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Automatic recognition of biological structures like membranes or synapses is im-

portant to analyze organic processes and to understand their functional behavior.

To achieve this, volumetric images taken by electron microscopy or computer tomog-

raphy have to be segmented into meaningful semantic regions. We are extending

iterative context forests which were developed for 2D image data to image stack

segmentation. In particular, our method is able to learn high-order dependencies

and import contextual information, which often can not be learned by conventional

Markov random field approaches usually used for this task. Our method is tested on

very different and challenging medical and biological segmentation tasks.
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1. INTRODUCTION

Current imaging techniques in medicine and in general in biomedical research allow for

capturing huge amounts of volume data and are a common tool to investigate biological

processes or structures in organic and inorganic specimens. In particular, extracting specific

regions in volume images is an important task in medical image processing and a prerequisite

for quantitative analysis of biological data (Figure 1). However, manual annotation of 3D

data is challenging and often requires a huge amount of time and expertise. Therefore, the
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Figure 1. Volume images used in our experiments: (a) an electron microscopy stack of neuronal tissue

and (b) computer tomography scan of a sponge

aim of the paper is to present a method, which is easy to implement, to use, and can be

applied to generic volume data by learning from a small number of previously annotated

volumes. Being able to automatically segment semantic regions in volume data does not

only save time, but it also allows for quantitatively analyzing a large number of volumes,

important for providing applied researchers with robust statistics.

Our proposed method labels every single voxel in the volume and is able to capture context

information along every axis of the volume. We show that the use of relatively simple feature

extraction methods on channels for color and gradient values is sufficient to obtain a decent

segmentation of volume images.

The outline of the paper is as follows: In Section 2, we give an overview of related

work. Section 3 and 4 continue with a description and discussion of the proposed method.

In Section 5, we present segmentation results for different data sets. We conclude with a

discussion of the results in Section 6.

2. RELATED WORK

The task of semantic volume segmentation for image data provided by computer tomogra-

phy imagery or microscopy is of great interest in image analysis [15, 17, 24]. Related works

most often propose segmentation techniques to find and reconstruct objects of a specific

class, e.g. , synapses or membranes in neuronal tissue. A popular tool for segmentation are

conditional Markov random fields and the graph-cut algorithm. The method in [17] uses a
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Figure 2. Framework of our method: First, slices of an image stack are processed in order to compute

feature maps. Feature extraction methods applied to these maps are used to train the ICF by finding good

splits at the current level t. The ICF learned so far is applied to the training slices in order to create class

probabilities for each pixel. Then, these probability maps are add to the pool of feature maps in the

training step t+ 1.

gradient flux term in the energy function and incorporates information from different sections

by applying the SIFT flow algorithm [18]. In [15], a modified energy function is presented

which omits the gradient flux term. Instead, perceptual grouping constraints for contour

completion are introduced, which can be useful for the segmentation of thin elongated struc-

tures. However, the authors argue that this term may also lead to false positive membrane

segmentations due to textures. Therefore, they optimize a final energy function consisting

of a data term, a directional energy term for smoothness, a penalty for discontinuities, and

a term that incorporates information from adjacent sections.

In [24], the correspondence between nearby areas is transformed into a fusion problem.

First, an random decision forest (RDF) classifier is trained to obtain the probability of

each pixel belonging to the cell boundary. Watershed transformation is applied to obtain

segmentations for each section. After that, 3D links between these sections should connect

segments of different slices. Finally, a fusion problem of 2D segments and 3D links is defined

that identifies each neuron.

The authors of [20] show that semantic segmentation can also help with localizing organs

in a human body in computer tomography scans. They are using so called entangled-decision

forests to model context between nearby organs which usually have a fixed composition.

In our approach, we do not model the connection between different sections explicitly,

but use auto-context features [23] within an iterative pixel-wise labeling approach. Moreover,
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we are using easy to compute features like gray values and gradients in a cubic neighbor-

hood. Therefore, we extend the iterative context forests (ICF) of [11] to 3D data which

was previously limited to 2D images and multi-channel images occurring in remote sensing

applications.

More common applications for semantic segmentation are urban scenes and images of

landscape, persons, or animals. In these settings typical constellations like car on street,

sky above building or sheep on grass are observable as well. Many methods in this field of

application are using either RDFs [4, 10, 11, 26] or conditional random fields (CRFs) [2, 12, 16]

which is a common technique to model context. In contrast to CRFs, our approach is not

restricted to pair-wise potentials and is able to learn high-order dependencies.

3. ITERATIVE CONTEXT FORESTS FOR IMAGE STACKS

The proposed approach for semantic segmentation consists of two fundamental parts:

feature extraction and pixel classification. In this section, we focus on the classification

framework which is based on the popular random decision forests. Details on the efficient

computation of features will follow in the next section.

3.1. Random Decision Forests

The core of ICF [11] is a random decision forest (RDF) [3], which has been specifically

adapted to semantic segmentation. The concept of decision trees is known for several decades

already, so we will not elaborate on how they work and refer the interested reader to [3]. In

order to explain iterative context forests, we give a short introduction to random decision

forests. The RDF approach in general aims at overcoming drawbacks of original decision

trees, like over-fitting and long training times, with two concepts of massive randomization

during training.

The first concept is known as bagging and trains several decision trees individually with a

random subset of the training data. Furthermore, a second randomization concept is applied

determining binary splits in inner nodes. Instead of computing all available features in each

inner node only a random subset is drawn from the set of all possible features, which we will

refer to as feature pool. Among them the best feature and split is determined by maximizing

the impurity criterion, which in our case is the information gain.
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In our case, we are confronted with different types of features (see Sec. 4 for more details)

with each of them having a number of parameters (e.g. , position, used feature map, etc.). To

sample a specific feature, we first sample the feature type and we then sample the parameters

in a second step. This guarantees that the learning is not biased towards feature types with a

larger parameter space. The whole random selection process is exactly what renders learning

in our case with millions of features tractable.

Although finding a good split in a single tree node makes it necessary to test various

randomly chosen splits, the training of random decision forests is still fast. Learning an

RDF is a matter of minutes, while convolutional neuronal networks for instance need several

days on a GPU for such a task [7]. The classification of test images is even faster. Each

pixel of an example is traversing the trees of the trained RDF until it reaches the leaf nodes.

The empirical distributions in all leaves are then combined in order to estimate class-wise

probabilities.

3.2. Incorporating Context Knowledge

Applying RDFs for pixel- or voxel-wise classification directly has two disadvantages: first,

for each pixel the tree has to be traversed down to the leafs, and second, feature extraction

is limited to a local neighborhood and is unable to integrate high-order dependencies.

To address the second issue, [11] proposed to sequentially traverse the tree level by level for

all pixels in each image. This allows for using outputs of the previous level as an additional

source for features. At each level of the random forest class probability maps for the current

image (or volume) are computed. On a lower level these information allow the extraction of

contextual features in order to model relational dependencies like one class is above another.

This concept was introduced in [23] and is called auto-context. See Fig. 2 for an overview of

our pixel-wise classification framework.

Furthermore, during testing time the structure of ICFs also addresses a trade-off between

accuracy and time needed for inference. In some applications it might be sufficient to have

a rough approximation of the best obtainable result after a short time. Since ICFs are built

in breadth-first manner, a prediction on each level of the trees can be done by returning the

empirical class distribution stored at inner nodes.

As observed in our experiments, each depth-level gives a more accurate classification
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Figure 3. Feature extraction methods for a 3D neighborhood of side length d around a centered voxel:

(a) pairs of voxels, (b) a smaller cuboid of arbitrary size or (c-d) different types of 3D Haar-like features

where the feature value is the difference of the voxel intensity sums of darker and brighter regions. (e)

Eight references are necessary to compute the sum of an arbitrary cuboid within the integral volume image.

result than the one before until saturation is reached. Stopping at an earlier level will give

only rough results depending on fewer features but will also save time. The ability of an

algorithm to allow for iterative refinements during testing is usually referred to as anytime

classification [9].

4. EFFICIENT FEATURES IN VOLUMETRIC IMAGES WITH ICF3D

In this section, we describe our features for each pixel and their efficient computation

with integral volumes.

4.1. Creating a Large Feature Pool

The ICF classifier allows inputs to have an arbitrary number of channels. Depending

on the application, the algorithm can make use not only of raw color channels but addi-

tional layers like gradient images, resulting probabilities of other pre-learned classifiers, or

unsupervised segmentation outputs. The relevance of these feature maps is automatically de-

termined by the RDF classifier, since all binary splits are evaluated by an impurity measure

and automatically selected.

Usually, for the application in the bio-medical field only gray-scale images are available

as original input. There is no additional knowledge which can be incorporated. However,

the gray-scale image can be used as a basis for the creation of further feature maps. In

order to model textural properties of the desired classes we compute gradient maps for all
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dimensions. Additionally, we incorporate feature maps from local binary patterns (LBP)

[21].

These maps allow for the modeling of very small but meaningful difference between oth-

erwise identically looking objects (e.g. membrane vs. mitochondria). As a drawback, they

are prone to subtle changes in image noise, as well. In our case, however, images are either

taken in a temporal sequence using one recording device or as for the data coming from CT

scans image stacks are recorded at the same time, entirely. This leads to a very consistent

image noise in the whole image stack and allows for the use of these textural feature maps.

The actual extraction of features from these maps is done in our case with simple oper-

ations performed in a neighborhood of the current center pixel: (a) Single values extracted

from neighboring voxels, (b) sum or difference of two neighboring voxels, (c) sum of values

within a cuboid and (d) 3D Haar-like features given by the difference of two or more cuboids.

Visual examples can be found in Fig. 3.

With the size of the neighborhood the feature pool grows exponentially and it is not

possible to compute all of the possible features in the training step. As a consequence, we

only draw a fixed number of features. From this subset of features, the best split in each

level of a decision tree is chosen by the impurity criterion.

4.2. Fast Computation of 3D Features

In order to compute 3D features in a fast manner, it is possible to use an intermediate

representation. In the case of 2D images the so called integral image (or summed area table)

is used [8, 25]. It contains at location (x, y) the sum of the pixel values above and to the

left of the same location in the original image . The computation of rectangle features as for

instance Haar-like features benefit from this representation. The sum of a rectangle area of

arbitrary size can be computed by only four points in the integral image.

This idea can be easily extended to integral volumes. In consequence, an integral volume

image V contains at location (x, y, z) the sum of gray values from the voxels above, to the

left and in front of its location in the input image I as well as the gray value of the voxel

(x, y, z) itself:

V(x, y, z) =
∑

x′≤x, y′≤y, z′≤z

I(x′, y′, z′) . (1)
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With the integral volume of an image, any sum of values in a cuboid can be computed

by eight array references. Analogously to [25], the values of the cuboids to the left, on top

and in front of the currently processed volume have to be removed. Otherwise, these region

would be incorporated twice in the final computation. Consider a cuboid C with an arbitrary

position inside a larger cuboid, i.e. the whole integral volume image V . The eight corners

of C are p1, ..., p8 with pi = (xi, yi, zi) being the locations in V . Location p6 marks the lower

right back corner and p2 the upper right front corner of C. Then, the integral volume VC of

C can be computed as:

VC = p1 + p4 + p6 + p7 − p2 − p3 − p5 − p8 . (2)

A corresponding visualization showing the eight reference points can be found in Fig. 3(e).

With this method cuboid features and especially the 3D Haar-like features can be computed

very efficiently. Now that we have extended the ICF framework with 3D features and added

the possibility to analyze volume images, we will henceforth call it ICF3D.

5. EXPERIMENTS

We evaluate our method on two different datasets. For a qualitative demonstration of

ICF3D, we use data of a computer tomography scan. A quantitative comparison with other

approaches using an EM stack of neuronal tissue is done after that.

5.1. Volume Data of a Sponge

We are using computer tomography scanning data of a sponge with an isotropic resolution

of 3.4 micrometers per pixel. The resolution of each slice is 1536× 1536 pixels. The task is

to distinguish between the classes canals, tissue, and background. There is a stack of eleven

labeled slices and a stack of 351 unlabeled slices. We used the former stack for training

and the second one for testing. All images feature noise and artifacts from the recording

procedure. The training slices were accurately labeled by a biologist. In Fig. 4 you can find

a typical image. According to the expert, all dark gray structures belong to the class canals,

even the tiny ones. A magnified part of another slice can also be seen in the second row of

Fig. 4.
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Original ICF [11] ICF3D

Figure 4. Results for the sponge volume data: The first row depicts slice #85 of the testing stack and

corresponding segmentation results by ICF [11] and ICF3D with labeled classes canal (black), tissue

(white) and background (gray). Second row shows an enhanced comparison of slice #259. Our ICF3D

approach improves segmentation results of subtle canal structures. Figures are best viewed in color.

Because the resolution of this data is in all dimensions the same, a 2D window of the

neighborhood for each pixel can be simply replaced by a cube with the same side length.

In consequence, we can run the experiments with ICF [11] and ICF3D with comparable

parameter configurations. We use feature maps originating from gray values and gradients.

Color information is not available for this data.

Figure 4 demonstrates the potential of our volume segmentation method. Each of the

images show a slice of the test stack and the voxel classification results of [11] and ICF3D. As

can be seen our approach shows improvements when it comes to subtle structures. Without

using 3D information from nearby slices the segmentation is more coarse and fine structures

get lost.
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Method Rand error [·10−2] Pixel error [·10−2]

CNN [7] 4.8 6.0

Dense correspondence [17] 6.4 8.3

Watershed Tree [19] 8.4 13.4

Perceptual Grouping [15] 8.4 15.7

CellProfiler [14] 9.0 10.0

Segment features [5] 13.9 10.2

Two-step class. [22] 15.3 8.8

Contextual Grouping [1] 16.2 10.9

Patch-based SVM [13] 23.0 15.0

ICF [11] 28.1 13.5

Ours: ICF3D w/o LBP 22.1 11.3

Ours: ICF3D w/ LBP 21.4 11.4

Table 1. Results of some competitors and our generic method on the ISBI 2012 challenge data [6].

5.2. EM Stack of Neuronal Tissue

We use the freely available Drosophila first instar larva ventral nerve cord data [6] of the

ISBI 2012 challenge. A stack with 30 slices is labeled to distinguish between the classes

membrane and interior of neurons. The resolution of these stacks is 4× 4× 50 nanometers,

which is rather coarse in z-direction.

To account for this setting, we adapt the neighborhood in z-direction in an analogous

way. The length of the neighborhood cuboid in z-direction is only 10% of the length in the

other two directions, which are of higher resolution. For instance, a neighborhood of size

d = 50 represents a 50× 50× 5 cuboid in the image volume. In consequence, only two slices

in front of and behind the current slice are used in the process.

We report results for the measures pixel error and rand error and compare our performance

with selected methods of the challenge. The former one is a common measure in binary

classification of pixels and is also referred to as accuracy or overall recognition rate. The

second measure is related to the well known F-score, which usually consists of precision and

recall. However, in this specific task the so called Rand index is used for the computation.

It is a measure of similarity between two clusters or segmentations. The most important



11

measure in the ISBI 2012 challenge is the rand error and we therefore also sort our results

by this measure (see Table 1).

In order to model the textural differences between membrane and mitochondria in the

data not visible in the gradients maps, LBPs (see Sect. 4.4.1) proved to be especially useful

for this task. They are a powerful tool in texture classification and increased the performance

slightly in our case.

As can be seen in the rand error column, we are not able to produce state-of-the-art

results. When taking the actual pixel errors into consideration ICF3D performs decently. It

is a typical binary segmentation task, where modeling of context is hardly possible. However,

we achieve comparable results to [15] and the patch-based SVM of [13]. The convolutional

network approach of [7] shows best performance for this data. Note that we are not using task

specific knowledge (e.g. shape information) or applying any post-processing for smoothing.

5.3. Analysis of Feature Types

In a third set of experiments, we analyzed the influence of different feature types (see Sec.

4.4.1) for the segmentation of neuronal tissue. For this task, we only used the training data

of the ISBI 2012 challenge data, because ground truth labels are available. We split the 30

slices of the training stack into six stacks of five slices each to do a 6-fold cross-validation.

This allowed us to analyze performance without using the evaluation server.

In Fig. 5, we show a qualitative comparison of two slices taken from two different cross-

validation runs. While the first two columns depict original input images and their cor-

responding ground truth annotation the other three columns show results with different

feature extraction methods. It can be seen that the use of pixel pair differences is sufficient

to segment cell membranes. However, synapses are also labeled as membrane and areas of

cell interior are not very homogeneous. This is due to the limitation of single pixel values

instead of average values in feature maps across whole regions.

When rectangle features and Haar-like features are added, some parts of the synapses

are not labeled as membrane anymore. Furthermore, the inhomogeneity in the cell interiors

is less. Both issues even improve when context features taken from probability maps are

incorporated and some wrong labeled synapses even vanish.

For a quantitative evaluation, we used the provided script of the ISBI 2012 challenge.
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Figure 5. Qualitative comparison of the neuronal tissue dataset using different types for the feature

extraction. When only using pixel pair features the results appear to be cluttered. Especially in the larger

interior areas the labels of nearby pixels are not consistent. Furthermore, synapses are labeled as cell

membrane. These issues lessen or even vanish when Haar-like features and context features are added.

Method ORR ARR F1

ICF3D w/o context 75.03% 64.24% 57.97%

ICF3D w/ context 71.85% 75.09% 63.87%

Table 2. Quantitative results for the multi-class setting of the EM data of neuronal tissue [6].

When only pixel pair differences are allowed the pixel error is 15.6% (average of 6-fold cross-

validation). With incorporated rectangle and Haar-like features the error decreases to 14.2%.

The best result of 13.5% with respect to the pixel error can be achieved when context features

are used.

5.4. Context in a Multi-class Setting

The authors of [6] also provide a multi-class labeling for the EM data of neuronal tissue.

It includes additional annotations for the classes mitochondria and synapses together with

the before mentioned classes membrane and interior. There is also a special background
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class called noise which is used to exclude erroneous data from the evaluation process. We

use this multi-class setting to emphasize on the importance of context in bio-medical image

data.

For this evaluation we repeated the 6-fold cross-validation, because ground truth labels

are limited to the 30 slices of the training stack. We report quantitative results for the

overall recognition rate (ORR) and the average recognition rate (ARR) as they are common

measures for multi-class semantic segmentation tasks [11]. Additionally, we provide results

for the F1-score which is the harmonic mean of precision and recall.

The results for this set of experiments are listed in Table 2. Due to the fact that 70% of

the data is labeled as interior the ARR is of special importance in this evaluation. It reports

on the average performance for each of the labeled classes. As can be seen there is a huge

performance boost when context features are used. Although, the ORR is slightly worse the

ARR increases clearly by almost eleven percent points. The enhanced segmentation quality

is also visible in the increased F1-score demonstrating that both precision and recall have

improved.

6. CONCLUSIONS

In this paper, we presented a fast method for volume image segmentation. We extended an

existing semantic segmentation method that incorporates context information. Our proposed

algorithm is able to segment even subtle structures in volume data. The method is also

applicable to EM stacks, as we have shown for the ISBI 2012 challenge data.

We also performed experiments with volume data from electron microscopy and computer

tomography scans and discovered that incorporating information from nearby slices can also

be misleading. Whether segmentation performance improves with these information highly

depends on the quality of the data and on the recording method itself.

While computer tomography usually creates volume images with isotropic resolution and

similar illumination at each slice, electron microscopy stacks often have a coarse resolution

in z-dimension as well as illumination and contrast changes. On the other hand, computer

tomography scans usually contain artifacts or noise. These things have to be considered when

working with such stacks to attain improvements over sequential 2D slice segmentation.

Additionally, we were able to show how important the modeling of context for bio-medical
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image data is. Although, classes like synapses and mitochondria have no fixed positions or

constellations in the EM image stack there was a big performance boost visible when context

knowledge is used.
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