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Abstract. Causality analysis represents one of the most important tasks
when examining dynamical systems such as ecological time series. We
propose to mitigate the problem of inferring nonlinear cause-effect de-
pendencies in the presence of a hidden confounder by using deep learning
with domain knowledge integration. Moreover, we suggest a time series
anomaly detection approach using causal link intensity increase as an
indicator of the anomaly. Our proposed method is based on the Causal
Effect Variational Autoencoder (CEVAE) which we extend and apply to
anomaly detection in time series. We evaluate our method on synthetic
data having properties of ecological time series and compare to the vector
autoregressive Granger causality (VAR-GC) baseline.

1 Introduction

Causality analysis represents one of the most important tasks when examining
dynamical systems such as ecological time series. Its principal difficulties are
hidden causes of the observed phenomena, in addition to the often-found nonlin-
earities in the data. We propose to mitigate the problem of inferring nonlinear
cause-effect dependencies in the presence of a hidden confounder by using deep
learning together with domain knowledge. Moreover, we suggest a time series
anomaly detection approach using causal link intensity increase as an indicator
of the anomaly.

In ecosystems for instance, considering the problem of confounding is impor-
tant when trying to determine a causal link between gross primary production
(GPP) and the ecosystem respiration (Reco). Since both of these variables are
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Fig.1: Causal graphical model portraying hidden confounding with one proxy.
Variable Y denotes an outcome, W an intervention variable, Z an unobserved
confounder and X denotes a proxy variable providing noisy views on the hidden
confounder Z.

influenced by the global radiation (Rg), one cannot be certain that the causal
link between them is not influenced by this variable. Therefore, not considering a
confounder may lead to incorrect conclusions. Two variables, W and Y, are said
to be confounded if there exists another variable Z that causes both W and Y. In
order to verify whether the confounder is influencing the link between W and Y,
we need to intervene on W in the sense of do-Calculus [15] and thereby remove
any influence of Z on W. If the intervention on W does not affect the outcome,
it is clear that the causal link between W and Y is influenced exclusively by the
hidden confounder Z itself.

When a confounder is observed, the usual approach for accounting for its ef-
fect is to ”control” for it, for instance by covariate-adjusted regression or propen-
sity score regression [12]. However, if a confounder is hidden or unmeasured, it
is impossible to estimate the effect of the intervention on the outcome without
further assumptions [15]. This is, nevertheless, a problem of utmost importance
in observational studies, Simpson’s paradox [23] being a good example of the
type of bias that may occur in causal inference if unmeasured confounding is
not properly dealt with. One way to tackle this issue is by using a proxy to the
hidden confounder instead of the confounder itself. In the previously described
ecosystem example, the air temperature (T) can be utilized as a proxy to the
confounder R, . Figure 1 depicts a version of this problem in the form of a causal
graphical model when there is only one proxy variable, as suggested by [13].
For more general proxy models, as well as conditions under which they could be
identified, see [14].

In ecological time series, variables often contain trends or periodic compo-
nents such as diurnal and seasonal cycles. These act as an unobserved con-
founder, concealing the true causal effect between the affected variables. It was
recently shown in [21] that time domain causality analysis of ecosystem variables
based on vector autoregressive Granger Causality (VAR-GC) [7], may result in
spurious causal links due to the diurnal or seasonal cycle. To tackle this issue,
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the authors in [21] proposed to use the parametric frequency domain represen-
tation of VAR-GC. It was further shown in [20], [19] that anomalous events can
be detected as those events where the causal intensities between the variables
in certain frequency bands differ considerably from the average causal inten-
sities. The application of our method to anomaly detection builds upon these
findings. Namely, we estimate the causal link intensity between confounded vari-
ables and by observing an increase of this estimation, we are able to detect
anomalies. Moreover, our work extends to a setting where seasonal cycles or
trends are acting as the unobserved confounder. Additionally, we are able to
perform causal inference of not only linear, but also the nonlinear inter-variable
relationships, which are difficult to consider using GC methods. Our suggested
method is based on the causal effect variational autoencoder (CEVAE) [13], a
deep graphical model designed to estimate the unknown latent space summa-
rizing the confounders and the causal effect by relying on a noisy proxy of the
hidden confounder, as seen in Figure 1. It is required that the causal graphical
model used by the CEVAE satisfies the back-door criterion [15] in order for it to
be possible to use the do-Calculus and calculate the desired causal effect. We ex-
tend CEVAE for ecological time series and use it to infer a nonlinear causal link
between variables confounded by the periodic component such as the seasonal or
diurnal cycle. We apply our proposed method in this setting to estimate the in-
tensity of the previously mentioned causal link. By being able to do so, we use its
increase to detect anomalies. Furthermore, we are, to the best of our knowledge,
first to use this deep graphical model for anomaly detection. In summary, our
method which builds upon the CEVAE is in line with the trend to apply deep
learning in Earth system analysis for describing the spatio-temporal dependency
of ecosystems on climate and the interacting geo-factors as recognized by [17].
In Section 2, we discuss methods of causality analysis and anomaly detection
on time series, whereas we devote Section 3 to outlining the CEVAE method
along with our adaptation of it to ecological data. In Section 4 we describe
synthetic data used to evaluate our method, followed by experimental results
and the comparison to the VAR-GC method. Finally, Section 5 concludes our

paper.

2 Related work

The analysis of causal dependencies in time series has become a focal point of
study in various fields such as engineering, finance, the physical and life sci-
ences [18]. The main assumption of this probabilistic concept of causality is that
causes always come before their effects in time. This means that if one time series
causes another series, knowing the former series should be helpful for predicting
future values of the latter series after influences of all other variables have been
considered. A standard method used for this purpose is Granger Causality (GC)
applied in the setting of no hidden confounding [4] and only when causal links
are linear. These limitations persist in anomaly detection methods relying on
GC for time series [16]. Seeking to improve the conventional way of causality
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analysis, several deep learning approaches have been suggested. One such ap-
proach is introduced for inferring interactions between variables while learning
the dynamics in an unsupervised manner [10]. Furthermore, Causal Effect Net-
work (CEN) [11] has been proposed for assessing causal relationships of time
series, as well as their time delays between different processes. However, these
methods cannot be applied when causal inter-variable relations are nonlinear,
nor when they are driven by a hidden confounder. In [24], causality between the
global radiative forcing and the annual global mean surface temperature anoma-
lies (GMTA) is measured as the time rate of information flowing from one time
series to another. A different branch of research that deals with modelling the
latent variable space using deep graphical models was introduced in the recent
years, specifically by the introduction of a Variational Autoencoder (VAE) in
[9]. Tt is a deep learning method combined with a directed probabilistic graph-
ical model for efficient inference in the presence of continuous latent variables
with intractable posterior distributions. Moreover, it represents a crucial build-
ing block of a CEVAE [13], which allows for estimation of the unknown latent
space and inference of the causal links between the confounded variables. Our
work extends the capabilities of a CEVAE to time series, as well as to its novel
application to anomaly detection using an increase of the causal link intensity.

An unsupervised method for discovering anomalies considering intervals of
multivariate time series is proposed by [1]. It proposes that instead of regard-
ing one point at the time, it is beneficial to compare probability distribution
of samples within an interval to that of the rest of the data. A recently devel-
oped method for anomaly detection of time series using a Variational Recurrent
Autoencoder (VRAE) [5] is proposed in [2]. It applies a latent-space detection
approach which considers the variability of the latent representations, as well
as their expectation and computes the anomaly score using the median Wasser-
stein distance [25] between a test sample and other samples within the test set
of latent representations.

Our method differs substantially from other anomaly detection approaches
as we rely on causal link intensity changes in the presence of an unobserved
confounder for detecting anomalies in ecological time series which has, to the
best of our knowledge, not been done so far.

3 Methodology

3.1 Causal effect variational autoencoder

Based on a VAE [9] and a TARnet [22] generative model structure, CEVAE [13]
is a deep learning method dealing with hidden confounding as it estimates the
latent space and summarizes the causal effect of discrete or continuous, non-
sequential variables, using a noisy proxy related to the confounder, as shown
in Figure 1. One of its original applications was to medical data, so that in
Figure 1 W denotes treatment, Y an outcome of the treatment, whereas a hidden
confounder Z represents the socio-economic status of each patient and its proxy
X represents patient’s income for the previous year and a place of residence. The
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Fig. 2: Synthetic data. The first row shows the hidden confounder Z with param-
eters b = 5 and f = 36.5; the second row shows the noisy proxy X for s = 500
and 8 = 0.3; the third row shows variable W for p,, = 0.55 and e = 0.4 without
intervention; the fourth row shows variable W with intervention; the fifth row
shows the outcome Y for g = 0.8 and a = 3.

main objective was, therefore, recovering the Individual Treatment Effect (ITE)
and the Average Treatment Effect (ATE) defined in (1) and (2), respectively:

ITE(z) := E(Y|X = z,do(W = w')) — E(Y|X = z,do(W =w°)) (1)

ATE := E(ITE(z)) (2)

These metrics are defined for each value x of variable X, and by w' we denote
applied treatment, while values of W when no treatment is applied are denoted
by w®. ATE is easily calculated once we recover the ITE, and to do that we need
to recover the joint probability p(Z, X, W,Y), as shown by Theorem 1 in [13].
Obtaining this joint distribution is done through a model network of a CEVAE
by estimating the true posterior over Z which depends on X, W and Y, whereas
Z itself is modelled by the standard normal distribution. The estimate of the
posterior is then inferred via TARnet [22] by splitting it for each intervention
group in W. It is then possible to construct a single objective for the inference
and model networks, i.e. the variational lower bound

N
L= Eqta oy (l0g p(zi) — log q(zilai, wi, y;) 3)
1=1

+log p(xi, ws|2i) + log p(ys|ws, 2;))
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of the causal graphical model from Figure 1. By z; we denoted an input data
point, w; corresponds to the treatment assignment, y; to the outcome of the
specific treatment, z; corresponds to the latent hidden confounder and by ¢
we denote estimation of the probability distribution with the same arguments.
Finally, since it is necessary to know the intervention assignment w together with
its outcome y before inferring the posterior distribution over Z, two auxiliary
distributions are introduced, helping to predict w; and y; for new samples, so
the variational lower bound becomes

N
Fepvap =L+ (logq(w; = w}|z}) +log gy =y}, w})), (4)
i=1

where x, w}, y; are the observed values for the input, intervention and outcome
variables in the training set.

3.2 CEVAE for ecological time series

When analysing ecological time series, one often encounters variables having pe-
riodic components such as diurnal and seasonal cycles. This can make it difficult
to infer inter-variable causal dependencies as the underlying cycle may be influ-
encing them as well. Synthetic data we use for the evaluation of our method,
shown in Figure 2, is generated such that these periodic components act as the
hidden confounder. Our task is to infer the causal link intensity between W and
Y in the presence of this confounder and detect anomalies induced by the causal
link intensity’s increase. In contrast to the conventional CEVAE setting, our in-
tervention variable W is a time series. This means we needed to find a different
way of intervening on W in order to estimate the desired cause-effect relations.
To further put the CEVAE into our context, we adjust several required proba-
bility distributions. Namely, we model a conditional distribution of W given Z
as defined in (5).

p(W|Z) = N(Mw,Uﬁ,), [ o, 0w] = f1(Z) (5)

Estimation of this distribution is obtained through the use of the proxy X:
aq(W|X) = N(po,03), [ 1o 0a] = fo(X) (6)

Functions f; and fo are feedforward neural networks with three layers. To mea-
sure the intervention effect of W to Y we extend ITE to the case of a sequential
intervention and define the Interval Intervention Effect (IIE) and the Average
Intervention Effect (AIE):

ITE(z) :=E{Y|z; < X < x411,do(W =
E(Y|l‘l < X < l‘H_l,dO(W =

)
%)
AIE := E(IIE(x)) (8)

(7)

w
w
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In (7) and (8), zo and z; are the interval limits for ¢ € {1,...m} and m = 256, as
we regularly quantize variable X into an 8-bit word, whereas w' and w® denote
intervention or no intervention on W, respectively.

For detecting anomalies in the intervention variable W under hidden con-
founding, we utilize the increase of the intensity of the causal link from W to
Y regardless of its linearity and deploy a sliding window approach documenting
the estimated AIE for each window.

3.3 Vector autoregressive Granger Causality

The main assumption of Granger causality (GC) [7] is that causes precede their

effects and can be used for their prediction. Let u;,i = 1,--- , N be the time
series of N ecological variables. Each time series w;(t),t = 1,-- - , k is a realization
of length k real valued discrete stationary stochastic process U;,i = 1,--- , N.

These N time series can be represented by a pth order vector autoregressive
model (VAR(p)) of the form

uy(t) » u(t—r) e1(t)
=>4 : i E 9)

UN(t) r=1 ’U,N(t—’l’) EN(t)
The residuals €;,7 = 1,--- , N form a white noise stationary process with co-
variance matrix Y. The model parameters at time lags r = 1,--- | p comprise

the matrix A, = [a;;(r)]nxn. Let X; be the covariance matrix of the residual
€; associated to u; using the model in (9), and let Z;_ denote the covariance
matrix of this residual after excluding the ith raw and column in A,. The time
domain VAR-GC of u; on u; conditioned on all other variables is defined by [6]

1257

H|Tj|' (10)

Yi—j = 1

4 Experiments

By experiments on synthetic data we first demonstrate that our method is sen-
sitive to the increase of the nonlinear causal link’s intensity between the con-
founded variables, which we then exploit to achieve the second goal of this work,
i.e. to apply CEVAE for detecting anomalies. In regard of the neural network
architecture, we closely followed [13]. We used feedforward neural networks,
namely f; and fo having 3 hidden layers, with ELU [3] nonlinearity and 200
neurons in each layer. We note, however, that more hidden layers can be used.
We modelled variable Z as normally distributed with 20 dimensions, due to its
latency. We used a small weight decay term for all parameters, with A = 0.0001.
For optimization, Adamax [8] was utilized with a learning rate of 0.01. Fur-
thermore, early stopping according to the lower bound on a validation set was
performed. For obtaining the outcomes p(y|z; < X < z;41,do(W = w')) and
p(ylz; < X < @1, do(W = w®)) we averaged over 100 samples from the ap-
proximate posterior ¢(Z|X) = [q(Z|w,y, X)q(y|lw, X )q(w|X)dy.
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Fig.3: Absolute error of AIE estimation on synthetic data samples for a = 1,
B = 0.3 and quantization level m = 2. We note that absolute AIE error e is
already quite small for the sample size N = 1000.

4.1 Synthetic data

The synthetic data was created according to causal relationships of the graphical
model in Figure 1, which we consider to be the ground truth. In real data, these
causal relationships are extracted from the prior expert knowledge. We create a
hidden confounder Z as:

t
f
where t € {0,... N} and N denotes the sample size. It is defined to resemble a
periodic component such as daily or seasonal cycle often encountered in ecologi-
cal time series. Noisy proxy X is defined through shifting Z by a constant s € N
and the noise level 3 € (0,1):

Xt:ths“Fﬁ'GXa fOI‘GXNN(O,].). (12)

The intervention variable W is modelled to be influenced by the unobserved
confounder as follows:

Zt:\b-cos(g- )|, forb, f €R (11)

WtNN(,LLw,e'Zt), ec (O, 1) (13)

As an intervention, we consider values of the intervention variable where val-
ues of the proxy’s periodic component are less than its half. This type of the
intervention was chosen in order for it to satisfy the properties of do-calculus.
Moreover, it allows for an almost straightforward application of our method to
real data. Namely, after intervention, causal link between W and its parent Z
should either be removed or so small, that it can be neglected.

The outcome Y is modelled to be influenced by both the hidden confounder Z
and the intervention variable W with added Gaussian noise as:

Y, = 0.7 Z + g~ @Wemnw)diw) 4 ey forey ~ N(0,0.1), g € (0,1)  (14)
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Fig. 4: (a) Causal link estimation results of our method in comparison to the vec-
tor autoregressive Granger causality. Blue and orange curves show our method’s
estimation of the AIE during training and test, respectively, for 3 = 0.3, m = 28,
s = 500 and sample size N = 1000. Green curve shows results of the VAR-GC
when the confounder Z is included. (b) Causal link estimation results of the
VAR-GC method when the confounder is hidden. We note that our method
performs better than VAR-GC baseline when the confounder is excluded and
comparatively well to the VAR-GC with the included confounder.
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Fig. 5: Proxy noise level vs absolute AIE error € for a = 2, m = 2%, s = 500 and
sample size N = 1000. We observe that trend lines of the absolute AIE error for
different values of the proxy noise level § are very close to constant.

4.2 Causal link intensity estimation

In the case when a € (0,1), perturbations in the variance of W are very small
and we consider them neither as the intervention nor as the anomaly. We rather
focus on causal link intensity estimation for a@ > 1. A relationship between «,
the parameter of a function proportional to the causal link’s intensity, and the
AIE metric’s estimation is shown in Figure 4(a). This illustrates our method’s
sensitivity to the increase of the causal link strength between the confounded
variables, predicting its estimation accordingly. To choose the most suitable sam-
ple size, we conducted an experiment in which we ran our method for nonlinear
causal link intensity estimation with different values of N to choose the most
suitable sample size. We used the absolute AIE error

¢ = |AIE* — AIE) (15)

for measuring our method’s accuracy. This was done for each sample size N €
{500, 1000, 3000, 5000, 10000, 30000} as seen in Figure 3. Here AIE* denotes the
predicted average intervention effect, while its ground truth value is denoted by
AIE. Finally, we have chosen N = 1000 for our sliding window size.

As the baseline, we applied the VAR-GC method to all four variables uy = W,
up = Y, u3 = X and uy = Z from Figure 2 and compared it to our method
during training and testing, as shown in Figure 4(a). We note that our method
behaves comparatively well to this baseline when the confounding variable Z
was included. To determine if VAR-GC can detect the increase of the nonlinear
causal link’s strength between W and Y without the use of the confounder Z,
we excluded it and observed that it is not the case, as shown in Figure 4(b).
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Fig. 6: Anomaly detection for a = 3, 8 = 0.3, m = 28, s = 500, N = 6000 and
ground truth anomaly with a = 7 positioned at ¢t € {2500, ...,4499}. Marked
samples on the X-axis denote window centres for each sliding window.

4.3 Proxy noise levels

Since the confounder is unobserved, we wanted to ensure that the proxy we are
using is not influencing the causal link between W and Y. To this end, we have
performed a proxy noise level experiment as seen in Figure 5. We observe that,
on average, changes in the absolute AIE error, as defined in (15), for different
values of the proxy noise level g are constant. Therefore, we conclude that the
proxy variable X is not influencing the causal link between W and Y. This means
that the hidden confounder Z is not causing the link between the confounded
variables, but that W is the actual cause of the outcome Y.

4.4 Anomaly detection in synthetic data

Using a sliding window approach and estimating the AIE of W on Y, we pro-
pose to detect anomalies in cause-effect relationship intensity between those two
variables. We create the anomaly as an increased value of « in (14) by a certain
value a € N in a particular time interval. More precisely, in this interval the
outcome variable becomes:

Y, = 0.7 Z, + g~ (et Wiz tiw) 4 e for ey ~ N(0,0.1), g € (0,1) (16)

Specifically, in our approach a window consisting of 1000 samples is shifted by 100
in each iteration. We train the adapted CEVAE on time series data, as described
in the beginning of this section, using data with an intervention on W i.e. where
values of the proxy’s periodic component are less than its half, and test on data
containing the anomaly. Figure 6 shows our anomaly detection results for the
nonlinear coupling between W and Y defined in (14) for ¢ = 0.8, o = 3 and
« = 7 for the interval containing the anomaly. The AIE estimation in Figure 6 is
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depicted after training and testing, where each value on the z-axis corresponds
to each window’s centre. Significantly higher AIE intensity from 2200 to about
4000 samples indicates considerable increase in the causal intensity and thus a
possible anomaly.

5 Conclusion

In this paper, we have extended CEVAE to ecological time series in order to
tackle the problem of nonlinear causal inference of variables in the presence of
an unobserved confounder. Furthermore, we have shown that the proxy variable
is not influencing the causal link between the confounded variables, meaning
that the confounder itself is not the cause of the said link. After successfully
establishing our method’s sensitivity to increase of the causal link intensity on
synthetic data, we utilized its estimates to detect anomalies induced by its in-
crease. We used the VAR-GC method as a baseline and obtained better results
when the confounder was hidden. To strengthen our method, we intend to in-
corporate time-delay embeddings as well as recurrent neural networks for time
series anomaly detection.
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