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Abstract

Latent variables often mask cause-effect relationships in observational data which
provokes spurious links that may be misinterpreted as causal. This problem sparks
great interest in the fields such as climate science and economics. We propose
to estimate confounded causal links of time series using Sequential Causal Ef-
fect Variational Autoencoder (SCEVAE) while applying Knockoff interventions.
Knockoff variables have the same distribution as the originals and preserve the
correlation to other variables. This allows for counterfactuals that are more faithful
to the observational distribution. We show the advantage of Knockoff interventions
by applying SCEVAE to synthetic datasets with both linear and nonlinear causal
links. Moreover, we apply SCEVAE with Knockoffs to real aerosol-cloud-climate
observational time series data. We compare our results on synthetic data to those of
a time series deconfounding method both with and without estimated confounders.
We show that our method outperforms this benchmark by comparing both methods
to the ground truth. For the real data analysis, we rely on expert knowledge of
causal links and demonstrate how using suitable proxy variables improves the
causal link estimation in the presence of hidden confounders.

1 Introduction

Causal link estimation and inference for dynamical systems are important tasks in many fields such
as finance and climate science (1), (2). We propose a novel method for estimating both linear and
nonlinear causal effects in time series under hidden confounding while performing Knockoff (3)
interventions, inspired by the Causal Effect Variational Autoencoder (CEVAE) (4). The proposed
approach, as will be explained further on, allows for less biased causality analysis of non-stationary
sequential data and counterfactuals that are more faithful to the distribution of observational data. A
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Figure 1: Causal DAG with observed variables {W,X, Y } and latent variable {Z}.

hidden confounder is a variable that influences both the cause and the effect, and its presence can
lead to false relationships which may be misconceived as causal.

CEVAE is a deep learning framework which was first applied to analyzing effects of a binary treatment
on the patients’ health outcomes. The causal Directed Acyclic Graph (DAG) representing hidden
confounding with one proxy variable, as used by CEVAE framework, is depicted in Fig. 1. Y
denotes the effect, W the cause, Z denotes the hidden confounder and X a proxy variable providing
noisy views on Z. We note that the proxy can be multivariate, and both categorical and continuous.
Although the DAG in Fig. 1 might appear restrictive, in many real-world applications, such as
climate science for instance, there are unobserved confounders present, with multiple different proxy
variables to describe them (5). We assume that the causal link between the confounded variables is
approximately directly identifiable through the proxy to the hidden confounder. We provide more
details on the identifiability theory in Section 3.2.

Knockoff filters were first introduced by Barber and Candès in 2015 (3) for controlling the variable
selection procedure and false discovery rate of potential drivers of the response variable. Their
method produces Knockoff variables which imitate the correlation structure of the existing variables
and do not require any new data. At first they were limited to a linear Gaussian response variable, but
this was later extended for arbitrary and unobserved data distributions in the work by Romano et al.
(6), as they introduced a framework called Deep Knockoffs based on deep generative models.

Due to its highly practicable properties for counterfactual analysis (7), as proposed by (8), we
generate a Knockoff (3) of the cause variable W as a way of intervention to estimate the causal link
intensity using our approach. In addition to preserving the distribution of W , this also preserves the
inter-variable correlations to other observed variables, but is not correlated to W . To highlight the
advantage of Knockoff intervention, we compare it to using Gaussian noise as intervention variable
Ŵ . It is independent of the hidden confounder Z and therefore removes the link between W and Z as
required by do-calculus (7). However, Gaussian noise intervention does not preserve the distribution
of the original cause variable W , which is learned during the training of the neural networks within
our method and expected for inference. This leads to suboptimal performance in contrast to Knockoff
interventions.

Apart from the nonlinear causal links, the problem of causal link estimation under hidden confounding
is particularly challenging for time series because the data is non-stationary, and the causal link
between confounded variables might be changing over time, thus introducing delayed causal effects.

To address these issues, we engineered our approach to transcend the CEVAE methodology and
become applicable to complicated non-stationary sequential data with the help of Long Short-Term
Memory (LSTM) (9) recurrent neural networks. Moreover, we allow for the causal effect estimation
to be done on a single time series example of each observed variable. This means that one does not
need to have multiple realizations of the variables on their disposal which is an advantage in many
fields such as finance and climate science where each variable is observed only once per time step.

The paper is structured as follows. In Section 2, we outline related work on treatment effect estimation
and provide an overview of causality analysis under hidden confounding. Moreover, we discuss other
associated work that utilizes Knockoffs. In Section 3, we introduce the CEVAE framework, define
and discuss causal identifiability, the assumptions under which using SCEVAE is justified, as well as
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a detailed description of our method, and introduce Knockoffs themselves in more detail. Section
4 describes the data we use, and Section 5 provides a detailed experimental setup along with our
method’s results. Section 6 summarizes our approach and concludes the paper.

To the best of our knowledge, we are the first to propose a causal effect estimation method under
hidden confounding for sequential data based on CEVAE and utilize it with Knockoff interventions.

2 Related Work

Treatment effect estimation in the static setting is a very active field of research (10), (11), (12).
Under the assumption of no hidden confounding, methods such as VCNet (13) and its extensions by
state-of-the-art transformer networks (14) were recently applied to the task of continuous treatment
estimation by Zhang et al. (15) and Melnychuk et al. (16).

In a more realistic scenario when there are unobserved confounders present, Causal Effect Variational
Autoencoder (CEVAE) (4) was one of the first such deep learning methods. It relies on the existence
of one or more proxies to directly estimate the latent confounder. Nevertheless, in contrast to above-
mentioned transformer-based treatment estimation methods, CEVAE focuses on binary treatment.
Research endeavors such as those by Rissanen and Marttinen (17), Im et al. (18), and Trifunov et al.
(19) either extend CEVAE to a uniform or continuous treatment, or analyse this deep latent variable
model’s capabilities. However, until now, to the best of our knowledge, CEVAE has never been
applied to time series.

Taking a different approach towards treatment effect estimation, Bica et al. (20) and Hatt and Feuer-
riegel (21) propose deconfounding methods for sequential data using neural networks. Specifically,
in the work by Bica et al. (20), the authors develop Time Series Deconfounder (TSdeconf), a method
built upon RNNs with multitask output to produce a factor model over time and estimate latent
variables. These latent variable estimates are then used for causal inference as proxies. The limitation
of this approach, in contrast to ours, is that it requires many patients i.e. samples and is not suitable
for processing long time series (e.g. N ≥ 1000). Another shortcoming of TSdeconf is that it cannot
be applied to observational data with one or more treatments assigned at each time step. This was
addressed by Hatt et al. (21), as the authors introduced a similar time series deconfounding method
called Sequential Deconfounder, this time based on a Gaussian process latent variable model.

These methods are useful when there are no proxies available. In contrast to SCEVAE, this may
introduce more approximation error and requires multiple realizations of each variable i.e. many
independent samples for training. Although SCEVAE relies on access to proxies, it is not a limitation
in many fields such as environmental and climate science, where many observed variables can be
used to describe a latent one (5).

In the recent years, due to their distribution- and correlation-preserving properties, Knockoffs (3),
(6) were innovatively applied for counterfactual analysis of images (22), and time series (23), (8).
Ahmad et al. (23) propose to use deep learning and counterfactual Knockoff variables to aid causal
discovery of multivariate nonlinear time series with lower false discovery rate than state-of-the-art
methods.

Similarly to SCEVAE, work by Yin and Barucca (24) relies on RNNs to estimate the causal link of
the variables under influence of a hidden confounder. However, it does not employ do-calculus (7),
but rather Granger causality (25) to determine the presence of a non-spurious causal link. Due to this
choice of causality analysis tools, it cannot detect instantaneous causal links. Moreover, since we use
knockoff interventions the cause variable’s distribution does not change, and its correlation to other
observation variables is preserved. This type of intervention allows for more accurate causal link
estimates in comparison to standard normal interventions, as well as lower counterfactual prediction
error as will be discussed in more detail in Section 5.1.

3 Methodology

3.1 Causal effect variational autoencoder

To better understand SCEVAE architecture, we first introduce Causal effect variational autoencoder
(CEVAE) (4). It is a deep learning method based on a VAE (26) and a TARnet (27). Its underlying
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probabilistic graphical model is shown in Fig. 1. CEVAE methodology assumes all variables
to be non-sequential. W denotes binary treatment, Y an outcome of this treatment, while the
latent confounder Z, and its proxy X denote the socio-economic status and income of each patient,
respectively. The central aim of treatment effect estimation is recovering the Individual Treatment
Effect (ITE) and the Average Treatment Effect (ATE) defined in (1) and (2), respectively:

ITE(x) :=EY (Y |X = x, do(W = w1))− EY (Y |X = x, do(W = w0)) (1)

ATE := EY (ITE(x)) (2)
These metrics are defined for each value x of variable X , and by w1 we denote applied treatment,
while values of W when no treatment is applied are denoted by w0. In the CEVAE framework,
w1 = 1, and w0 = 0. ATE is easily calculated once we obtain the ITE, and for that we need to
recover the joint distribution p(Z,X,W, Y ), as stated in Theorem 1 by Louizos et al. (4).
Theorem 1. If CEVAE recovers p(Z,X,W, Y ), then we can recover the ITE under the causal model
in Fig. 1.

Distribution p(Z,X,W, Y ) is obtained via CEVAE’s model network by approximating the true
posterior over Z conditioned on X , W and Y , whereas the prior p(Z) is modeled by the standard
normal distribution. All estimated probability distributions are parameterized by MLPs. TARnet is
used to infer the estimate of the posterior by branching for each of the two treatment groups in W .

3.2 Causal identifiability

When estimating causal link intensity or performing causal discovery from observational data, one
needs to establish if the underlying model is identifiable. If that is not the case, a set of assumptions
under which the identifiability holds must be imposed. We introduce identifiability following recent
work by Khemakhem et al. (28) and discuss this issue for deep latent variable models such as VAE.
Definition 1. Let ∼ be an equivalence relation on the set of model parameters Θ. We say that a deep
latent variable model pθ(Y,Z) = pθ(Y |Z)pθ(Z), for observed variable Y ∈ Rd and latent random
vector Z ∈ Rn is identifiable up to ∼ if

pθ(Y ) = pθ̂(Y ) ⇒ θ ∼ θ̂ (3)

for θ, θ̂ ∈ Θ. The elements of the quotient space Θ/∼ are called the identifiability classes.

The graphical model in Fig. 1 is in general not identifiable. A starting point would be to obtain model
parameters or estimate latent variables Z∗ up to trivial transformations Ti for i ∈ {1, . . . , N} in the
form of sufficient statistics, and invertible matrix A (28).

To do that, we will first introduce sufficient statistics Ti with respect to the deep latent variable model
from Definition 1 and illustrate the procedure on a one-dimensional latent variable case.

A statistic is sufficient for a family of probability distributions if the sample from which it is obtained
provides no additional information than the statistic, as to which of those probability distributions the
data was sampled from (29).

Let Ti = (Ti,1, . . . , Ti,k), i ∈ {1, . . . , N}, k ∈ N be sufficient statistics with respect to the
deep latent variable model associated with a standard normal family of parameters λi(X) =
(λi,1(X), . . . , λi,k(X)), given a conditioning variable X . Importantly, the conditioning variable X is
a proxy of the hidden confounder in our causal setup and functions λi are parameterized by LSTMs.

To illustrate, as per (28), let k = 1, set Ti := Ti,1, and let A be an invertible matrix. We can then
recover Z related to the original Z∗ as follows:

(T ∗
1 (Z

∗
1 ), . . . , T

∗
n(Z

∗
n)) = A(T1(Z1), . . . , T1(Z1)). (4)

This means we can estimate the original latent variables up to point-wise transformations T ∗
i , Ti.

In certain cases of non-sequential data, having A as a permutation matrix reduces the problem of
indeterminacy of Z∗ to finding the point-wise transformations of Z. This is due to Eq. (4) then
becoming T ∗

i (Z
∗
i ) = Ti′(Zi′) for a permuted index i′.

Our deep latent variable model represented through parameters θ = (f, Ti, λi), as per (28), is

pθ(Y,W,Z|X) = pf (Y,W |Z)pTi,λi
(Z|X),
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Figure 2: SCEVAE architecture. The encoder is shown on the left, and the decoder with branching to
estimate the factual and counterfactual outcomes on the right.

for a function f parameterized by an LSTM and sufficient statistic Ti with parameters λi, i ∈
{1, . . . , N}. Some of the identifiability assumptions for a VAE as described in (28) are that function
f is injective, and that sufficient statistic Ti is differentiable almost everywhere. Since our model is
in principle a VAE, we rely on these assumptions and generate the synthetic data accordingly. We
note, however, that in a dynamical-system setting this might not always suffice for the causal model
to be identifiable and further theoretical work in this direction is required.

3.3 Sequential CEVAE

We propose a novel method for time series causal link estimation under hidden confounding. It is
predicated on CEVAE, but differs significantly in the architecture and relies on LSTMs to model
the involved probability distributions. Namely, we do not use a TARnet to estimate p(Y |X,w0)
and p(Y |X,w1), specialized for binary treatment, but rather model p(Y |X,W ) sequentially, and
introduce branching in the decoder as depicted on the right of Fig. 2. This branching allows us to
compare factual and counterfactual causal effects, in order to estimate the cause-effect intensity after
intervention on the non-binary sequential cause variable.

We will now introduce the notation for sequential data and explain the proposed method in full detail.
Let X = {xt}Nt=1, W = {wt}Nt=1, and Y = {yt}Nt=1 be the time series of proxy, cause variable,
and effect, for N ∈ N, respectively. The hidden confounder Z = {zt}Nt=1 is also time series for
each zt ∈ Rd, where d is the dimension of Z in the latent space at each time step t. The conditional
distributions of these variables used by our method’s framework are depicted in Fig. 2. The LSTMs
are denoted by fi, and each is parameterized by its own parameters ϕi, for i ∈ {1, 2, 3, 4}. For each
time step t, we model xt, wt, and the prior of zt as follows:

p(zt) = N (0, 1) (5)

p(wt|zt) = N (µwt
, σ2

wt
), µwt

, σ2
wt

= f1(zt) (6)

p(xt|zt) = N (µxt
, σ2

xt
), µxt

, σ2
xt

= f2(zt). (7)

This means that each variable is true time series, having each individual time step modeled by a
Gaussian distribution. The LSTMs are not bidirectional, hence they do not have access to future
values of the input variable. This will be tackled in the future work.

When proxy X contains binary components, we model them as p(xt|zt) = Bern(π = σ(v(zt))), for
the sigmoid function σ, and v : R −→ R, a real-valued function parameterized by an LSTM.

The mean and variance of the effect yt at each time step t are also parameterized by an LSTM:

p(yt|wt, zt) = N (µyt
, σ2

yt
), µyt

, σ2
yt

= f3(wt, zt) (8)

We indicate that in contrast to CEVAE, we do not fix variance in Eq. (8) but rather learn it from
observational data. Our approach is less restrictive in the sense of its compatibility with continuous,
sequential cause variable, and can therefore be applied to a wider variety of real-world problems. We
use a Knockoff (3) of W as intervention since it preserves the original distribution of the data. This is
of particular importance for creating counterfactuals because the trained neural network anticipates
test and training data stemming from the same distribution. For comparison, we also apply Gaussian
noise as intervention on W which removes the link to the hidden confounder but does not preserve
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the original distribution of W . One limitation of our approach is that we assume that, within the
processed window, data is stationary and sufficient to produce good Knockoffs.

According to the DAG in Fig. 1, the posterior distribution of Z depends on X , Y , and W . We thus
approximate it by:

q(zt|xt, yt, wt) = N (µzt , σ
2
zt), µzt , σ

2
zt = f4(xt, yt, wt). (9)

To estimate the parameters of the auxiliary distribution of W and Y in Eq. (13), we use the following:

q(wt|xt) = N (µ∗
wt
, σ∗

wt

2), µ∗
wt
, σ∗2

wt
= f5(xt) (10)

q(yt|xt, wt) = N (µ∗
yt
, σ∗2

yt
), µ∗

yt
, σ∗2

yt
= f6(xt, wt) (11)

To insure that variances are positive, we apply a softplus activation function softplus(u) = ln (1 + eu),
for u ∈ R, to the output of a given LSTM cell used to parameterize the variance.

We weigh the regularization loss by λ ∈ R in order to obtain more stable effect predictions, so the
variational lower bound involving all modeled distributions is:

L̂ =

N∑
i=1

Eq(zt|xt,wt,yt)(λ(log p(zt)− log q(zt|xt, wt, yt)) + log p(xt, wt|zt) + log p(yt|wt, zt)).
(12)

Similarly to CEVAE, since it is necessary to know the intervention assignment W together with
its outcome Y before inferring the posterior distribution over Z, two auxiliary distributions are
introduced, helping to predict wt and yt for new samples. The variational lower bound used as an
objective for both the inference and the model networks of our method is then:

FSCEVAE = L̂+

N∑
i=1

( log q(wt = w∗
t |x∗

t ) + log q(yt = y∗t |x∗
t , w

∗
t )), (13)

for x∗
t , w∗

t , y∗t being the observed values for the input, intervention, and outcome variables in the
training set.

Our method’s encoder and decoder are depicted in Fig. 2. We call this novel approach Sequential
Causal Effect Variational Autoencoder (SCEVAE, pronounced /see-VAE/).

3.4 Knockoffs

The idea of Knockoffs was introduced by Barber and Candès (3) and it originates from the field of
false discovery rate control in the setup of finding potential explanatory variables to an observed
response variable. They are meant as a tool for estimating feature importance using conditional
independence tests but have recently been applied as intervention variables for causal discovery (8).

Let u = γ · f(Q) + η be a predictive model for a vector of responses u ∈ Rn, an arbitrarily complex
function f of a known matrix Q ∈ Rn×p of potentially explanatory variables (Q1, . . . , Qp), an
unknown vector of coefficients γ, and a Gaussian noise term η ∼ N (0, σ2I). One can then generate
a Knockoff of any feature Qj ∈ Q by first constructing a Gram matrix Σ = QTQ, once all the
features Qj are normalized, so that Σj,j = ||Qj ||22 = 1 for all j = 1, . . . , p, and enforcing the
following two conditions. First, the Knockoffs of Q, denoted as Q̃ = (Q̃1, . . . , Q̃p), are constructed
to have the same covariance structure as Q by enforcing Q̃T Q̃ = Σ and QT Q̃ = Σ− diag(s), for
a p-dimensional non-negative vector s. Moreover, the inter-variable correlations between different
original and Knockoff variables are enforced to be the same as those between the originals, that is,
QT

j Q̃k = QT
j Qk for all j ̸= k. This condition is known as exchangeability.

We rely on the work by Romano et al. (6) to construct approximate Knockoffs for arbitrary and
unspecified distributions of the observational data. We chose the semi-definite programming (SDP)
Knockoffs which are selected so that the original data and its Knockoff are as decorrelated as possible.

The Knockoffs are generated by using Gaussian mixture models as proposed by Gimenez et al. (30).
First, the mixture assignment variable is sampled from the posterior distribution. The Knockoffs are
then sampled from the conditional distribution given the original variables and the sampled mixture
assignment such that the exchangeability condition is fulfilled (30).
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Figure 3: Left: Observational effect variable Y from Eq. (17) (blue) and the conditional expectation
of Y given Z and W (orange). Right: Counterfactual Ŷ (blue) of the effect variable Y , and the
conditional expectation of Y given Z and Ŵ (orange). Conditional expectations are estimated by
SCEVAE with Knockoff intervention.

4 Data

4.1 Synthetic data

Causal link estimation is impossible to validate unless we know the underlying system dynamics.
For this reason we generate synthetic data. It contains a nonlinear causal link, all variables abide by
the relations from DAG in Fig. 1 and form the structural causal model according to the following
equations. By zt, xt, wt, ŵt, and yt we denote the hidden confounder, its proxy, cause variable, and
the effect variable at time step t, respectively.

zt = a · zt−1 + ϵ1t (14)
xt = bt · tanh(zt−τ ) + s · ϵ2t (15)
wt = c1 · wt−1 + c2 · zt + ϵ3t (16)

yt = d1 · yt−1 + d2 · zt + g · eh·wt + ϵ4t (17)

In the case of Knockoff intervention w̃t, the cause variable becomes ŵt = do(wt = w̃t), and in the
Gaussian noise intervention case we have ŵt ∼ N (0, σ2), for σ2 ∈ R. To asses how our method
performs for estimating linear causal effects, we alter Eq. (17) as follows:

yt = d1 · yt−1 + d2 · zt + g · wt + ϵ4t (18)

In Eqs. (14)-(18), a, ci, di, g, h, s, σ2
j ∈ R, i = 1, 2, τ ∈ N, and noise terms ϵj = N (0, σ2

j ), for
j = 1, 2, 3, 4, are mutually independent. By e we denote the Euler’s number. The time-varying proxy
parameter bt (Fig. 4, Appendix A) is generated by setting bt = 2

N−2 t for t = 1, . . . , N
2 − 1 and

symmetrically bN−t−1 := bt−1 for t = N
2 , . . . , N .

The counterfactual outcome ŷt for data with nonlinear and linear causal link is obtained by substituting
wt by ŵt in Eq. (17) and Eq. (18), respectively. The parameters used in our experiments are a = 0.88,
s = 0.5, τ = 100, c1 = 0.6, c2 = 0.2, d1 = 0.4, d2 = 0.8, g = 0.5, h = 0.5, σ2 = 0.6, σ2

2 = 1,
and σ2

1 = 0.5, σ2
2 = 0.8, σ2

3 = 0.7, and σ2
4 = 0.5. The hidden confounder and the cause variable are

initialized with z0 = 0.1 and w0 = 0.1, whereas y0 = 0.

4.2 Cloud and aerosol observation data

We demonstrate our method’s performance in real-world scenarios by applying it to cloud and aerosol
observations dataset provided by Jesson et al. (31). It consists of the 1◦ × 1◦ gridded version of
the Moderate Resolution Imaging Spectroradiometer’s measurements obtained twice per day at
approximately 1 km × 1 km resolution from 2004 until 2019. Data stems from the Pacific Basin
region off the coast of South America. As per (32), we use the daily average of all variables to
downsample. As the outcome variable Y , we utilize cloud optical depth (COD) and as cause variable
W the aerosol optical depth (AOD). In line with (32), we use the following meteorological variables
as proxies. Namely, sea surface temperature (SST), estimated inversion strength (EIS), vertical
motion at 500mb (w500), relative humidity at 700mb, 850mb, and 900mb (RH700, RH850, RH900).
All variables are normalized before we use them as input for training SCEVAE.
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5 Experiments

Here we expound our experimental setup. We generate 1000-time-step-long multivariate time series
and use the last 10% of each variable as test data without shuffling in order to preserve inter-temporal
dependencies. The last 10% of training data is used for validation. We normalize the data by
subtracting the mean of each variable and then dividing it by its standard deviation. We use batch
size of 100 and randomly select that many consecutive time steps as batches of the training data. The
optimizer used is Adam (33) with learning rate of 10−5, and a weight decay of 10−3. We model
the hidden confounder as five-dimensional in the latent space in all but one experiment where we
explicitly investigate the influence of its dimensionality to causal link estimation. The LSTMs of
SCEVAE consist of two LSTM cells i.e. layers. Since the LSTMs that we use are not bidirectional,
they can only look at the past time steps of a given time series. The hidden states and cell states of
each LSTM have 32 dimensions. We set the regularization parameter λ from Eq. (12) to 0.1. For all
experiments, we used GPUs of type GeForce RTX 2080 Ti.

5.1 Results

5.1.1 Synthetic data experiments

To demonstrate the efficacy of our proposed method by comparing its results to the ground truth
causal link intensity, we apply it to synthetic data with either linear or nonlinear causal link between
W and Y . Our method’s reconstruction of the effect variable Y and its counterfactual is Ŷ is depicted
in Fig. 3. We qualitatively observe that the reconstructions (orange) are closely comparable to the
corresponding observed values (blue). These variables are generated according to Eq. (17) using W

and Ŵ , respectively.

The quantitative results of SCEVAE’s causal analysis are shown in Table 1. The causality scores used
are RMSEITE, denoting the RMSE between the ground truth and the predicted ITE as per Eq. (1),
factual RMSEY , and counterfactual RMSEŶ . The latter two scores measure the discrepancy between
the observed Y and the estimated E(Y |W,Z) at each time step t, and the discrepancy between Ŷ

and E(Y |Ŵ , Z) at each time step t, respectively. By "SCEVAE" in Table 1, we denote our method
with Gaussian noise intervention on W , whereas "SCEVAE-Knockoff" indicates that we used the
Knockoff of W as intervention Ŵ .

Table 1: Causal Effect Estimation Error Metrics for Linear and Nonlinear Causal Link of Synthetic
Data for g = 0.5. The results are averaged over five replications and shown with standard error.
Lower is better.

Causal link parameter b Method RMSEITE RMSEY RMSEŶ

linear

time-varying

SCEVAE 0.52 ± 0.04 0.74 ± 0.06 0.99 ± 0.03
SCEVAE-Knockoff 0.34 ± 0.03 0.74 ± 0.01 0.63 ± 0.01
TSdeconf (without) / 0.75 ± 0.28 0.93 ± 0.41

TSdeconf (with) / 0.75 ± 0.28 0.93 ± 0.41

0.95

SCEVAE 0.57 ± 0.06 0.72 ± 0.02 0.97 ± 0.03
SCEVAE-Knockoff 0.32 ± 0.01 0.76 ± 0.08 0.65 ± 0.07
TSdeconf (without) / 0.76 ± 0.29 0.93 ± 0.4

TSdeconf (with) / 0.75 ± 0.28 0.93 ± 0.41

nonlinear

time-varying

SCEVAE 0.56 ± 0.05 0.74 ± 0.03 0.99 ± 0.03
SCEVAE-Knockoff 0.44 ± 0.03 0.81 ± 0.03 0.7 ± 0.03
TSdeconf (without) / 0.85 ± 0.34 0.99 ± 0.47

TSdeconf (with) / 0.84 ± 0.33 0.98 ± 0.46

0.95

SCEVAE 0.59 ± 0.1 0.79 ± 0.03 1.01 ± 0.01
SCEVAE-Knockoff 0.43 ± 0.03 0.8 ± 0.03 0.7 ± 0.03
TSdeconf (without) / 0.84 ± 0.33 0.98 ± 0.46

TSdeconf (with) / 0.84 ± 0.33 0.98 ± 0.45
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According to the results from Table 1, SCEVAE performs better in the linear than in the nonlinear
causal link case, which illustrates the higher complexity of estimating nonlinear causal links. We
note that the methods works equally well for both fixed and time-varying values of the parameter b.
Furthermore, in Table 1, we can clearly see how using Knockoffs improves the causal link intensity
estimation by remarkably lower RMSEITE metric, as well as by inducing lower variance, making
this a more reliable intervention choice. In addition, it is especially interesting to note that the
counterfactual RMSE is much lower in comparison to other methods which do not use Knockoff
interventions. This is due to the fact that Knockoff Ŵ has the same distribution as W , and therefore
produces a good reconstruction of the counterfactual outcome Ŷ when we sample it from the learned
estimate of p(Y |W,Z).

We compare our results on synthetic data to those of Time Series Deconfounder (TSdeconf) (20) either
without taking hidden confounding into account or when the substitutes for the hidden confounder are
generated and used as proxies, in Table 1 denoted by "TSdeconf (without)" and "TSdeconf (with)",
respectively. We set the confounding parameter of TSdeconf to γ = 0.8, and the number of substitute,
as well as the simulated hidden confounders to one. We note that TSdeconf only outputs RMSE
between the ground truth and the predicted factual or counterfactual outcome, so these are the main
comparison metrics. For obtaining the factual RMSET via TSdeconf we input X as covariates, W as
treatment, and Y as outcome. To obtain the counterfactual RMSEŶ , we also use X as covariates, but
Ŵ , and Ŷ as treatment and outcome, respectively. Furthermore, since TSdeconf is not suitable for
long time series, we generate 100 100-time-step-long training samples for fairness. This is due to the
fact that SCEVAE is trained on 100 100-long epochs randomly chosen from our 1000-time-step-long
sequential variables.

We note that in the case of the linear causal link, TSdeconf performs almost as well as our method
but with much higher variance, making our method considerably more stable. To obtain stable results
using TSdeconf, one would need much larger amount of training data. In the case of the nonlinear
causal link, our method’s superior performance becomes even clearer for both time-varying, and fixed
proxy parameter b = 0.95.

The factual RMSET of the outcome reconstruction during training and test can be found in Fig. 5
(Appendix A). In Fig. 6 (Appendix A) we show how dimensionality of Z in the latent space and the
confounding coefficient d2 influence the factual and counterfactual outcome’s reconstruction. We
tested latent dimensions DZ ∈ {1, 5, 10, 20}, and coefficients d2 ∈ {0.8, 1, 1.2, 1.6}. We observe
that RMSE values in both factual and counterfactual cases are lowest when d2 = 0.8 and have an
upward trend as the rate of hidden confounding d2 increases regardless of DZ . As the dimensionality
of Z increases, the uncertainty of the prediction becomes higher.

5.1.2 Cloud and aerosol data experiments

In the experiments on real aerosol-cloud-climate observations, where we use COD as the effect and
AOD as the cause variable, we demonstrate the importance of choosing suitable proxies. Since now
we do not have the ground truth causal link intensity values, we cannot use RMSEITE. Instead, we
use ATE metric as per Eq. (2) of the predicted factual and counterfactual outcome variables Y and Ŷ ,
respectively. Moreover, we note that intervention on real data is often not feasible in practice, but that
by our method’s way of intervention we are able to counterfactually analyse the desired causal link.

Table 2: Causal Effect Estimation Error Metrics for Cloud-Aerosol Dataset when using COD as
Outcome Variable and AOD as Intervention Variable. The results are averaged over five replications
and shown with standard error.

Method Proxy ATE train ATE test RMSEY

SCEVAE meteorological 0.06 ± 0.05 0.09 ± 0.08 0.72 ± 0.001
uniform 0.21 ± 0.18 0.24 ± 0.14 0.79 ± 0.14

SCEVAE-Knockoff meteorological 0.03 ± 0.02 0.04 ± 0.02 0.78 ± 0.02
uniform 0.29 ± 0.08 0.37 ± 0.06 0.83 ± 0.03

9



In case of meteorological proxy, we set it to be multivariate including SST, EIS, w500, RH700,
RH850, and RH900 as per Jesson et al. (32). Whereas when the proxy is indicated as uniform, we
set it univariately to U(0, 1). The results of varying the choice of proxy X are shown in Table 2 for
SCEVAE with standard normal, as well as with Knockoff intervention.

We note that using meteorological proxies yields lower variance of both training and test ATE in
contrast to the case where we used uniform noise as the proxy. Moreover, SCEVAE with Knockoff
intervention yields lower RMSEY with the use of meteorological proxies. This implies the importance
of the appropriate proxy choice.

Furthermore, when using meteorological proxies the causal link intensity between COD and AOD is
lower than in the case we set X to uniform noise during both training and test. Similar findings, i.e.
that aerosol has limited impact on cloud depth, were reported by Jesson et al. (32) for a comparable
rate of confounding. This further strengthens our claim that choosing suitable proxies is crucial
for correctly estimating causal link intensity under hidden confounding as it may contribute to
identifiability.

6 Conclusion

Causal link intensity estimation is a challenging task, especially in the presence of latent confounders.
In this paper we introduced SCEVAE, a novel deep learning method for time series causality analysis
under hidden confounding to tackle this problem in sequential data with Knockoff interventions. It is
inspired by the CEVAE framework, but applicable to complex non-stationary time series through
the use of LSTMs and fundamental architectural novelty. Our method allows for single-variable
causality analysis instead of using many independent samples for training. We achieved better and
more stable results than the time series deconfounding benchmark TSdeconf. Moreover, we showed
that estimating the confounded causal link intensity can be done more accurately with Knockoff
rather than using standard normal interventions. This was attained on synthetic data with both linear
and nonlinear causal links. In addition, we observed that using Knockoff interventions reduces
the counterfactual RMSEŶ in comparison to SCEVAE without Knockoff intervention since the
distribution of the Knockoff agrees with the learned distribution of the cause variable. Moreover,
through the experiments on real cloud-aerosol observational data, we indicated our method’s potential
applicability to real-world problems and illustrated how the use of meaningful proxies contributes to
its identifiability.
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A Appendix

Figure 4: Time-varying proxy parameter bt
over 1000 time steps.

Figure 5: RMSE during training (blue) and test (or-
ange) for the synthetic data with nonlinear causal
link and time-varying proxy parameter b.

Figure 6: Influence of latent dimension and coefficient of the latent confounder to the outcome
forecast with standard normal intervention. Factual RMSE is shown on the left and counterfactual
RMSE on the right with standard deviation after five replications.
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