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SUMMARY In this paper, we consider the steady state mean
square error (MSE) analysis for 2-D LMS adaptive filtering algo-
rithm in which the filter’s weights are updated along both ver-
tical and horizontal directions as a doubly-indexed dynamical
system. The MSE analysis is conducted using the well-known
independence assumption. First we show that computation of
the weight-error covariance matrix for doubly-indexed 2-D LMS
algorithm requires an approximation for the weight-error correla-
tion coefficients at large spatial lags. Then we propose a method
to solve this problem. Further discussion is carried out for the
special case when the input signal is white Gaussian. It is shown
that the convergence in the MSE sense occurs for step size range
that is significantly smaller than the one necessary for the con-
vergence of the mean. Simulation experiments are presented to
support the obtained analytical results.
key words: 2-D LMS, steady state analysis, doubly-indexed
system

1. Introduction

The main advantage of using 2-D adaptive filters for
processing nonstationary 2-D signals, such as images,
is in their ability to change the filtering characteris-
tics based on the local statistics of the processed data.
Least mean square (LMS) type 2-D adaptive filters
have, in particular, received considerable research in-
terest, mainly because of its simplicity in computation.
Hadhoud and Thomas [1] have proposed a 2-D LMS
algorithm, which is called TDLMS, by direct exten-
sion of the 1-D LMS algorithm [2]. In the TDLMS, the
weights’ update process is carried out using either ver-
tical or horizontal 1-D indexing scheme. Accordingly,
the authors of [1] have shown that the weights’ up-
date equation of the TDLMS can be written in a form
which is mathematically equivalent to the well known
1-D LMS [2]; hence, the analysis procedures and results
of the 1-D LMS can be directly applied to the TDLMS.
The drawback of the algorithm [1], however, is that it
can only exploit the correlation information of the im-
age pixels in the direction of the indexing scheme used
to process the 2-D data. To overcome such problem,
the authors of [3] have proposed a 2-D LMS algorithm
in which the filter’s weights are updated along both the
vertical and horizontal directions as a doubly-indexed
dynamical system [4]. Such update mechanism enables
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efficient use of the 2-D correlation information of the
image pixels in both vertical and horizontal directions
and hence, provides better performance in nonstation-
ary environments [3].

The convergence of the mean for the 2-D LMS [3]
(in what follows, it will be referred to as 2-D LMS) has
been investigated in [3] using stability theory of 2-D
Fornasini and Marchesini (F-M) state space model [4].
Convergence of the mean does not, however, guarantee
finite mean square error (MSE) for the adaptive algo-
rithm.

In this paper, we consider the MSE analysis of the
2-D LMS. The analysis presented in this paper is the
first attempt in the literature to investigate the steady
state MSE analysis for a doubly-indexed 2-D LMS al-
gorithm. The MSE analysis is carried out using the
assumption that the successive input vectors are statis-
tically independent, jointly Gaussian-distributed ran-
dom variables. This assumption, generally referred to
as the independence assumption [6], is widely used in
the convergence analysis of 1-D LMS for two main rea-
sons. The first is due to the simplification in analysis
obtained under such assumption. The second is due
to the good agreement between the analytical results
obtained using the independence assumption and ex-
perimental results [5]–[9].

Though the 2-D MSE analysis will be significantly
simplified when invoking the independence assumption,
the use of 2-D indexing scheme in the weights’ update
equation of the 2-D LMS results in a new problem that
is not encountered in the 1-D case. For the 1-D LMS,
as well as for the TDLMS, the adaptive filter’s weight-
vector update equation is a 1-D first order difference
equation given by

Hj+1 = Hj − µGj (1)

where j is the iteration number; Hj is the adaptive
filter’s weight-vector; µ is a scalar parameter that con-
trols the convergence rate of the LMS algorithm, and
Gj is the instantaneous gradient of the MSE at iter-
ation j. From Eq. (1), it follows that the weight-error
covariance matrix is calculated by a set of 1-D first or-
der difference equations. According to [8], [9], this set of
difference equations maintains stability under a general
condition imposed on the used step size parameter µ.
For the 2-D LMS, however, the adaptive filter’s weight-
vector update equation is described by the 2-D first
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order difference equation

Hm+1,n+1 = fhHm,n+1 + fvHm+1,n

− µhGm,n+1 − µvGm+1,n (2)

where m and n are two spatial indices in the verti-
cal and horizontal direction respectively. Hm,n is the
adaptive filter weight-vector at spatial indices (m,n);
fh, fv, µh and µv are scalar parameters, and Gm,n is
the instantaneous gradient of the MSE at spatial in-
dices (m,n). From Eq. (2), and as will be shown in
the sequel, the weight-error covariance matrix for the
2-D LMS is calculated by a set of 2-D second order
difference equations. Stability analysis for such set of
equations is, however, very difficult to handle mathe-
matically.

In this paper, we show that for the steady state,
this set of 2-D second order difference equations can
be reduced to a set of linear simultaneous equations in
the coefficients of weight-error correlation matrices at
different spatial lags; however, the number of the un-
knowns in this set exceeds the number of equations.
To solve this problem, we propose a method for the ap-
proximation of the coefficients of weight-error correla-
tion matrices at large spatial lags. The approximation
method is based on the extension of the direct aver-
aging method [5] to 2-D case. It can also serve as an
approximation method for the weight-error covariance
matrix without invoking the independence assumption
providing that the step size parameters are sufficiently
small.

Although the 2-D MSE analysis using the indepen-
dence assumption may not provide very accurate esti-
mate for the MSE when the input data are correlated,
there are three aims from considering the analysis un-
der such assumption. The first is to derive an analytical
expression for the MSE that gives some insight to the
performance of a truly 2-D LMS even when the input
data are correlated. The second is to derive a good ap-
proximation of the bounds on the step size parameters
that guarantee convergence in the MSE sense. And the
third aim is to shed a light on the problem that arises in
2-D MSE analysis for doubly-indexed LMS algorithm.
This problem forms a major obstacle in extending the
1-D MSE analysis approaches that do not invoke the
independence assumption, such as [10] and [11], to 2-D
case.

The organization of this paper is as follows. In
Sect. 2, a brief review of the 2-D LMS algorithm [3] is
given. In Sect. 3, the steady state MSE analysis of the
2-D LMS algorithm using the independence assump-
tion is considered and a method for computing the 2-D
weight-error covariance matrix is presented. In Sect. 4,
the special case when the input signal is white Gaussian
is further discussed, and the condition required to en-
sure the convergence in the MSE sense is derived. Com-
parison between experimental and analytical results for
the simplified case are presented in Sect. 5. Finally, con-

clusions are drawn in Sect. 6.

2. Preliminaries

Consider the N by N , causal, 2-D adaptive FIR filter
shown in Fig. 1. The filter’s input x(m,n) is a 2-D
stationary signal of size M1 ×M2. The filter’s output
y(m,n) is calculated by

y(m,n) = Ht
m,nXm,n (3)

where Hm,n and Xm,n are respectively the adaptive
filter’s weight-vector and the input data vector given
at spatial indices (m,n) by

Xm,n = [x(m,n), · · · , x(m−N + 1, n),
· · · , x(m−N + 1, n−N + 1)]t

Hm,n = [hm,n(0, 0), · · · , hm,n(N − 1, 0),
· · · , hm,n(N − 1, N − 1)]t. (4)

The 2-D LMS updates the filter weight-vector along
both the vertical and horizontal directions such that the
error between the filter output y(m,n) and the desired
signal d(m,n) is minimized in the MSE sense. The
MSE is defined as

MSE = E{e2(m,n)}
= E{(d(m,n)− Ht

m,nXm,n

)2}. (5)

The update equation for the 2-D LMS is given by

Hm+1,n+1 = fhHm,n+1 + fvHm+1,n

+ µhe(m,n+ 1)Xm,n+1 + µve(m+ 1, n)Xm+1,n;
Hm,0 = 0,m = 0 · · ·M1;H0,n = 0, n = 0 · · ·M2;
fh + fv = 1 (6)

where µh and µv denote the step size parameters in the
horizontal and vertical directions respectively.

The optimal solution Hopt that minimizes the MSE
is given by the Wiener-Hopf equation

Hopt = R−1P (7)

where

R = E{Xm,nXt
m,n}

P = E{Xm,nd(m,n)}. (8)

In [3], it has been shown that the 2-D LMS converges

Fig. 1 2-D adaptive filter.
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to the optimal solution i.e., E{Hm+1,n+1 − Hopt} →
0 as m+ n→ ∞, if the following condition holds:

|fh − µhλi|+ |fv − µvλi| < 1 (9)

where λi, i = 0, · · · , N2 − 1, are the eigenvalues of the
input correlation matrix R.

Condition (9) is, however, not sufficient to guar-
antee convergence of the 2-D LMS in the MSE sense.
Moreover, convergence of the mean does not provide
any information about the performance of the adaptive
algorithm. In the following section we will present the
steady state MSE analysis for the 2-D LMS.

3. Steady State MSE Analysis for the 2-D LMS

3.1 MSE Calculation

The MSE analysis will be carried out using the indepen-
dence assumption [5], consisting of the following points:

A.1 The input vectors X0,0,X1,0, · · · ,Xm,n are zero
mean, statistically independent, Gaussian-distrib-
uted random variables.

A.2 The error

ε(m,n) = d(m,n)− Ht
optXm,n (10)

is a zero mean, white Gaussian noise of variance
σ2

ε , and is statistically independent of the input
vector Xm,n.

Let us define the adaptive filter weight-error vector

Cm,n = Hm,n − Hopt. (11)

Then, using Eqs. (10) and (11), the error signal
e(m,n) can be given by

e(m,n) = d(m,n)− Ht
m,nXm,n

= ε(m,n) + Ht
optXm,n − Ht

m,nXm,n

= ε(m,n)− Ct
m,nXm,n. (12)

Now if we substitute Eq. (12) in (5) and make use of
assumptions A.1 and A.2, we can find that the steady
state MSE is given by

ε∞ = lim
m+n→∞E{e(m, n)2}

= σ2
ε + lim

m+n→∞E{Ct
m,nXm,nXt

m,nCm,n} (13)

= σ2
ε + lim

m+n→∞ tr(R Km,n;m,n) (14)

where

Km,n;m,n = E{Cm,nCt
m,n} (15)

is the weight-error covariance matrix.
Note that from A.1 it follows that the input vec-

tor Xm,n and the weight-error vector Cm,n are sta-
tistically independent. Accordingly, the expectation
term in Eq. (13) can be treated as a product of two

expectation terms. Strictly speaking, in adaptive filter-
ing applications, these two vectors are dependent since
the successive input vectors are statistically dependent.
However, even when this statistical dependency is ig-
nored, the independence assumption still preserve the
correlation structure for E{Xm,nXt

m,n} as well as for
E{Ct

m,nCm,n}. Hence, the analysis under such as-
sumption still retains enough information about the
behavior of the adaptive process even when the input
signal is correlated, (see [5], [6] and references therein).

In the rest of this section we will consider the cal-
culation of the weight-error covariance matrix. In this
calculation, we assume that the condition (9), which is
necessary for the convergence of the mean, holds.

3.2 Weight-Error Covariance Matrix

To calculate the weight-error covariance matrix we need
first to derive the update equation for the weight-error
vector. Indeed, if we subtract Hopt from both sides of
Eq. (6) and make use of Eq. (12), we get

Cm+1,n+1 = Hm+1,n+1 − Hopt

= (fhI − µhXm,n+1Xt
m,n+1)Cm,n+1

+ (fvI − µvXm+1,nXt
m+1,n)Cm+1,n

+ µhε(m,n+ 1)Xm,n+1

+ µvε(m+ 1, n)Xm+1,n. (16)

Now before proceeding, we need to define some neces-
sary notations. Since the input correlation matrix R is
symmetric, there exists an orthogonal matrix Q such
that

QRQt = Λ = diag(λ0, λ1, · · · , λN2−1)
Qt = Q−1. (17)

Thus, we can define the transformed matrix:

Γm1,n1;m2,n2 = QE{Cm1,n1C
t
m2,n2

}Qt

=
[
γi,j

m1,n1;m2,n2

]
;

i, j = 0, · · · , N2 − 1. (18)

In Eq. (18), the superscripts (i, j) in the notation
γi,j

m1,n1;m2,n2
is used to point to the element at the ith

row and jth column of the matrix Γm1,n1;m2,n2 .
Now, multiplying each side of Eq. (16) with its

transpose, taking the expected values, and making use
of the orthogonal transform Q we arrive at

Γm+1,n+1;m+1,n+1 = f2
hΓm,n+1;m,n+1

− µhfhΓm,n+1;m,n+1Λ − µhfhΛΓm,n+1;m,n+1

+ 2µ2
hΛΓm,n+1;m,n+1Λ + µ2

htr(Γm,n+1;m,n+1Λ)Λ
+ fhfvΓm+1,n;m,n+1 − µhfvΓm+1,n;m,n+1Λ
− µvfhΛΓm+1,n;m,n+1 + µhµvΛΓm+1,n;m,n+1Λ
+ fhfvΓm,n+1;m+1,n − µvfhΓm,n+1;m+1,nΛ
− µhfvΛΓm,n+1;m+1,n + µhµvΛΓm,n+1;m+1,nΛ
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+ f2
v Γm+1,n;m+1,n − µvfvΓm+1,n;m+1,nΛ

− µvfvΛΓm+1,n;m+1,n + 2µ2
vΛΓm+1,n;m+1,nΛ

+ µ2
vtr(Γm+1,n;m+1,nΛ)Λ + (µ2

h + µ
2
v)σ

2
εΛ. (19)

The derivation of Eq. (19) is very tedious but straight-
forward. We have mainly made use of assumptions A.1,
A.2, and the following property:

- For zero mean, Gaussian random variables, it can
be shown that [8]

E{Xm,nXt
m,n(X

t
m,nCm,n)2} = 2E{RΓm,n;m,nR}

+ tr(RΓm,n;m,n)R.

Analyzing the stability of the set of second-order cou-
pled 2-D difference equations (19) is a very complicated
task. Thus, we propose to simplify the analysis by mak-
ing use of the following two facts.

1. For the transformed weight-error correlation ma-
trix defined in Eq. (18), it follows from Schwartz’
inequality [12] that

(γi,j
m,n,m,n)

2 ≤ γi,i
m,n,m,n.γ

j,j
m,n,m,n. (20)

That is to say, the boundedness of the diagonal
terms of the weight-error correlation matrices en-
sures the boundedness of the off-diagonal ones.
Hence, it is sufficient to analyze the stability of the
diagonal terms of the matrix equation (19). Note
that, as for the MSE evaluation (see Eq. (14)), we
are only interested in the diagonal terms since

tr(RKm,n;m,n) = tr(ΛΓm,n;m,n)

=
N2−1∑
j=0

γj,j
m,n;m,nλj . (21)

2. Let, for notational convenience, γi,i
k , k = 0, 1, · · ·,

denote the steady state values of the weight error
correlation coefficients at spatial lag (k,−k). That
is

γi,i
k = lim

m+n→∞ γ
i,i
m+1,n+1−k;m+1−k,n+1. (22)

Now, if the adaptive algorithm reaches the steady
state, the signal Cm,n becomes stationary random
signal. Consequently, if the weight-error covari-
ance coefficient γi,i

m+1,n+1;m+1,n+1, i = 0, · · · , N2−
1, has a steady state value, say γi,i

0 , then the fol-
lowing equality should hold:

lim
m+n→∞ γ

i,i
m+1,n;m+1,n = lim

m+n→∞ γ
i,i
m,n+1;m,n+1

= γi,i
0 . (23)

Similarly, if the weight-error correlation coefficient
γi,i

m+1,n;m,n+1, i = 0, · · · , N2−1, has a steady state
value, say γi,i

1 , then the following equality should
hold:

lim
m+n→∞ γ

i,i
m+1,n;m,n+1 = lim

m+n→∞ γ
i,i
m,n+1;m+1,n

= γi,i
1 . (24)

Consequently, for the steady state, the N2 diagonal co-
efficients of Eq. (19) should obey the equality

γi,i
0 = (f2

h + f2
v − 2(µhfh + µvfv)λi

+ 2(µ2
h + µ

2
v)λ

2
i )γ

i,i
0

+ 2(fhfv − (µhfv + µvfh)λi + µhµvλ
2
i )γ

i,i
1

+ (µ2
h + µ

2
v)λi

N2−1∑
j=0

γj,j
0 λj + (µ2

h + µ
2
v)σ

2
ελi.

(25)

There is a need for another set of equations in the un-
knowns γi,i

0 and γi,i
1 .

If we apply the same way of analysis to evaluate
the matrix

lim
m+n→∞Γm+1,n;m,n+1 = [γi,j

1 ], i, j = 0, · · · , N2 − 1

we can find that for the steady state, i.e. m + n
→ ∞, the diagonal terms of the correlation matrix
Γm+1,n;m,n+1 should obey the equality

γi,i
1 =

(
fhfv − (µhfv + µvfh)λi + 2µhµvλ

2
i

)
γi,i
0

+
(
f2

h + f2
v − 2(µhfh + µvfv)λi + (µ2

h + µ
2
v)λ

2
i

)
γi,i
1

+
(
fhfv − (µhfv + µvfh)λi + µhµvλ

2
i

)
γi,i
2

+ µhµvλi

N2−1∑
j=0

γj,j
0 λj + µhµvλiσ

2
ε (26)

where

γi,i
2 = lim

m+n→∞ γ
i,i
m+1,n−1;m−1,n+1. (27)

If we continue in similar way evaluating the weight-
error correlation matrices for higher spatial lags, i.e.

lim
m+n→∞Γm+1,n+1−k;m+1−k,n+1 = [γi,j

k ]; k = 2, 3, · · · ,

at each stage k ∈ 0, 1, · · ·, we will have a set of
(k+1)×N2 equations in (k+2)×N2 unknowns, namely,
γi,i

j ; 0 ≤ j ≤ k + 1, 0 ≤ i ≤ N2 − 1. To solve this
problem, we propose two methods. The first method,
presented in the Appendix, makes use of the direct av-
eraging method [5]. It approximates the stochastic dif-
ference Eq. (16) of the weight-error vector with a sim-
pler time-invariant averaged system. The proposed di-
rect averaging-based analysis can be used to derive an
approximation of the weight-error correlation matrix
Γm,n−k;m−k,n for an arbitrary integer k without invok-
ing the independence assumption given by A.1 and A.2.
For example, we can use this method to obtain an ap-
proximation for the weight error correlation coefficients,
γi,i
2 = limm+n→∞ γ

i,i
m+1,n−1;m−1,n+1, i = 1, · · · , N2;
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using this approximation in Eq. (26), the two set of
Eqs. (25) and (26) can then be solved for γi,i

0 and γi,i
1 .

The second alternative method is to state that, un-
der the white Gaussian assumption for the input vec-
tor Xm,n and the error signal ε(m,n), the weight-error
correlation coefficients γi,i

k+1 for k � 1 can be approx-
imated with zero. Thus, the available (k + 1) × N2

equations can be solved for the (k + 1) × N2 un-
knowns to obtain the weight-error covariance coeffi-
cients γi,i

0 , i = 0, · · · , N2 − 1. The solution of these
(k + 1) × N2 simultaneous equations can be obtained
using mathematical tool box for the general case. In
the Appendix we show that the error that results from
approximating the weight-error correlation coefficients
γi,i

k+1, k � 1 with zeros, decreases as the spatial lag k
increases.

In the following section we will discuss in more de-
tails the steady state analysis for the simple case when
the input signal is white Gaussian noise.

4. Steady State MSE Analysis with White
Gaussian Input Data

In this section we deal with the steady state analysis
for the case when the input signal is white Gaussian
noise with variance σ2

x; the correlation coefficients γi,i
2 ,

i = 0, · · · , N2 − 1 are set to zero; fh = fv, and µh =
µv = µ. We choose to work with this case merely to
make the solution of the equations traceable. Similar
kind of analysis can be applied to any other case within
which A.1 and A.2 hold.

For the white Gaussian input case, λ0 =
λ1, · · · , λN2−1 = σ2

x. Accordingly, γ
0,0
0 = γ1,1

0 = γi,i
0 =

γ0, i = 0, · · · , N2−1. Hence, solving Eqs. (25) and (26)
for γ0 we get

γ0 =
σ2

ε

σ2
x

ζ2

(0.25− ζ + (2 + p)ζ2)
×

0.375− ζ + (0.5 + 1.5p)ζ2 + (6 + 2p)ζ3 − (4 + 2p)ζ4

0.125 + 3ζ − (2.5 + 1.5p)ζ2 − (6 + 2p)ζ3 + (4 + 2p)ζ4

(28)

where, for notational convenience, we have defined p =
N2, and

ζ = µσ2
x. (29)

Now, since the weight-error covariance coefficient
γi,i
0 , i = 0, 1, · · · , N2 − 1 should be positive and finite,
the range of the step size µ that ensures the convergence
of the 2-D LMS in the MSE sense can be determined
by the following condition

0 ≤ γi,i
0 <∞, i = 0, 1, · · · , N2 − 1. (30)

For this simplified case, analysis of Eq. (28) reveals that
in this equation, the first term and the numerator of
the second term are always positive for 0 ≤ ζ < 1,

Fig. 2 Weight-error covariance coefficient γ0 as a function of
ζ = µσ2

x for 2 by 2 adaptive FIR filter.

Fig. 3 The root value ζ∞ versus N .

and that for any value of N2 ≥ 1, the polynomial in
the denominator of the second term has only one real
positive root, say ζ∞, in the range 0 ≤ ζ < 1 where
the sign of this polynomial changes from positive to
negative. Thus, we can deduce that the upper bound
of the step size value that ensures finite variance is given
by

0 ≤ µ < ζ∞
σ2

x

. (31)

Figure 2 shows γ0 as a function of ζ with σ2
ε/σ

2
x = 1 for

a 2 by 2, 2-D adaptive FIR filter. Figure 3 shows the
values of the root ζ∞ for different values of N . From
Fig. 3, it is clear that for any filter order, ζ∞ < 1. Ac-
cordingly, the condition required for the convergence in
the MSE sense, as given in Eq. (31), decreases signif-
icantly the convergence region of the 2-D LMS algo-
rithm when comparing to the condition necessary for
the convergence of the mean

0 ≤ µ < 1
σ2

x

(32)

given by Eq. (9).

5. Simulation Results

5.1 Example 1

In this example we aim to test the accuracy of the
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obtained analytical results for the simplified setting
(λ0 = λ1, · · · , λN2−1 = σ2

x, fh = fv = 0.5, and µh =
µv = µ). We performed system identification experi-
ment for the following 2-D FIR filter:

d(m,n) = x(m,n) + 0.5x(m− 1, n) + 0.5x(m,n− 1)
+ 0.125 x(m− 1, n− 1) + ε(m,n). (33)

We used two independent, 2-D white Gaussian se-
quences with variances σ2

x = 1, and σ2
ε = 1 for the

input signal x(m,n) and the additive noise ε(m,n) re-
spectively.

As a measure for the performance of the 2-D LMS
we used the misadjustment M which is defined as

M =
ε∞ − σ2

ε

σ2
ε

=
1
σ2

ε

lim
m+n→∞ tr(RKm,n;m,n)

=
1
σ2

ε

N2−1∑
j=0

γj,j
0 λj . (34)

Figure 4 shows a comparison between experimental re-
sults and the misadjustment obtained using two differ-
ent methods. In the first method (referred to as the
independent assumption method in Fig. 4), the coeffi-
cients of the WECM in Eq. (34) were calculated using
Eq. (28). And in the second (referred to as the the di-
rect averaging method in Fig. 4), the WECM in Eq. (34)
were calculated using the direct averaging method pre-
sented in the Appendix with k set to zero in Eq. (A· 8).
The experimental misadjustment is calculated by aver-
aging the results of 30 independent runs. For each run
the misadjustment is calculated by averaging 40000 it-
erations in the steady state.

From Fig. 4, we can observe that the MSE anal-
ysis using both the independent assumption and the
direct averaging method gives satisfactory results for

Fig. 4 Comparison of the experimental results with the theo-
retical values for the misadjustment of the 2-D LMS in the sim-
plified setting (λ0 = λ1 = · · · = λN2−1 = σ2

x, fh = fv = 0.5, and
µh = µv = µ).

small step size values. However, as the step size µ in-
creases, the error in the estimated MSE increases. On
the other hand, we can notice that the performance of
the 2-D LMS is well preserved using the independence
assumption based analysis, whereas, the direct averag-
ing method fails completely for large step size values.

5.2 Example 2

In this example we performed the system identifica-
tion experiment described in Example 1, however, with
correlated input signal. The correlated input x(m,n)
was generated by filtering a 2-D white Gaussian noise
u(m,n) of zero mean and unit variance with the follow-
ing 2-D, 2× 2 filter:

x(m,n) = u(m,n) + αu(m− 1, n) + αu(m,n− 1).
(35)

Accordingly, the 4 × 4 input correlation matrix R is
given by:

R =




1 + α2 α α 0
α 1 + α2 α2 α
α α2 1 + α2 α
0 α α 1 + α2


 . (36)

We repeated the same experiment for different values
of α, (α = 0.2, 0.3, 0.4), to test the accuracy of the
obtained analytical results for different levels of input
correlation. In this example, an approximation of the
weight-error correlation coefficients γi,i

2 was calculated
using the proposed direct averaging method (Eq. (A· 8)
with k = 2). The weight-error correlation coefficients
γi,i
0 , i = 0, · · · , N2 − 1 were then obtained by solving
Eqs. (25) and (26).

Table 1 shows the values of the misadjustment cal-
culated both experimentally and using the proposed in-
dependence assumption based analysis. From the table
entries, it is seen that the independence assumption
based analysis provides accurate results for small step
size values. However, for large step size values, the error
in estimating the misadjustment of the adaptive filter
increases as the level of the input correlation increases.

The upper bound on the step size parameter µ that
ensures the convergence in the MSE, say µmax , were
calculated for each particular value of α from condi-
tion (30). Table 2 shows the obtained numerical results
in comparison with the upper bound on the step size
parameter µ that ensures convergence of the mean as
given by Eq. (9) [3]. It is seen that the maximum step
size values that ensure convergence of the MSE are sig-
nificantly smaller than those that ensure the conver-
gence of the mean.

5.3 Example 3

In this example we aim to test the obtained analytical
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Table 1 Simulation results for Example 2, correlated Gaussian input.

step α = 0.2 α = 0.3 α = 0.4
size β = 0.19 β = 0.16 β = 0.11
µ Indep. Exper. Indep. Exper. Indep. Exper.

0.3× β 0.0929 0.0929 0.0821 0.0821 0.0544 0.0545
0.4× β 0.1522 0.1522 0.1339 0.1341 0.0877 0.0901
0.5× β 0.2288 0.2289 0.2001 0.2010 0.1283 0.1287
0.6× β 0.3297 0.3316 0.2856 0.2871 0.1776 0.1864
0.7× β 0.4661 0.5011 0.3989 0.4783 0.2381 0.3180
0.8× β 0.6600 0.8611 0.5550 1.1034 0.3130 0.6101

Table 2 Simulation results for Example 2, maximum step size
value µmax, Gaussian input, N = 2.

α 0 0.1 0.2 0.3 0.4 0.5
Ref. [3] 1 0.81 0.67 0.55 0.46 0.38
Indep. 0.29 0.26 0.22 0.19 0.16 0.14

Fig. 5 Comparison of the experimental results with the theo-
retical values for the misadjustment of the 2-D LMS in the sim-
plified setting (λ0 = λ1 = · · · = λN2−1 = σ2

x, fh = fv = 0.5, and
µh = µv = µ), i.i.d. binary input.

results for non Gaussian input. We performed a sys-
tem identification experiment similar to that presented
in Example 1, however with uncorrelated binary input
signal of unit variance. Figure 5 shows the values of
the misadjustment obtained both experimentally and
using the independence assumption analysis. It can be
seen that the independence assumption-based analysis
can serve to give good insight to the behavior of the
adaptive process even when the Gaussian assumption
does not hold.

6. Conclusions

We have considered the steady state MSE analysis for
2-D LMS algorithm using the independence assump-
tion. We have shown that the evaluation of the weight-
error covariance matrix for doubly-indexed 2-D LMS
algorithm requires approximation of the weight error
correlation coefficients at large spatial lags. Then, we
have proposed a method to solve this problem. We have
shown that the convergence in the MSE sense occurs
for step size range that is significantly smaller than the

one necessary for the convergence of the mean. Simula-
tion examples were presented to support the analytical
results and to show that the analysis using the inde-
pendence assumption does provide good insight to the
performance of the 2-D LMS algorithm.
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Appendix: Direct Averaging Method for the
Approximation of the Weight-Er-
ror Correlation Matrix

Providing that the step sizes µh and µv are small, and
based on the direct averaging method [5], the solution of
the stochastic difference Eq. (16) can be approximated
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with that of the following averaged system:

Cm+1,n+1 = AhCm,n+1 + AvCm+1,n

+ µhεm,n+1Xm,n+1

+ µvεm+1,nXm+1,n (A· 1)
where

Ah = fhI − µhR
Av = fvI − µvR.

Equation (A· 1) is a 2-D F-M state space model with lo-
cal state space vector Cm,n and input vector εm,nXm,n.
This 2-D F-M model is exponentially stable if and only
if [4]

det(I − z−1
1 Ah − z−1

2 Av) 
= 0 (A· 2)
in the region

U2 = {(z1, z2)| |z1| ≥ 1, |z2| ≥ 1}.
Note that the condition (A· 2) is the same condition
required for the convergence of the mean which was
reduced in [3] to the condition (9).

Now, the transfer function between the input
εm,nXm,n and the state space vector Cm,n is given by

H(z1, z2) = (I − Ahz
−1
1 − Avz

−1
2 )−1(µhz

−1
1 + µvz

−1
2 )

= (µhz
−1
1 + µvz

−1
2 )

∞∑
k=0

(Ahz
−1
1 + Avz

−1
2 )k

= (µhz
−1
1 + µvz

−1
2 )

∞∑
i=0

∞∑
j=0

Ai,jz−i
1 z

−j
2

(A· 3)
where the series expansion is absolutely convergent in
the region U2 [4], and

A0,0 = I
Ai,j = AhAi−1,j + AvAi,j−1, for i+ j > 0
Ai,j = 0, for i < 0 or j < 0. (A· 4)

Hence, from Eq. (A· 3), the weight-error vector Cm,n

can be calculated by

Cm,n =
m∑

i=0

n∑
j=0

H(i, j)εm−i,n−jXm−i,n−j (A· 5)

with

H(i, j) = µhAi−1,j + µvAi,j−1.

From Eq. (A· 5), the weight-error correlation matrix
Km,n−k;m−k,n can be calculated for any spatial lag k
as follows:

Km,n−k;m−k,n

= E{Cm,n−kCt
m−k,n}

=
m∑

i=0

n∑
j=0

m∑
p=0

n∑
q=0

H(i, j − k)

E{Vm−i,n−jVt
m−p,n−q}H(p− k, q) (A· 6)

where, for notational convenience, we have defined:

Vm,n = εm,nXm,n. (A· 7)
If the probability distribution of the input signal
x(m,n) and the measurement noise εm,n are available,
Eq. (A· 6) can be used to obtain the weight-error corre-
lation matrix Km,n−k;m−k,n.

For the special case when the measurement noise
ε(m,n) is white Gaussian noise and independent of
x(m,n), Eq. (A· 6) is reduced to:

Km,n−k;m−k,n

= σ2
ε

m∑
i=k

n∑
j=k

H(i, j − k) R H(i− k, j). (A· 8)

Stability condition (9) guarantees that the spectral
norm of each of the matrices Ah, Av, and Ai,j are less
than unity. And since these matrices are symmetric, it
is straightforward to show that, limi,j→∞H(i, j) = 0.
Thus, we can deduce that the error that results from
using the approximation (A· 8) decreases as the spatial
lag k increases. For sufficiently large k, the correlation
matrix Km,n;m,n can be approximated with zero as it
has been suggested in Sect. 3.2. For k = 0, Eq. (A· 8)
can be used as an approximation of the weight error
covariance matrix Km,n;m,n.
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