.96 3.90
runtime [ms] 354 8762 75337

bestn 150 200
�s 3.66 3.45
runtime [ms] 260640 637040

Table 1: Mean error�s of the coupled structure
(in 8�8 blocks), depending on the numbern of the
selected first entries in the sorted listL. Runtimes
are measured on a Pentium II with 333 MHz.

in (6). Since the vertical energies result from 8�8
DCT blocks, the spatial resolution in localizing the
facial features in the original image is also limited
to 8�8 pixel blocks.

The accuracy of the coupled structure approach
was tested by dividing the sample set into a train-
ing part that was used to estimate the parameters,
and into a test part that was used for evaluation.
To judge the quality of the results depending on
the number of training images, the whole sample
set was divided randomly into five subsets of equal
size. These subsets were systematically combined
to build training and test sets of different sizes.
First, we performed experiments with one subset
for training and four subsets for evaluation. Sec-
ond, we used two subsets for training and the re-
maining three subsets for testing, and so on. All
these experiments were done twice with different
partitions of the whole sample set. Thus, a total
number of 10050 localizations were conducted.

The quality of the facial feature extraction by
the coupled structure was judged by computing the
distances between the estimated position of the two
eyes and the mouth, and the true position, obtained
from the labeled sample set.

The experiments were performed by using the
scalable search algorithm, described in Section 3.
Some statistics of the experiment with the best
mean error�s of the whole structure of 3.52 blocks
is given in Table 2. The maximal total mean error
was 4.94 blocks. The mean error over all experi-



�i �i mini maxi

Left eye 0.99 0.70 0.00 2.83
Right eye 1.03 0.91 0.00 4.24
Mouth 1.50 1.13 0.00 6.32

�s =
3P

i=1

�i 3.52

Table 2: Euclidean error for coupled localization
using 268 training and 67 test images. For each fa-
cial feature the mean, standard deviation, minimal
and maximal error in units of 8�8 blocks is given.

ments was 4.04 blocks with a standard deviation of
0.27 blocks. In Figure 2 we show some example
results from localizations of facial features from
images of the sample set.

Figure 2: Two example images from the sample
set with their energy maps. The localized facial
features are marked by white boxes.

Although, the search algorithm yields good re-
sults, it is not applicable to situations where the
feature detection is highly distorted by noise, be-
cause the distortion can cause the corresponding
DCT block indices to not appear in the first part of
L, and so it is not considered as a potential can-
didate for a facial feature location. An alternative
to handle high distortions is to use a random based
global search procedure, like theadaptive random
search (ARS) algorithm [2].

The robustness of our coupled approach is
demonstrated by applying ARS to manually highly
distorted face images. The results show, that be-
cause of the use of an internal energy in our cou-
pled model, the distortions can mostly be neutral-

ized, so they do not affect the localization process
(Figure 3).

Figure 3: Results for artificially highly distorted
face images. No left eye visible (top), more than
one mouth and more than two eyes visible (bot-
tom).

5 Conclusion

In the paper we describe a probabilistic method for
modeling the spatial dependencies between multi-
ple parts of objects. This leads to a robustness in
the localization of the whole object in the case of
distortions, wrong measurements, or uncertainty in
the feature computation.

The experiments show, that each facial feature
can be localized with an error less than 1.5 blocks.
The advantage of the spatial modeling becomes ob-
vious in the case of missing features due to oc-
clusions or noisy data. The result itself is quite
promising, just because the external energy is sim-
ple and one can think of a more specific one.

Summarizing the approach, we like to empha-
size that the idea of coupling different features of
an object is natural and not new — as mentioned
while giving the bibliography review in Section 1.



Nevertheless, a complete formalization of this idea
in a probabilistic framework, as given in the paper,
has not been done until now. The main advantages
arise from

1. the abstract description of the coupled struc-
ture, which will include 3–D objects in our
future work; the position in 3–D can be es-
timated by integrating the transformationT
(cf. Eq. 3) in the parameter estimation process
(5).

2. the possibility to use multi–modal densities
for describing the position of a certain feature,

3. the possibility to define different sensor mod-
els for each feature. In our case, this is
demonstrated by the size of the rectangular
areaAi(%i), which differs between the two
eyes and the mouth.

In our future work we will focus on the inte-
gration of 3–D information, to track rotating faces,
too. There, we expect some problems with the
computational effort in the practical realization of
the MAP estimation by energy minimization. Ad-
ditionally, we will apply more sophisticated sensor
models to identify the facial features. Finally, the
approach has to be applied to a different domain,
to show its generality.
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