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Abstract

Convolutional neural networks (CNN) pre-trained on
ImageNet are the backbone of most state-of-the-art ap-
proaches. In this paper, we present a new set of pre-
trained models with popular state-of-the-art architectures
for the Caffe framework. The first release includes
Residual Networks (ResNets) with generation script as
well as the batch-normalization-variants of AlexNet and
VGG19. All models outperform previous models with
the same architecture. The models and training code
are available at http://www.inf-cv.uni-jena.
de/Research/CNN+Models.html and https://
github.com/cvjena/cnn-models.

1. Introduction
The rediscovery of convolutional neural networks
(CNN) [17] in the past years is a result of both the
dramatically increased computational speed and the advent
of large scale datasets as part of the big data trend. The
computational speed was mainly boosted by the efficient
use of GPUs for common computer vision functions
like convolution and matrix multiplication. Large scale
datasets [25, 19, 16, 5, 22, 6], on the other hand, provide
the amount of data required for training large scale models
with more than a hundred million parameters.

This combination allowed for huge advances in all fields
of computer vision research ranging from traditional tasks
like classification [11, 27, 28, 3, 8, 18], object detec-
tion [23, 26, 10], and segmentation [20, 4, 36], to new ones
like image captioning [15, 24, 21, 35, 34], visual question
answering [2, 9, 33] and 3D information prediction [7, 32].
Most of these works are based on models, which are pre-
trained on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) dataset [25]. The classification task
of the last year’s ILSVRC contains 1.2 million training im-
ages categorized into one thousand categories, which rep-
resent a wide variety of everyday objects. Pre-training on
this dataset proved to be a crucial step for obtaining highly

accurate models in most of the tasks mentioned above.
While computational speed was dramatically increased

by the use of GPUs, training a large model like VGG19 [29]
still takes several months on a high-end GPU. We hence re-
lease a continuously growing set of pre-trained models with
popular architectures for the Caffe framework [14]. In con-
trast to most publicly available models for this framework,
our release includes the batch normalization [13] variants of
popular networks like AlexNet [17] and VGG19 [29]. In ad-
dition, we provide training code for reproducing the results
of residual networks [11] in Caffe, which was not provided
by the authors of the paper [12]. The release includes all
files required for reproducing the model training as well as
the log file of the training of the provided model.

2. Batch normalization for CNNs
Especially for larger models like VGG19, batch normal-

ization [13] is crucial for successful training and conver-
gence. In addition, architectures with batch normalization
allow for using much higher learning rates and hence yield
in models with better generalization ability. In our exper-
iments, we found that higher learning rates show a slower
initial convergence speed, but end up at a lower final error
rate. This was the case for both AlexNet and VGG19.

The advantage of batch normalization is present even for
fine-tuning in certain applications. For example, Amthor et
al. [1] report that their multi-loss architectures only con-
verged reliably if batch normalization was added to the net-
works. However, adding batch normalization afterwards to
models trained without batch normalization yields in a se-
vere increase in error rates due to mismatching output statis-
tics. Instead, fine-tuning with our batch normalization mod-
els is directly possible, which allows for easy adaption to
new tasks.

3. Implementation details
We modified AlexNet and VGG19 by adding a batch nor-
malization layer [13] between each convolutional and acti-
vation unit layer as well as between each inner product and
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activation unit layer. We followed the suggestions of [13]
and removed the local response normalization and dropout
layers. In addition, we also omitted the mean subtraction
during training and replaced it by an batch normalization
layer on the input data. This results in an adaptively cal-
culated mean in training and relieves users from manually
subtracting the mean during feature computation. In addi-
tion, this approach has the advantage that the mean adapts
automatically during fine-tuning and no manual mean cal-
culation and storage is required.

We train for 64 epochs on the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2012 – 2016
dataset [25], which contains roughly 1.2 million images and
one thousand object categories. A batch size of 256 and ini-
tial learning rate of 0.05 (AlexNet), 0.01 (VGG19) and 0.1
(ResNet) was used. The learning rate follows a linear decay
over time. Due to batch normalization, it is important that
the batch size is greater than sixteen to obtain robust statis-
tics estimations in the batch normalization layers. In the
Caffe framework, this means the batch size in the network
definition needs to be sixteen or larger, the solver parameter
iter size does not compensate a too small batch size in
the network definition. If you want to fine-tune a model but
do not have enough GPU memory, you can enable the use
of global statistics in training in order to lift this batch size
requirement. This will disable the statistics estimation in
each forward pass and global statistics will be used instead.

All images are resized such that the smaller side has
length 256 pixel and the aspect ratio is preserved. During
training, we randomly crop a 224 × 224 (ResNet, VGG19)
or 227 × 227 (AlexNet) pixel square patch and feed it into
the network. During validation, a single centered crop is
used. We did not use any kind of color, scale or aspect ratio
augmentation.

During training of residual networks, we also observe a
sudden divergence at random time points in training as ex-
plained by Szegedy et al. [30]. In this case, we restarted
the training using the last snapshot. Due to a different ran-
dom seed, the order of the images is different and hence the
training does not diverge at this time point anymore.

Please note, that the final models are not cherry picked
based on the validation error. We provide the final model
after the full training is completed. We did not intervene
with training and especially did not manually changed the
learning rate, as usually done if the step policy is used for
the learning rate.

4. Results
The top-1 and top-5-error of the trained models are shown
in Table 1. As observed in previous works [13], the error
rates benefit from the added batch normalization layers. All
provided models slightly improve the error rate achieved
by previously trained models [31]. In case of AlexNet, for

Table 1. Single-crop top-1 and top-5 error of our models on the
validation set of ILSVRC 2012.

Model Top-1 error Top-5 error
Ours Original Ours Original

AlexNet 39.9% 42.6% 18.1% 19.6%
VGG19 26.9% 28.7% 8.8% 9.9%
ResNet-10 36.1% – 14.8% –
ResNet-50 24.6% 24.7% 7.6% 7.8%
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Figure 1. Single crop top-1 error of AlexNet on the validation
set of ILSVRC 2012 with respect to the training time. We used
a linear learning rate decay as shown by the gray curve, which
explains the steep decrease in error towards the end of the training.

example, we even observe an error decrease of over 2.6%.
In addition to the final results, we also visualize the

single-crop top-1 error on the validation set during the train-
ing of AlexNet in Fig. 1. As shown in the figure, the er-
ror decreases consistently and fairly quickly during training.
Since we use linear learning rate decay, there is a steep er-
ror decrease towards the end of the training. While it might
look like the error could decrease even further, this is not
true. The reason is that the learning rate approaches 0 dur-
ing the end of the training. Even if the learning rate is kept
constant, no improvement can be observed. This is sup-
ported by several experiments we performed.

5. Conclusions

This paper presents a new set of pre-trained models
for the ImageNet dataset using the Caffe framework. We
focus on the batch-normalization-variants of AlexNet and
VGG19 as well as residual networks. All models out-
perform previous pre-trained models. In particular, we
were able to reproduce the ImageNet results of resid-
ual networks. All models, log files and training code
are available at http://www.inf-cv.uni-jena.
de/Research/CNN+Models.html and https://
github.com/cvjena/cnn-models.
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