
CAUSAL LINK ESTIMATION. . .

CAUSAL LINK ESTIMATION UNDER HIDDEN
CONFOUNDING IN ECOLOGICAL TIME SERIES

Violeta Teodora Trifunov1,2, Maha Shadaydeh1, Jakob Runge2, Veronika Eyring4,5, Markus
Reichstein3,6, Joachim Denzler1,3

Abstract—Understanding the causes of natural phe-
nomena is a subject of continuous interest in many
research fields such as climate and environmental science.
We address the problem of recovering nonlinear causal
relationships between time series of ecological variables in
the presence of a hidden confounder. We suggest a deep
learning approach with domain knowledge integration
based on the Causal Effect Variational Autoencoder
(CEVAE) which we extend and apply to ecological time
series. We compare our method’s performance to that
of vector autoregressive Granger Causality (VAR-GC) to
emphasize its benefits.

I. INTRODUCTION

Many research fields such as climate and environ-
mental sciences [1], [2] are continuously striving to un-
derstand the causes of natural phenomena. The complex
nature and the continuously changing climate system
both contribute to the slow advances in this field. This
issue was shown to be amenable through the devel-
opment of data-driven methodologies that are guided
by theory to produce more accurate models [3]. We
propose to mitigate the problem of recovering nonlinear
causal relationships between time series of ecological
variables in the presence of a hidden confounder. We
suggest a deep learning approach with domain knowl-
edge integration in the form of the ground-truth causal
graph, shown in Fig. 1, for mending this issue. Our
approach is based on the Causal Effect Variational Au-
toencoder (CEVAE) [4] which we extend by modelling
an intervention for time series of confounded ecological
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Fig. 1. Graphical model portraying hidden confounding with one
proxy. Y denotes an outcome, W an intervention variable, Z an
unobserved confounder and X denotes a proxy variable providing
noisy views on the hidden confounder Z.

variables. We compare our method’s performance to
that of the vector autoregressive Granger Causality
(VAR-GC) [5], [6] and find that our approach is indeed
capable of recovering nonlinear causal relationships
under hidden confounding in contrast to VAR-GC base-
line. In the study of ecosystems for example, consider-
ing confounders is important when trying to determine
a causal link between the air temperature (Tair) and
the ecosystem respiration (Reco). Since both of these
variables are influenced by the global radiation (Rg),
one can not know with certainty that the causal link
between Tair and Reco is not affected by Rg. Therefore,
not taking confounding into consideration may lead to
erroneous conclusions. Two variables, W and Y , are
said to be confounded if there exists another variable Z
that is a cause for both W and Y . In order to confirm
if the confounder is influencing the link between W
and Y , one needs to intervene on W in the sense
of do-Calculus [7] and thereby remove any influence
of Z on W . If the intervention on W induces no
change in the outcome Y , it is evident that the causal
link between W and Y is solely influenced by the
hidden confounder Z itself. In the case of an observed
confounder, a conventional approach for accounting for
its effect is to ”control” for it. This is done for instance
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by covariate-adjusted regression or propensity score
regression [8]. However, if a confounder is hidden, it is
impossible to estimate the effect of the intervention on
the outcome without making further assumptions [7].
Figure 1 depicts a form of this problem when there is a
single proxy variable. A proxy is an observed variable
that describes the unobserved confounder and it is then
used in causal link estimation between the confounded
variables instead of the hidden confounder itself. For the
cases of more general proxy models and the conditions
under which they can be identified, please refer to [9].

II. RELATED WORK

A standard causality analysis method is Granger
Causality (GC) [5] applied in the setting of no hidden
confounding [10]. The main assumption of this concept
is that causes always come before their effects in time.
This means that if one time series causes another
series, knowing the former series should be helpful
for predicting future values of the latter series after
influences of all other variables have been considered.
Ecological variables often contain trends or periodic
components such as diurnal or seasonal cycles which
act as a hidden confounder. In [11], [12] authors have
used parametric spectral representation for inferring the
cause-effect relationships between ecological variables,
assuming no hidden confounder. They have shown that
time domain causality analysis of ecosystem variables
based on VAR-GC [6], may result in spurious causal
links due to the above-mentioned periodic components
of ecological variables and thus proposed to use the
parametric frequency domain representation of VAR-
GC instead. In [13] it was further shown using a
deep learning approach for causal inference based on
a Causal Effect Variational Autoencoder (CEVAE) [4],
that cause-effect analysis can be done in the presence
of a periodic component acting as a hidden confounder
in the time domain.

In regards to other deep learning methods for causal
inference, several approaches have been suggested re-
cently. One such is applied to inference of interactions
between variables while learning the dynamics in an
unsupervised manner [14]. Moreover, Causal Effect
Network (CEN) [15] has been proposed for assessing
causal relationships of time series, as well as their
time delays between different processes. However, most
causal inference methods cannot be applied if hidden
confounders are present [2]. Another research branch
dealing with the modelling of the latent variable space
using deep graphical models was introduced in the
recent years. Autoencoders are a class of deep learning

methods that can be combined with directed probabilis-
tic graphical models for efficient inference in the pres-
ence of continuous latent variables with intractable pos-
terior distributions, such as the Variational Autoencoder
(VAE) [16]. Moreover, VAE represents the fundamental
building block of the CEVAE [4], which allows for the
estimation of the unknown latent space and inference
of causal links between the confounded variables. Our
work extends the capabilities of the CEVAE to time
series that are based on real observations of global
radiation and provides a comparison to VAR-GC.

III. METHODOLOGY

In the first part of this section, we describe the main
deep graphical model our method relies on. Then, we
explain how our method builds upon that graphical
model. Finally, we provide a brief introduction to the
VAR-GC method, which we use as a baseline.

A. Causal effect variational autoencoder

Based on the VAE [16] and the TARnet [17] gen-
erative model structure, the CEVAE [4] is a deep
learning method that addresses hidden confounding
by estimating the latent space and summarizing the
causal effect of discrete or continuous, non-sequential
variables. This is accomplished through the use of a
noisy proxy related to the confounder, as shown in
Fig. 1. In its original application to medical data, W
from Fig. 1 denotes treatment, Y an outcome of the
treatment, whereas a hidden confounder Z represents
the socio-economic status of each patient. Its proxy X
represents patient’s income for the previous year and a
place of residence. The main objective was, therefore,
recovering the Individual Treatment Effect (ITE) and
the Average Treatment Effect (ATE) defined in (1) and
(2), respectively:

ITE(x) :=E(Y |X = x, do(W = w1))−
E(Y |X = x, do(W = w0))

(1)

ATE := E(ITE(x)) (2)

The metrics from Eq. 1 and 2 are defined for each
individual value x of variable X , and by w1 we denote
the provided treatment, while w0 denotes the values of
W when no treatment is provided. To obtain the ITE,
we need to recover the joint probability p(Z,X,W, Y ),
as shown by Theorem 1 in [4]. Obtaining this joint
distribution is done through a model network of the
CEVAE by estimating the true posterior over Z which
depends on X , W and Y , where Z is modelled by the
standard normal distribution since it is unobserved and
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an assumption about its distribution has to be made. The
estimate of the posterior is then inferred via TARnet
[17] by calculating it for each intervention group in W .
It is then possible to construct a single objective for the
inference and model networks, i.e. the variational lower
bound

L =

N∑
i=1

Eq(zi|xi,wi,yi)

(
log p(zi)− log q(zi|xi, wi, yi)

+ log p(xi, wi|zi) + log p(yi|wi, zi)
)
, (3)

of the graphical model from Fig. 1. By xi we denote an
input data point, by wi each treatment assignment, by
yi the outcome of the specific treatment, by zi the latent
confounder and by q we denote estimates of the true
probability distributions p which are computationally
intractable. Finally, since it is necessary to know the
intervention assignment w along with its outcome y
before inferring the posterior distribution over Z, two
auxiliary distributions are introduced, helping to predict
wi and yi for new samples, so the variational lower
bound becomes

FCEVAE = L+

N∑
i=1

(
log q(wi = w∗i |x∗i )+

log q(yi = y∗i |x∗i , w∗i )
)
,

(4)

where x∗i , w∗i , y∗i are, respectively, the observed values
for the input, intervention and outcome variables in the
training set.

B. CEVAE for ecological time series

Ecological time series often encompass nonlinearly
related variables, as well as influence by a hidden
confounder. In contrast to the conventional CEVAE
setting, our intervention variable W , as well as variables
X , Y and Z, are time series. Doing an intervention
in real-world climate data is most often not feasible,
so an alternative approach has to be followed. One
such approach could be separating the values of an
intervention variable W during day and night time or
during winter and summer, for instance. As intervention
we consider those values of W for which the influence
of the confounder Z, the global radiation, is the weakest
and thus arguably negligible. We provide more detail
on modelling the intervention in Section IV. We also
adjust several probability distributions to accommodate
our problem setting. Namely, we model a conditional
distribution of W given Z as follows:

p(W |Z) = N (µw, σ
2
w), [ µw, σw] = f1(Z). (5)

Fig. 2. Synthetic data. The first row shows real observation of
global radiation Rgobs as the hidden confounder Z; the second row
shows the noisy GPP as the proxy X for c = 0.03196, e = 0.3,
τ3 = 23 and τ4 = 14; the third row shows the variable Tair as
W for a = 0.4632, b = 0.48078, τ1 = 22 and τ2 = 17 without
intervention; the fourth row shows variable W with intervention;
the fifth row shows Reco as Y for e = 0.198087, α = 0.61078,
τ5 = 21 and τ6 = 21.

Estimation of this distribution is obtained through the
use of the proxy X:

q(W |X) = N (µ̂w, σ̂
2
w), [ µ̂w, σ̂w] = f2(X). (6)

Functions f1 and f2 are feedforward neural networks
with three layers. To measure the intervention effect
of W on Y , we extend ITE (Eq. 1) to the case
of a sequential intervention and define the Interval
Intervention Effect (IIE) and the Average Intervention
Effect (AIE):

IIE(Ii) := E(Y |X ∈ Ii, do(W = w1))−
E(Y |X ∈ Ii, do(W = w0))

(7)

AIE := E(IIE(Ii)i=0,...,m−1) (8)

By interval Ii = [xi, xi+1] we denote the i-th uniform
quantization level of X , with xi and xi+1 being its
limits, for i = 0, ...,m−1 with m = 256. In Eq. (8), by
IIE(Ii)i=0,...,m−1 we denote an m-dimensional vector
whose elements are IIE(Ii) for each i = 0, . . . ,m−1. In
this manner we have extended the CEVAE to the setting
of a continuous intervention variable, since intervals of
W and Y are taken into account for calculating the
causal effect between them, instead of the individual
values, as seen in Eq. (1) and Eq. (2).

C. Vector autoregressive Granger causality

The main assumption of Granger causality (GC) [5]
is that causes precede their effects and can be used for
their prediction. Let ui, i = 1, · · · , N be the time series
of N ecological variables. Each time series ui(t), t =



TRIFUNOV ET AL.

Fig. 3. Causal graphical model portraying causal relationships
between ecological variables defined in equations (11)-(14). Res-
piration of the ecosystem Reco denotes the outcome, air temperature
Tair denotes an intervention variable, the global radiation Rg is
assumed to be the hidden confounder and GPP denotes a proxy
variable providing noisy views on the unobserved confounder Rg.

1, · · · , k is a realization of length k real valued discrete
stationary stochastic process Ui, i = 1, · · · , N . These
N time series can be represented by a pth order vector
autoregressive model (VAR(p)) of the form u1(t)

...
uN (t)

 =

p∑
r=1

Ar

 u1(t− r)
...

uN (t− r)

+

 ε1(t)
...

εN (t)

 .
(9)

The residuals εi, i = 1, · · · , N form a white noise
stationary process with covariance matrix Σ. The model
parameters at time lags r = 1, · · · , p comprise the ma-
trix Ar = [aij(r)]N×N . Let Σj be the covariance matrix
of the residual εj associated to uj using the model in
(9), and let Σi−

j denote the covariance matrix of this
residual after excluding the ith raw and column in Ar.
The time domain VAR-GC of ui on uj conditioned on
all other variables is defined by [6]

γi→j = ln
|Σi−

j |
|Σj |

. (10)

IV. EXPERIMENTAL RESULTS

We have applied the proposed method to a synthetic
data generated from 1825 real observations of the global
radiation (Rgobs) measured at the flux tower in Heinich
National Park - Germany, over the period of five years
as suggested by [18]:

Rg(t) = Rgobs
(t) (11)

Tair(t) = a · Tair(t− τ1) + b · Rg(t− τ2) + η1(t) (12)

GPP(t) = c · Rg(t− τ3) · Tair(t− τ4) + η2(t) (13)

Reco(t) =e · Rg(t− τ5) · α
Tair(t−τ6)

20 + η3(t). (14)

Fig. 4. Causal link estimation results of our method in comparison
to the vector autoregressive Granger causality (VAR-GC). Blue
and green curves show our methods estimation of the AIE during
training and test, respectively. The yellow curve represents the VAR-
GC method’s estimate γTair→Reco when the confounding variable Rg

is included along with Tair, Reco and GPP. The red curve represents
the VAR-GC method’s estimate γTair→Reco when the proxy variable
GPP is used along with Tair and Reco, instead of the confounder
itself. We note that in real ecological data α < 1.

In equations (11)-(14), by η1, η2, η3 we denote mutually
uncorrelated Gaussian noise with mean µ = 0 and
variance σ = 1, by τi ∈ N for i = 1, . . . , 6 we
denote time lags, and by a, b, c, e ∈ (0, 1) we denote
constants. The plots of all above-mentioned variables
along with the exact parameters used is shown in Fig.
2. The causal link intensity parameter is denoted by
α ∈ R and it represents the value of our highest interest.
Namely, throughout our experiments, we increase the
parameter α and observe the AIE estimation results
in accordance to this increase. The portion of data we
consider spans from April to September of each year,
which results in 900 samples of real global radiation
observations, corresponding to the hidden confounder
Z. Synthetically generated variables Tair, GPP and Reco,
correspond to W , X and Y , respectively, as shown in
Fig. 3. We note that even though there is a causal link
from Tair to GPP, it does not change any of the original
problem settings, nor any of the probability distributions
involved. During those months the influence of Tair to
Reco should be more pronounced as the temperatures
are higher. We model the intervention by considering
a certain threshold of the proxy mean instead of the
hidden confounder. More precisely, we consider values
of the intervention variable Tair corresponding to the
daily values of the proxy GPP that are smaller than
the threshold of 0.7 of its mean. To create w1 from
Eq. (7), we use values of W corresponding to the
proxy values smaller than the said threshold. This alone
would lead to w1 having missing values for time steps
that correspond to the proxy values greater than the
threshold. In order to prevent that, we concatenate all
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present values and replicate them successively until
the sample size is reached. We define w0 from Eq.
(7) in an analogue fashion. This type of intervention
was chosen to simulate the properties of do-calculus
as closely as possible. Moreover, it allows for a more
easily adaptable application of our method to real data.
Namely, after intervention, causal link between Tair and
its parent Rg should either be removed or so small, that
it can be neglected. This naturally occurs during winter
or night time.
As far as the neural network architecture is concerned,
we closely followed [4]. We used feedforward neural
networks, namely f1 and f2 with 3 hidden layers
and the ELU [19] nonlinearity. We note, however,
that more hidden layers as well as different types
of networks can be used. We modelled variable Z
as normally distributed with 20 dimensions, due to
its latency. We used a small weight decay term for
all parameters with λ = 0.0001. For optimization,
Adamax [20] was utilized with a learning rate of 0.01.
Furthermore, early stopping according to the lower
bound on a validation set was performed. For obtaining
the outcomes p(y|xi ≤ X ≤ xi+1, do(W = w1))
and p(y|xi ≤ X ≤ xi+1, do(W = w0)) we aver-
aged over 100 samples from the approximate posterior
q(Z|X) =

∑
w

∫
q(Z|w, y,X)q(y|w,X)q(w|X)dy.

As domain knowledge in this work, we consider the
ground truth causal relationships between time series
of ecological variables which are used to verify our
method’s results. When the causal graph is not partly
or entirely known, methods like [1] should be used for
obtaining it to a greater extent. Our goal is to estimate
the causal link intensity between Tair and Reco in the
presence of the unobserved confounder Rg. We do so
by running our method for different values of parameter
α from Eq. (14), function of which is proportional to the
causal link intensity between the variables in question.
The results for each value of α from 0.1 to 3 are
obtained as the average of the outputs of ten different
realizations of the data. In real ecological time series,
usually α < 1. We note that the increase of α, yields
the increase of the estimate of the causal link strength
measured by the absolute value of AIE, as shown by
the blue and green curves in Fig. 4. We also note that
the curves describing the relation between the causal
link intensity parameter α and the AIE estimation
during training and testing is nonlinearly increasing.
This means we are able to estimate the nonlinear causal
relationship between Tair and Reco from Eq. (14) under
hidden confounding. Furthermore, for the purpose of a
fair comparison, we applied the VAR-GC method to all

four variables u1 = Tair, u2 = Reco, u3 = GPP and u4 =
Rg from Eq. (9), over the entire 1825 data samples.
More specifically, we included the otherwise hidden
confounder Rg. This way, we could also reproduce the
nonlinear causal link between Tair and Reco, as seen in
Fig. 4. To test if VAR-GC can detect the increase of the
nonlinear causal link’s intensity between Tair and Reco

without using Rg, we omitted it and observed as shown
by a decreasing red curve in Fig. 4 that the desired
causal link intensity increase could not be detected.

V. CONCLUSION AND FUTURE WORK

The goal of this work was to infer nonlinear causal
relationships between time series of ecological vari-
ables in the presence of a hidden confounder using
an extended version of the CEVAE. We provided a
comparison to the baseline VAR-GC method with and
without the use of a hidden confounder and concluded
that our method is much more suitable for the task
when the confounder is unobserved. This is since we
use the proxy in estimating the AIE metric instead of
the confounder, influence of which is removed after
the intervention on Tair. We intend to enhance our
method by doing a quantitative evaluation of the said
comparison and incorporating recurrent neural networks
into the current architecture.
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