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ABSTRACT

This paper presents a general robust solution for the prob-
lem of affine object matching, whereby an object can be
given as a discrete point set, a set of lines, or a closed region.
Let be given two such objects which are related by a general
affine transformation (up to noise and maybe some addi-
tional distortions of the object). Then we can determine the
six parameters ajk of the affine transformation using some
new general moment invariants. These invariants are global,
but assigned locally to any object point. With these invari-
ants and using the Hungarian method or dynamic program-
ming it can be computed a weighted point reference list.
The affine parameters ajx can be calculated from this list
using the method of the least absolute differences (LAD)
method. Our approach is very robust against noise and dis-
tortions. The algorithm can be used also for all subgroups of
the affine group. Additionally, it is an unifying approach for
all classes of objects: Discrete point sets, sets of lines, and
closed regions. Many wellknown algorithms have problems
with the case of symmetries of the objects, our approach
is stable against symmetries. Experimental results both on
simulated and real objects validate the robustness of the al-
gorithm. In the case of closed regions our algorithm per-
formes better than SQUID [6].
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invariants, dynamic programming, Hungarian method

1. INTRODUCTION

Feature matching is an important task in multiview image
analysis and in the registration of images. An overview
about affine matching can be found in [2] and [3]. The
main idea of this paper is an unifying approach for global
matching of discrete point sets, sets of lines, and closed
contours (closed regions) using moment invariants. Fur-
thermore, we discuss the problem of finding correspond-
ing points of two objects using techniques as the Hungarian
method and dynamic programming. The object matching
will be performed in the space of the so called Hu invari-
ants, see [5]. In the original literature the Hu invariants are
only invariant with respect to similarity transformations. In

the present paper we develop the Hu invariants which are
even affinely invariant using the ideas of normalization. We
distinguish the invariants for the three types of objects, dis-
crete point sets, lines and closed regions. With the help of
these new invariants, a list of weighted point references can
be calculated using assigment techniques as the Hungarian
method and the method of dynamic programming. From
the list of corresponding points the transformation can be
calculated by the least absolute differences (so called LAD
method) using linear programming. The algorithm is very
robust against distortions especially in the case of closed re-
gions. A global affine matching using invariants is not new:
Such methods parameterize contours according to these in-
variants, normalize the contours by shifting their represen-
tation in parameter space, and correlate the resulting invari-
ant representation. An disadvantage is that the calculation
of these affine invariant quantities requires a high degree of
differentiation along contours, and that contour smoothing
be performed in order to avoid large errors in the differentia-
tion due to noise. Our approach parameterize also contours,
but according to novel global moment invariants under ho-
mogeneous affine transformations.

2. AFFINE INVARIANTS

2.1. Normalization of the moments (DM,LM,AM)

Let be given an affine transformation and two objects. We
use the method of normalization well known in the theory of
affine invariants for planar objects, see ([4, 8]). As features
we use the discrete moments (DM) for discrete point sets,
the line moments (LM) for line objects, or the area moments
(AM) for closed regions. Therefore, at the beginning we de-
fine the three types (DM,LM,AR) of moments Mj;, for the
three types of objects. Central moments m(j’;k are given by a
translation X’ = x xandy’= y ywith (X;y) as centroid,
so that we have mQ o= 0and g, = 0 in the first normaliza-
tion step. This is correct for all three types of moments. In
the second step we perform with xX® = x% ay®and y® = y°
a shearing (or “stretching”) in x direction. By this, the old
central moments m?;k are transformed in new moments m‘j‘?k.



With the simple requwement m11 = 0, the parameter a is
determined asa = my. 1—”182 This is correct for the mo-
ments (DM,AM), but not for the Ime moments. Now we
can calculate all new moments mJ; with given normaliza-

tion values for  mPy;m®;mP; = (0;0;0).
Finally, a general anisotrope scaling x® = pBx® and

y® = yyPyields the moments m® . The moments mJy,
and mgl’z shall be normalized to 1 so that the parameters 3

andyhave tobe 3= @ mg’z—mgj‘o n%)—nﬁz for area
moments (AM), and B = 1— m‘Z]D0 y=1= mg, for dis-
crete moments (DM). In the case of line moments (LM) we
consider only isotrope scalings with = y= A, and normal-
ize m00 = 1lwithA= 1—mg>0 The line moments (LM) can
only be normalized for translations and isotrope scalings.

2.2. Features which are invariant under full affine trans-
formations

A robust normalization of the rotation is not possible, see
[8]. For that reason, we try to find numerically stable ex-
pressions which are invariant against rotations and reflec-
tions. Such numerically stable expressions are introduced
by Hu (see [5]). Hu has been derived 7 invariants Hy,H,...,
H> including one to third order moments. For our purpose
we need additional Hu invariants including up to fourth or-
der moments. These invariants can be easily derived using
the so called complex moments, see [4]. Some of the clas-
sical Hu invariants and our new Hu invariants are given in
Table 1. It is very important that these features are invariant
against rotations and reflections for all three types of mo-
ments (DM,LM,AM). If we compute these features in Table
1 with the above normalized moments than we get affine in-
variant features. But, this is not the case for line moments,
with this normalization scheme we get only invariants with
respect to similarity transformations. An additional advan-
tage of our normalization scheme is that it is simple to de-
rive invariants for any subgroup of the affine group.

2.3. Detection of corresponding points

The main idea is now to find corresponding points using
global features of the objects. Let be given a fixed refer-
ence pair of points (x1;x9) and any reference pair (x;x9.
With a given affine transformation we receive xX°= Ax+ a
and x.0= Axy + a. It follows x° x;°= A(x x1) and that
means: If we put the origin of the coordinate system in the
fixed points x,or x; ,respectively, then we have only a ho-
mogeneous affine transformation (elimination of the trans-
lation, but not by the centroid). Now we put the origin of the
coordinate system in any point and compute features in this
system which are only invariant with respect to homoge-
neous affine transformations. With this procedure we have

[ order | Affine “Hu invariants” |

0 Ho | myo

1Hy | mi+ g,

2 Hy | mpo+ My

3 Hs | (Mo 3mp)°+ (3mp  mpe)°

3 Ha | (mgo+ mup)®+ (mpr + mog)”

4 Hg | (Mug  Mog)®+ 4(mgg + Myg)®

4 Ho | (muo+ mos)®+ 16(mg  my3)”
12mp (Mg 3Mpp + Myp)

4 Hyx | myo+ 2mpa+ Moy

Table 1. Some affine Hu invariants up to 4-th order mo-
ments (not complete)

assigned to every point of the object a vector of global mo-
ment invariants. In such a fixed coordinate system we have
to carry out the normalization of the moments described in
section 2.1 without the normalization of the translation by
the centroid. Using these normalized moments, the features
Hy of Table 1 can be calculated which are now invariant to
homogeneous affine transformations. Table 1 shows that it
can be used low order invariants, e.g. Hj that is constant
under full affine transformations, but not under homoge-
neous affine transformations. In the case of closed regions
we are using only the points of the border of the object, the
so called contour points.

2.4. Problems of a simple next neighbor search

First of all we have to calculate in the space of all invariants
a list of reference points (x;yi) $ (x%y9);i = L;um;j =
1;::;;n where the numbers of the object points m and n of
the objects are often different. This can be done by a simple
nearest neighbor search using the distance of two points in
the space of the invariants. This simple search can be im-
proved by calculating the mimimal costs of all assignments
(exactly one permutation in the case m= n) of the points
using the so called Hungarian Method , see also [1]. In an
experiment we have calculated the per cent errors of the cor-
rect assigments for a discrete set of points. We have chosen
100 randomely chosen points in an 400 400 image, addi-
tionally we have chosen randomely an affine transformation
and all the transformed points are distorted by noise. This
was done by different levels of noise. In the Table 2 the im-
provement of the candidate matches can be seen.

If we have “regular” objects the procedure works very well.
But if there are objects with symmetries then the search
arises problems. In these cases there are some points of the
objects with the same invariants, e.g. considering the con-
tours of triangles or rectangles (using discrete point sets,
that is not often the case). In the left part of the Fig. 1
it is showed a “regular” object and the affine transformed



Pixel j Nearest Neighbor j Hungarian

noise j %errorsin i Y%errorsin
1 31% 2;5% i 19;1% 2;6%
2 41% 2;5% i 27;5% 3;0%
3 50% 2;5% i 3%% 3;3%
4 ] 56% 2;3% i 41% 3;3%
5 ] 6L;4% 2;1% | 46;8% 3;3%
10 75% 2% j 64% 2:83%

Table 2. Nearest neighbor search - Hungarian method

object. The correct correspondences of the contour points
can be detected with a simple next neighbor search. In the
right part we have a matrix or an image whereby the x-axis
means the successive counting of the contour points of the
first object, and the y-axis means the counting of the con-
tour points of the second one. The black points in the right
part of Fig.1 are the results of a nearest neighbor search,
these black points form nearly a line. But if we have e.g.
two triangles as objects then it can be seen a “chaos” in the
correspondences. Therefore, we use another idea to use the
information about the order of the contour points in the case
of given closed regions.

Fig. 1. Correct contour point correspondences

2.5. Dynamic programming

The idea of dynamic programming for matching of closed
regions can be found also in [7],[9], but only for similar-
ity transformations. The idea is the following: We compute
the matrix dist(i; j) of the distances in the space of all Hu-
invariants using m points i = 1;:::;m from the contour one
and n points j = 1;:::;n from the contour two. This matrix
can be seen in Fig. 2. The x-axis is the order-numbering
of the points from the first contour, the y-axis is with the
points from the second contour, and the origin of the coor-
dinate system is in the left upper corner. Both starting points
are chosen arbitrarily. The white points mean that these ref-
erence pairs of points have a small distance. Now we use

the information that there is an order in the contour points.
We have to found a path beginning in the first column and
ending in the last column with minimal distance costs. Be-
cause of the arbitrary starting points the calculation has to
take into account a cyclic numbering of the points. Using
dynamic programming, it must be calculated the costs in
any point c(i; j) by
c(i;j)=min(c(i  1;j);c(i 1;j 1)+ dist(i;j):

If the affine transformation contains a reflection then the
orientation of the points in the transformed contour is vice
versa to the first contour. Therefore, it must be calculated a
second cost matrix by

c(i; )= min(c(i  1;j);c(i  1;j+ 1)+ dist(i; ) :

found the optimal path for the first cost matrix and the sec-
ond one. Now it can be chosen the path with the lower costs.
This optimal path gives us a list of corresponding points of
both contours, and the dist(i; j) ist a weight of the refer-
ence pair (i; j). In the left part of Fig. 2 it is displayed the
distance matrix of a triangle and its affinely transformed ob-
ject. In the right part of Fig. 2 the detected optimal path can
be seen. The complexity of the algorithm is O(m n). If we
take into account that a contour is beginning at a point and is
ending at the same point then the path finding problem is an-
other one. If the starting point is (0; j) in the first column of
the distance matrix, and the end-point is (m; (j + nymod n)
then it is to find an optimal path from the starting point to the
end-point. That must me done for every point in the starting
column. That implies a cubic complexity of the algorithm.
But, it follows from our experiments that this effort is not
necessary, the improvement of the results is not satisfactory.
For that reason we are using only the quadratic algorithm.
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Fig. 2. Left part: The distance matrix of two triangles, Right
part: The detected path

2.6. Estimators for the affine parameters

The next step is now the calculating of the affine transfor-
mation from the weighted correspondence list. This can be
done in a common way by the least squares estimator using
the Lo-metric or by the L;-metric using linear programming,
see [11].



3. EXPERIMENTAL RESULTS FOR SYNTETIC
DATA SETS

In order to test the proposed approach, two types of exper-
iments are shown in this section: (i) testing the matching
with noise of the object points, (ii) testing the matching with
disturbations of the transformed object. The idea of the al-
gorithm implies that it is very robust against all forms of
symmetries in the case of closed regions. The shape of the
given object does not influence the quality of the match-
ing result. In a lot of experiments we have chosen any
contour and randomely an affine transformation. The tran-
formed contour or object is contaminated by different levels
of noise. The matching result ist very robust against noise,
even with very high levels of noise we get good matches,
see e.g. Fig. 3. In another experiment we have done a
lot of drastic distortions of the contour, the matching re-
sults are very robust, see e.g. Fig. 4. In experiments with
real data concerning Euclidean transformations the rotation
angle could be detected stable also in the cases of object
symmetries. In the experiments using discrete point sets we
have implemented the Hungarian method. Concerning the
robustness of the method another application is successful,
the fitting of any given object by a given primitive. Let be
given e.g. an object, a triangle as the second object, and the
class of affine transformations. Then we use the matching
result as a fitting of the object by a triangle.
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Fig. 3. References and matching result using a noisy con-
tour
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