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ABSTRACT
In this paper we discuss some practical facets of active
camera control during 3-D object tracking. The basis of
our investigation is an active binocular camera system look-
ing onto a scene to track a moving object in 3-D. Tracking
is done in a data driven manner using an extented version
of the region based method that was proposed earlier by
Hager and Belhumeur. Triangulation of the extracted ob-
jects in the two image planes lead to an estimation of the
3-D position of the moving object. To keep the moving ob-
ject in the center of the image the tilt and vergence axis of
the binocular camera system is controlled. The important
question for such an experimental setup is which param-
eters do influence the quality of the final 3-D estimation.
The main effects we are concentrating on is the accuracy
of the 2-D localization in the image plane depending on the
focal length of the camera. Also the consequences of errors
in the synchronization between image acquisition and mo-
tor control of the camera system are shortly discussed. All
considerations are verified in real-time experiments.
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1 Introduction

Active control of a camera system during object track-
ing has been proposed earlier [3, 8]. The main motiva-
tion is to keep the moving object in the image. Recently,
also the control mechanism for moving the camera has
been discussed [9]. In their control theoretic investigation
the authors present a two mode controller, one performing
smooth pursuit, while in the second mode saccades are per-
formed to keep the object of interest in the image.

The goal of our research is object tracking in 3-D by
optimally selecting the focal lengths of a binocular cam-
era system. For focal length selection we have to deal with
the tradeoff between a small focal length that reduces the
induced image flow and a large focal length that might in-
crease accuracy in the 2-D localization in the image plane
and therefore later in the 3-D estimation of the position and
velocity of the moving object.

∗This work was supported by the “Deutsche Forschungsgemeinschaft”
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In consideration of this goal, i.e. to improve tracking
of a moving object in 3-D, several factors must be taken
into account that influence the quality and accuracy of the
3-D position estimation. First, the tracking algorithm must
handle changing focal lengths during tracking without los-
ing the object. Second, the real-time constraints that we in-
herently have to deal with if we change camera parameters
during tracking enforce tight constraints on the synchro-
nization between the acquisition of the image data on the
one side and the motor positions of the binocular camera
system on the other side. Up to now, no system is known
to the authors that has perfect synchronization between the
controller of the camera system and the framegrabber. This
is not only a problem in practice: a strategy must be found
that reduces errors induced by a misalignment of the cam-
era parameters with the image data if synchronization is
difficult to achieve or even impossible.

In this paper we mainly tackle the first of the prob-
lems, namely the question, how a certain tracking algo-
rithm behaves if the focal length is adapted during tracking.
The tracking algorithm we use is a region based method
presented in [5]. The advantage of this algorithm is that
tracking can be done in a data driven manner without hav-
ing a 3-D or 2-D model of the object. The estimation of
the position, the scaling, and the rotation of the object is
done during an optimization step. We shortly summarize
the region based tracking method of [5] in Section 2. Addi-
tionally, we present a hierarchical extension of this method
in order to improve the handling of faster object motions.

In Section 3 we present our binocular vision system,
and we discuss how 3-D information about the moving ob-
ject can be acquired with this setup using triangulation.
Also, the problems to be expected are mentioned.

Real-time experiments are presented together with
quantitative results in Section 4 to investigate how the ac-
curacy of the 3-D position estimation depends on the cho-
sen focal length, assuming the 2-D positions in the images
being computed by the region based tracking approach.

Based on the gained results, we finally give a sugges-
tion in Section 5 on how the focal lengths of the binocular
system should be controlled using the presented tracking
algorithm.



2 Binocular Object Tracking

If at some discrete timet a region in an image can be de-
fined that contains the projection of a real-world object that
moves through the field of view of the camera, the problem
of 2-D object tracking is to find the corresponding region
in the image taken at timet + 1. Due to motion of the ob-
ject, changes in illumination, occlusions, or changes in the
internal and external camera parameters, the region at time
t + 1 will be a somehow transformed version of the region
of the previous timestep.

Hager and Belhumeur have presented an algorithm
for efficiently tracking an object’s image region through a
sequence of images [5]. They have provided impressive
results on tracking a human face even on large changes in
illumination and partial occlusions. For the investigations
in this contribution we consider the case that the variability
in the images is caused only by object motion or changes
in the projection parameters.

2.1 Region Based Tracking

In the framework of Hager and Belhumeur, object tracking
is formulated as a parameter estimation problem according
to the minimization of the sum-of-squared differences be-
tween two image regions at subsequent timesteps.

The region of the tracked object, thetarget region, is
defined by a set

R = {x1, x2, . . . , xN} (1)

of N image locationsx = (x, y)T. The set of the inten-
sity valuesf(xi, t0), i = 1, . . . , N of these locations at an
initial time t0 is referred to as thereference template.

During tracking the target region transforms due to
the reasons mentioned above. The transformation can be
modeled by a parametricmotion model ξ(x; µ) with pa-
rameterµ = (µ1, µ2, . . . , µn)T , n < N , obeying

ξ(x; µ = 0) = x .

µ is referred to as the time dependentmotion parameter
vector; µ∗(t) denotes the true values of the motion param-
eters at timet andµ(t) the estimated ones.

Under the assumption ofimage constancy, i.e. for any
time t > t0 there exists a motion parameter vectorµ∗(t)
such that

f(x, t0) = f(ξ(x; µ∗(t)), t) ∀x ∈ R ,

we gain an estimate for the motion parameter vector at time
t from solving

min
µ(t)

(∑
x∈R

(
f(ξ(x; µ(t)), t) − f(x, t0)

)2
)

.

This optimization can be efficiently solved at every
timestep by the recursive algorithm that Hager and Bel-
humeur have developed in their article. As examples they

consider different kinds of motion models starting with a
linear one that models pure translation up to a more com-
plicated case of a special family of nonlinear motions. In
our experiments we have mainly used the so called RM+S
model, i.e. planar rigid motion plus scaling

ξ(x; µ) = sR(θ)x + u (2)

with a 2×2 rotation matrixR and motion parameter vector
µ = (u, θ, s)T beingu a translation vector,θ a rotation
angle, ands a scaling factor.

It should be noticed, that if a movable camera is used,
for example a pan/tilt camera, the estimated motion param-
eter vector can be further used to derive appropriate motion
commands for the camera’s axes to keep the object in the
middle of the image, i.e. to fixate onto the object.

2.2 Tracking Fast Motions

One drawback of the proposed method is, as the authors
pointed out by themselves, that only small image motions
of about a few pixels can be handled without losing the ob-
ject. This means that tracking with a certain focal length
restricts the speed of the object’s motions to a correspond-
ing maximal value. One possibility to overcome this situa-
tion is to decrease the focal length of the tracking camera,
i.e. to zoom out of the scene, to reduce the image flow that
is induced by the object’s motions. As already pointed out
in the introduction and also experimentally investigated in
Section 4 this may result in an increasing instability in 2-D
tracking and therefore in 3-D position estimation, because
in general the motion parameter vector estimation will be-
come more difficult due to a smaller projection of the object
in the image.

Another approach to handle fast object motions that
we have implemented — and that works independent of the
ability to vary the focal length — is to perform a hierarchi-
cal estimation of the motion parameter vector at different
levels of resolutions from coarse to fine. The same motion
of an object induces less image motion as the resolution of
the image decreases.

In the original non-hierarchical case, the estimated
motion parameter vectorµ(t − 1) from timet − 1 is used
recursively as the initial value for the estimation at timet
(cf. Figure 1, top).

In the hierarchical case, as it is depicted in Figure 1
(bottom), every one of thek levels of the resolution hierar-
chy actually runs its own tracker referring to its own scaled
version of the reference template. At timet we start the
estimation process on the highest level, initialized with the
solution0µ(t − 1) of level 0 from the last timestep. This
results in an estimatek−1µ(t) on levelk − 1 that is propa-
gated down the hierarchy to the next levelk − 2 and so on
until level0 is reached.

While the estimated parameter vectors become prop-
agated down the levels they must of course be adapted ap-
propriately to the new level. In our case, for example, if the
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Figure 1. Propagation of the estimated motion parameter
vector µ over time. In the non-hierarchical case (top) only
small image motions can be tracked properly. In the hierar-
chical case (bottom) larger motions can be handled. Here,
it is depicted for a hierarchy with three levels.

resolution is doubled from one level down to the next and
using the RM+S motion model the translational component
u has to be multiplied by the factor two. The scaling factor
s and the rotation angle θ need not to be modified, because
these parameters are invariant to image scaling. Going the
other direction from level 0 to the highest level k − 1 at the
beginning of each timestep, we have to divide u by 2k−1.

By the use of such a hierarchical processing the range
of the possible image motion is doubled with each new
level that is introduced in the image pyramid. On the other
hand one must be aware of the fact, that computation time
and memory usage is increased, too. This may be a critical
point for real-time applications. For our experiments we
gained best results for k = 2 and k = 3 levels.

3 Gaining 3-D Information

The hierarchical extended framework of Hager and Bel-
humeur that was described in the last section provides only
pure 2-D tracking in the image plane. No information can
be gained about the 3-D position of the object in the world
using just one single camera. This looks different if we are
using two cameras.

In this section we shortly summarize facts of the two-
camera vision system that we have used for our experi-
ments. Afterwards, we describe the technique that was ap-
plied for deriving 3-D information from the two 2-D track-
ers, and finally, we address some aspects inherent to the
currently used tracking system that influence the accuracy
of the 3-D position estimation.

3.1 Binocular Setup

The binocular vision system that has been utilized for our
experiments is a TRC bisight/unsight unit (”TRC head” for
short) that can be seen in Figure 2. It has four axes to con-

Figure 2. The TRC bisight/unisight binocular camera sys-
tem.

trol pan, tilt, and left and right vergence. For each of the
lenses the zoom, focus, and iris settings are adjustable. This
results in a total of 10 degrees of freedom. In our experi-
ments five out of these 10 degrees of freedom were used.
Pan, focus, and iris remain at constant settings. The motors
of the axes and cameras can be accessed via a PMAC servo
controller that is connected to a workstation using a RS232
serial interface. Except for the iris all other motors work in
a closed loop, so it is possible to query the current position
of the axes and camera parameters.

There exists a coordinate system for each of the two
cameras, whereby it is assumed that the origins of the coor-
dinate systems coincide with the intersection of the tilt axis
and the corresponding vergence axis (cf. [1]). It is also as-
sumed that if both cameras were aligned to build a perfect
stereo system their x-axes coincide with the mechanical tilt
axis of the TRC head.

3.2 3-D from Triangulation

As already pointed out, one camera is not enough to gain
information about the 3-D position of the tracked object.
Therefore, we used the two cameras of the previously de-
scribed TRC head to track the object with each of them
separately. While tracking we use a triangulation method
(cf. [6] on different techniques) for computing the 3-D po-
sition from the two 2-D target region position estimates.
This is done by finding the intersection point of the two
lines of sight corresponding to the 2-D image coordinates
of the center of the target region.

Because in general these lines do not intersect in a
common point, we have used the midpoint method as an
approximation. It is searched for those points on both lines
of sight at which the distance between the lines takes its
minimal value. The midpoint of the line that connects these
two points is considered to be the intersection point. The



coordinates of this intersection point are treated as the 3-D
position of the tracked object with respect to a given world
coordinate system.

To perform triangulation it is required to know the
properties of the imaging process in each camera, i.e. the
cameras need to be calibrated with respect to a common
world coordinate system. We use the method of Tsai [10]
to calibrate the internal and external parameters of the cam-
eras of the TRC head by means of a coplanar calibration
pattern. The origin of the world coordinate system is de-
fined to be one of the points of the calibration pattern.

Since it is our goal to vary zoom while tracking, for
proper triangulation those camera parameters need to be
used that correspond to the current focal length of the cam-
era. It is practically not feasible to calibrate the cameras for
each possible focal length. Therefore, we have calibrated
the cameras at different equidistant zoom motor positions
and stored the resulting parameter values. During tracking
we use those stored camera parameters that are closest to
the current zoom motor position. The error that is produced
by this selection scheme can be reduced if the distance be-
tween two calibration positions is shortened. Another pos-
sibility would be to interpolate the camera parameters for
the current focal length from the two neighboring calibra-
tion data records.

3.3 Critical Aspects

In addition to the errors in 3-D position estimation that
come from deviations in the calibration data, there are two
main factors that influence the accuracy of the estimation
even if using the correct camera parameters.

The first point we want to mention is the correspon-
dence problem between the two cameras and the object.
Currently, there is no mechanism that ensures that the cen-
ters of both of the target regions correspond to the same 3-D
point on the object. In fact, the trackers are initialized man-
ually by clicking with the mouse on the object in the live
video streams of the cameras one after the other. Hence,
although visually the same object is tracked, the prerequi-
site for proper triangulation is not given in general resulting
in an absolute error in 3-D position estimation. It should
be noticed that even if there is an automatic initialization
mechanism, the problem still remains.

The correspondence problem still exists even if we
use static cameras. But one major problem arises when we
try to fixate the object with movable cameras. This means,
deviations of the target region’s center from the image cen-
ter need to be compensated by appropriate camera motions.
As a consequence, if it takes longer than 40 ms (assuming
a framerate of 25 fps) to complete the whole motion, the
next image will be taken while the camera still moves. This
would cause no problems if you could ensure to query the
current position of the camera exactly at the same time as
you grab the new frame and therefore providing the trian-
gulation routine the correct values. But to our knowledge
there exists no such system that provides this synchronic-

ity. In general, due to delays in communication, especially
over the serial interface, the position information received
presents an old camera configuration. The same problem
occurs if you cannot query the camera’s position at the
same frequency as frames are grabbed. For example, the
TRC head we use can provide position information only
every 50 ms.

It shows up that the error that is introduced due to
these delays depends on the current speed of the image mo-
tion, i.e. if there is less motion to compensate, the error will
be small. In contrast, if the cameras need to move fast, the
error will be increased.

4 Zooming while Tracking

The long term research goal of our work is the optimal se-
lection and fusion of sensor data of n static and m moving
cameras for 3-D object tracking. Currently we restrict our
investigations to n = 2 spatially fixed active cameras as de-
scribed earlier. While pan and tilt control has been studied
in detail earlier (cf. for example a recent control theoretic
paper [9]) as well as the use of active focus for depth es-
timation [7], the adjustment of focal length for improved
tracking has not been considered in detail so far. Literature
can be found on active zoom control for depth reconstruc-
tion and imaging an object with maximum resolution.

In [4] for a single camera a framework for control-
ling the focal length is presented to keep an object that is
moving along the optical axis at constant size. Such a set-
ting allows to apply scale variant tracking algorithms, like
correlation techniques. Here we explicitly like to figure
out how a certain algorithm behaves if the focal length is
changed during tracking, while we allow — in contrast to
the work of [4] — an arbitrary motion of the object in 3-D.

The reason for such an investigation is, that the opti-
mal focal length during tracking not only depends on the
distance of the object to the camera but also on the un-
certainty in the estimation of the whole state of a moving
object. Besides of depth, additionally the state includes ve-
locity and acceleration. A consequence is that it might be
necessary to change the focal length already if the uncer-
tainty in the state estimation is changed during tracking. If
the uncertainty in the state estimation is large, zooming to-
ward the object is risky since in the next image the object
might disappear from the image.

For our experiments we have extended the tracking
algorithm of [5], summarized in Section 2. With respect to
zooming while tracking the algorithm is perfectly suited
since the change in scale of the target is implicitly esti-
mated in the RM+S model (compare Eq. (2)). One of the
free parameters of the algorithm that is of special interest
for the quality of zooming while tracking is the initial target
region, i.e. the size of the reference template.



LC RC x y z

17.1 17.4 3.48 13.08 6.46
24.0 23.4 1.93 6.91 3.50
31.6 30.8 0.90 3.33 1.75

Table 1. Standard deviation in 3-D position estimation
(world coordinates) for different focal lengths for the left
(LC) and right (RC) camera (in mm). Initialization of the
reference template was done with a focal length of 17.1 mm
and 17.4 mm for the left and the right camera, respectively.

LC RC x y z

19.3 19.1 6.38 22.32 11.13
24.0 23.4 3.17 10.50 5.29
31.6 30.8 1.95 7.06 3.59

Table 2. Standard deviation in 3-D position estimate (world
coordinates) for different focal lengths for the left (LC)
and right (RC) camera (in mm). Initialization of the ref-
erence template was done with a focal length of 31.6 mm
and 30.8 mm for the left and the right camera, respectively.
For the smallest focal length, extraction of the object was
not possible any longer.

4.1 3-D Object Localization

First we tested the sensibility in 3-D position estimation us-
ing the triangulation technique described in Section 3.2 for
a static setting. A static setting means that the object was
fixed in 3-D. In both camera images the object was tracked
over time while simultaneously varying the camera param-
eters. Based on the 2-D image coordinates of the extracted
target region the 3-D position is computed. The quality in
3-D localization was estimated for varying resolutions of
the object in the image (i.e. varying focal lengths) and dif-
ferent sizes of the reference template (i.e. different zoom
settings for the initial image, in which the reference tem-
plate has been selected). The quality in 3-D localization is
measured by the standard deviation in the 3-D position es-
timate after triangulation. Table 1 and Table 2 summarize
the results. In both cases, i.e. when zooming in and zoom-
ing out with respect to the reference template size, we got
the smallest standard deviation for the largest focal length
for both cameras. This means, that the algorithm performs
best in either case for maximum resolution of the image. It
is both interesting and plausible that the most stable results
in the 3-D estimation by triangulation are achieved if the
reference template has low resolution. It should be men-
tioned, that due to the pose of the world coordinate system,
errors in depth estimation correspond mainly to errors in
the y-coordinate.

Figure 3. Screen dump during live experiment. Left and
right camera image with focal length being 19.5 mm and
31.4 mm respectively. Tracked object is indicated by white
rectangle.

4.2 3-D Object Tracking

The results that we got for a static setting are now verified
for an object moving in 3-D on a circular path at a distance
of about 3 m in front of the cameras. The 3-D pose of the
circle was estimated during the camera calibration step in
order to have ground truth information. During the exper-
iments the mean distance to this reference path was com-
puted. A screen dump during one real-time experiment is
shown in Figure 3. It shows the camera image of both cam-
eras, the tracked object (white ball) and some information
on the estimated position of the moving object, the rota-
tion angle (set to zero in our experiments for stability rea-
sons), and the computed scaling factor. The focal length
was 19.5 mm for the left camera and 31.4 mm for the right.

The tracking algorithm runs on an Athlon 1GHz with
a framerate of 25 fps, including the image acquisition, the
extraction of the position in the image plane for both cam-
era images, the control of the binocular camera system, and
the triangulation to return 3-D position estimates for the ob-
ject.

In Table 3 the results for different combinations of fo-
cal lengths (initial focal length to define the reference tem-
plate and focal length during tracking for both cameras)
are shown. Comparable with the results for pure localiza-
tion of the object in the image plane (compare Section 4.1)
the best results are achieved for a small focal length during
initialization of the template and a large focal length during
tracking.

In Figure 4 one example for tracking the moving ob-
ject in 3-D is shown. The focal length has been set to
23.7 mm and 23.2 mm for the left and right camera. In the
left image of Figure 4 one can see a perfect ellipse confirm-
ing that tracking in the image plane was successful. Ex-
amining the returned path of the object in 3-D (Figure 4,
right) one can see, that there are two main parts on the 3-D
path, where the error in depth is large. One should see a
circle. The reason for this systematic error that could be
observed for nearly every experiment is caused by the error



init work min max mean stddev

19.5 19.5 1.8 212.8 71.8 44.9
19.5 23.7 1.8 169.6 65.9 37.7
19.5 32.0 1.2 133.4 54.6 33.7
23.7 19.5 0.8 358.3 64.4 59.8
23.7 23.7 0.9 235.3 59.7 50.2
23.7 32.0 3.7 243.1 95.1 60.4
32.0 19.5 1.2 513.3 84.3 69.2
32.0 23.7 0.4 314.4 63.5 55.6
32.0 32.0 0.4 212.5 68.6 47.2

Table 3. Minimum (min), maximum (max), mean error
(mean), and standard deviation for tracking the moving ob-
jects using different focal lengths (init: focal length used
to define the reference template. work: focal length during
tracking for both cameras). All quantities are given in mm.

Figure 4. Reconstructed motion path of the tracked ob-
ject in 3-D based on the 3-D estimation using triangulation.
Left: ellipse as seen from the camera. Right: view of the
trajectory from above (this should be a circle).

in the synchronization between the image acquisition and
the transfer of the camera data (tilt and vergence angles).
Similar experiences have been noted by [9] and explicitly
modeled for the control of a monocular active camera sys-
tem.

5 Conclusion

In the paper we have presented results from real-time ex-
periments with a binocular active camera system. The goal
has been to report on different aspects that influence the
quality of the estimation of the 3-D position of an arbitrar-
ily moving object. The investigations have been concen-
trated on the selected focal length for the cameras, with
special focus on the applied tracking algorithm. Without
taking the uncertainty in the position estimate into account
we could show that

1. the region based tracking algorithm can handle vary-
ing focal length and is thus suited for adaptive focal
length control during tracking

2. the smallest expected error in the 3-D arises if the

reference template is extracted from a low resolution
image taken with small focal length and subsequent
tracking should be done using large focal length.

Especially the scond point is the typical scenario when a
moving object is detected in a low resolution overview im-
age of the scene and the following tracking is done with
large focal length.

One important experience has been collected more or
less incidentally. From geometrical considerations it is ob-
vious that the errors in the 3-D estimation that come from
wrong assumptions for the rotation angles of the binocu-
lar camera system cannot be compensated by selecting a
certain focal length (cf. Section 3.3). This fact especially
holds for errors in the angles of the vergence axes.

In further research we will investigate the influence of
the synchronization delays on the resulting 3-D estimation
at different focal lengths in more detail. In our opinion the
incorrect synchronization is the main reason for the defor-
mations of the perfect object trajectory as they can be seen
in Figure 4, right. Also, we will transfer the framework
for optimal sensor data selection presented in [2] for object
recognition to the dynamical case of object tracking.
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