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Abstract. This paper proposes a bias removal algorithm for equation error-based 2-D adaptive cascade IIR filters
with separable denominator function. As well known, equation error-based adaptive IIR filtering algorithms have
the advantages of fast convergence and unimodal mean-square-error surface. These advantages, however, come
along with the drawback of biased parameter estimates in the presence of measurement noise. The adaptive filter
structure in the proposed algorithm is based on the concept of backpropagating the desired signal through a cascade
of the denominator vertical and horizontal sections. To handle the bias problem, the proposed algorithm uses a
scaled value of the output error of each of the cascaded sections as an estimate for the measurement noise embedded
in the signal part of the coefficient-update procedure of that section. Thus, while maintaining the advantages of
easy stability monitoring, fast convergence, and low computational load, the effect of the measurement noise is
suppressed. Input-Output stability analysis is carried out, and the constraints required to maintain stability are
derived. Simulation examples are presented to support the effectiveness and the usability of the proposed bias
removal algorithm in 2-D system identification and image enhancement applications.
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1. Introduction

Equation error adaptive IIR filters have the advantages of fast convergence and unimodal
mean square error surface. However, their main drawback is that they converge to biased
parameter estimates in the presence of measurement noise.

A 1-D equation error cascade IIR filtering algorithm has been proposed by Gao and
Snelgrove [1]. This algorithm is based on the concept of backpropagating the desired
signal through the inverse of the all pole second order sections such that new intermediate
errors are generated; then the filter coefficients are adapted to minimize the intermediate
errors. This cascade structure has the advantages of easy stability check and low parameter
sensitivity. Moreover, minimizing the intermediate equation error functions instead of the
output error offers significant reduction in the gradients’ computational complexity [1].
Such advantages are of great interest in 2-D adaptive IIR filters with applications to image
enhancement and 2-D system identification.

Toshima et al. [2] have proposed a direct extension of the 1-D backpropagation concept
[1] to 2-D case for separable denominator adaptive IIR filters. In addition to the simplicity
of stability monitoring, 2-D IIR filters with separable denominator function offer signifi-
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Figure 1. Equation error formulation for separable denominator 2-D IIR filters.

cant reduction in the computational load when compared with direct form 2-D IIR filters.
Moreover, since the numerator is nonseparable polynomial, they can be efficiently used to
approximate nonseparable 2-D IIR filters [3]. However, the drawback of the backpropaga-
tion cascade structures (1-D and 2-D case) is that they are based on minimizing equation
error functions; accordingly, it is expected that they converge to biased parameter estimates
when the desired signal is contaminated with measurement noise [4]. So far, stability anal-
ysis and the performance of the 1-D backpropagation cascade structure [1] as well as the
2-D one [2] have not been considered in the literature.

In this paper we propose a 2-D Bias Removal Algorithm(2DBRA) for the backpropa-
gation cascade structure [2]. The proposed bias removal technique is based on the idea of
using a scaled value of the output error as an estimates for the measurement noise. This
idea is adopted from the bias remedy LMS (BRLMS) algorithm proposed by Lin and Un-
behauen [5] for direct form IIR filter. However, in this paper, we suggest to apply the
output-error feedback at the output of each of the cascaded sections as shown in Figure 1.
Thus, while maintaining the advantages of easy stability monitoring, fast convergence, and
low computational load, the effect of the measurement noise is suppressed.

Through our stability analysis of the the proposed algorithm we show that there are two
possible reasons for the convergence of the algorithm [2] to biased parameter estimates.
The first one is due to the cascade connection; the second is due to the measurement noise in
the desired signal. The effect of the latter can be counteract by introducing the output-error
feedback in the 2DBRA, while it is necessary to use small step size parameters to reduce
the effect of the cascade connection.

Note that a bias removal technique and performance analysis similar to those presented
in this paper can be applied to the 1-D cascaded structure [1].
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After introducing the the 2DBRA, stability analysis of the proposed algorithm is discussed.
System identification and image enhancement experimental results are then presented to
demonstrate the effectiveness and the superiority of the 2DBRA over the 2-D adaptive
algorithm [2].

2. 2-D Bias Removal Algorithm (2DBRA)

Consider the 2-D stable separable denominator IIR filter

w(m,n) =
N1∑

i=0

N2∑
j=0

a(i, j )u(m− i,n− j )+
M1∑
i=0

M2∑
j=0

(i, j )6=(0,0)

b1(i )b2( j )w(m− i,n− j ); (1)

d(m,n) = w(m,n)+ v(m,n) (2)

whereu(m,n),m= 0, . . . ,M,n = 0, . . . , N, is the input signal,d(m,n) is the observable
output signal, andv(m,n) is a zero mean measurement noise assumed to be independent
of w(m,n) andu(m,n).

Let q−1
1 andq−1

2 denote spatial delay operators in the horizontal and vertical directions
respectively. For the separable denominator adaptive IIR filter shown in Figure 1, the input
signalu(m,n) is passed through the adaptive filter’s transversal section (Â(q−1

1 ,q−1
2 ) =∑N1

i=0

∑N2
j=0 â(i, j )q−i

1 q− j
2 ), while the desired signald(m,n) is backpropagated through

the cascade of the adaptive filter’s denominator vertical and horizontal sectionsB̂2(q
−1
2 ) =

1−∑M2
j=1 b̂2( j )q− j

2 , andB̂1(q
−1
1 ) = 1−∑M1

i=1 b̂1(i )q
−i
1 respectively. Then two intermediate

error functions, namelye1(m,n) ande2(m,n), are generated as follows:

e1(m,n) = d1(m,n)− y1(m,n)

= d2(m,n)− θ̂T

1 (k− 1)ϕ1(m,n) (3)

e2(m,n) = d2(m,n)− y2(m,n)

= θ̂
T

2 (k− 1)ϕ2(m,n)− y2(m,n). (4)

In the inner product notations,k denotes the iteration number used in updating the coeffi-
cients; the value ofk is some function of(m,n) specifying the indexing scheme, and

θ̂1(k) = [b̂k
1(1), . . . , b̂

k
1(M1), â

k(0,0), . . . , âk(N1, N2)]
T (5)

ϕ1(m,n) = [d2(m− 1,n), . . . ,d2(m− M1,n),

u(m,n), . . . ,u(m− N1,n− N2)]
T (6)

θ̂2(k) = [1,−b̂k
2(1), . . . ,−b̂k

2(M2)]
T (7)

ϕ2(m,n) = [d(m,n),d(m,n− 1), . . . ,d(m,n− M2)]
T . (8)

To handle the bias problem, the 2DBRA tries to counteract the effect of the measurement
noisev(m,n) in the desired signald(m,n) by using a scaled value of the output-error
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eo(m,n) = d(m,n) − y(m,n) as an estimate for the measurement noisev(m,n). The
filter parameter vector̂θ2(k) is then updated subject to minimizing the intermediate error
functione2(m,n) as follows:

θ̂2(k) = θ̂2(k− 1)− µ2e2(m,n)[ϕ2(m,n)− τ2(m,n)εo(m,n)] (9)

whereµ2 = diag[0, µ2, . . . , µ2] is a diagonal step size matrix,εo(m,n) is the output error
vector given by

εo(m,n) = [eo(m,n),eo(m,n− 1), . . . ,eo(m,n− M2)]
T (10)

andτ2(m,n) is a scaling factor defined as

τ2(m,n) = min

(
1, α2
‖ϕ2(m,n)‖
‖εo(m,n)‖

)
, α2 ≥ 0 (11)

with ‖ ‖ denoting the Euclidean norm.
In a similar way, the 2DBRA uses a scaled value of the error signale2(m,n) to estimate

the colored noisev1(m,n) = (1−
∑M2

j=1 b̂k−1
2 ( j )q− j

2 )v(m,n), that reaches the intermediate

signald2(m,n) (see Figure 1). The filter parameter vectorθ̂1(k) is then updated subject to
minimizing the intermediate error functione1(m,n) as follows:

θ̂1(k) = θ̂1(k− 1)+ µ1e1(m,n)[ϕ1(m,n)− τ1(m,n)ε2(m,n)] (12)

where

ε2(m,n) = [e2(m− 1,n) . . .e2(m− M1,n),]T (13)

andτ1(m,n) is a scaling factor defined as

τ1(m,n) = min

(
1, α1
‖ϕ1(m,n)‖
‖ε2(m,n)‖

)
, α1 ≥ 0. (14)

The time varying scaling factorτ1(m,n)(τ2(m,n)) defined in Eq. (14)((11)) is chosen to be
inversely proportional to the variance of the errore2(m,n)(eo(m,n)) such that output-error
feedback mechanism works only when the output-errore2(m,n)(eo(m,n)) becomes good
estimates of the measurement noise ind2(m,n) (d(m,n)).

3. Stability Analysis of the 2DBRA

Rigorous convergence analysis of the 2-D cascade structure in Figure 1 as a whole dynamic
is very complicated due to the interaction between the cascaded sections. In an attempt to
simplify the analysis of the dynamical behavior of the 2DBRA, we divide this structure into
two parts. The first part consists of the transversal section and the denominator horizontal
section with input vectorϕ1(m,n)and desired signald2(m,n). And the second part consists
of the denominator vertical section with input vectorϕ2(m,n) and desired signaly2(m,n).
Then we show that the effect of the interaction between these two cascaded parts can be
replaced by a noise component in the desired signal of each part. On the other-hand, and
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in order to reduce the interconnection between the cascaded sections, we here suggest that,
at the update iterationk, the signalsy1(m,n), d2(m,n) andd1(m,n) should be calculated
from the estimated parameters at iterationk − 1, while the signaly2(m,n) and y(m,n)
should be calculated from the estimated parameters at iterationk − 2. Accordingly, at
iterationk, the intermediate signaly2(m,n) is independent of̂θ1(k − 1), that ise2(m,n)
is independent of̂θ1(k − 1). In this view, and under the assumption that the adaptation
process of the filter coefficients is slow, i.e. the used step size parameters are sufficiently
small, stability analysis of the difference equation that describes the parameter-error vector
of each part can be carried out as if these two part were independent using the stability
robustness theory of perturbed linear system [6] following the same line of arguments as
presented in [5].

In the rest of this section, we only discuss the stability of the mean of the parameter-error
vector:

E{θ̃1(k)} = E{θ1− θ̂1(k)} (15)

whereθ1 is the ideal parameter vector defined as

θ1 = [b1(1), . . . ,b1(M1),a(0,0), . . . ,a(N1, N2)]
T (16)

Similar mathematical derivation and stability analysis can be applied to the parameter-error
vectorθ̃2(k) [4].

Stability Analysis of Eq. (15)

Now, before going into the stability analysis of Eq. (15), we will first show that the desired
signald2(m,n) for the first part of the structure can be decomposed into three components
as follows:

d2(m,n) = d20(m,n)+ ζ2(m,n)+ v1(m,n) (17)

with d20(m,n) represents the noise free stationary desired signal for this part of the structure;
ζ2(m,n) is a perturbation component related to the fluctuation of the parameter-error vector
θ̃2(k− 1).

Using Eq. (2), the regressor vectorϕ2(m,n) in Eq. (8) can be rewritten as

ϕ(m,n) = ϕ20
(m,n)+ v2(m,n) (18)

with

ϕ20
(m,n) = [w(m,n), w(m,n− 1), . . . , w(m,n− M2)]

T (19)

v2(m,n) = [v(m,n), v(m,n− 1), . . . , v(m,n− M2)]
T . (20)
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From Figure 1, and using Eq. (18), we have

d2(m,n) = θ̂2(k− 1)T (ϕ20
(m,n)+ v2(m,n))

= θT
2ϕ20

(m,n)− θ̃T
2 (k− 1)ϕ20

(m,n)+ v1(m,n)

= θT
2ϕ20

(m,n)+ ζ2(m,n)+ v1(m,n) (21)

with ζ2(m,n) = −θ̃T
2 (k− 1)ϕ20

(m,n).
However, from Eq. (1) we can find that

θT
1ϕ10

(m,n) = θT
2ϕ20

(m,n) (22)

where

ϕ10
(m,n) = [d20(m− 1,n), . . . ,d20(m− M1,n),

u(m,n), . . . ,u(m− N1,n− N2)]
T (23)

d20(m,n) = θT
2ϕ20

(m,n). (24)

Substituting Eq. (22) in Eq. (21) we arrive at Eq. (17) withd20(m,n) = θT
1ϕ10

(m,n).
Now, substituting Eq. (12) in Eq. (15) and using Eqs. (3) and (17) we get

E{θ̃1(k)} = [ A1+ B1(m,n)]E{θ̃1(k− 1)} + Av1 + Aζ2 (25)

where

A1 = I − µ1Rϕ1ϕ1 (26)

B1(m,n) = µ1E{τ1(m,n)ϕ1(m,n)ε
T
2 (m,n)} (27)

Av1 = µ1E{[bT
1 v1(m,n)− v1(m,n)][ϕ1(m,n)− τ1(m,n)ε2(m,n)]} (28)

Aζ2 = −µ1E{[1,−bT
1 ]ζ2(m,n)[ϕ1(m,n)− τ1(m,n)ε2(m,n)]} (29)

with

Rϕ1ϕ1 = E{ϕ1(m,n)ϕ
T
1 (m,n)} (30)

b1 = [b1(1), . . . ,b1(M1)]
T (31)

v1(m,n) = [v1(m− 1,n), . . . , v1(m− M1,n)]
T (32)

ζ2(m,n) = [ζ2(m,n), ζ2(m− 1,n), . . . , ζ2(m− M1,n)]
T . (33)

Note that we have assumed that the parameter vectorθ̂1(k−1) is independent of the regressor
vectorϕ1(m,n). This assumption is referred to as the independence assumption in adaptive
filtering literature [7] and is well justified for sufficiently small step size parameters.

The difference equation (25) has two forcing terms. The first oneAζ2 is related to the
error in estimating the parameters of the second part of the cascade structureθ̃2(k − 1).
And the secondAv1 is due to the colored measurement noisev1(m,n). For τ1(m,n) = 0,
these two forcing terms cause the adaptive algorithm [2] to converge to biased solution.
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Table 1.Parameter estimates forExample 1(30 runs).

a(1,0) a(0,1) a(1,1) b1(1) b1(2) b2(1) b2(2)

True values 0.8 −0.5 −0.4 1.2 −0.36 −0.9 −0.2

Ref. [2] 1.3208 −0.4717 −0.6225 0.6844 0.0980 −0.9174 −0.2346

2DBRA 0.7967 −0.5028 −0.4063 1.2050 −0.3591 −0.8981 −0.1994

In the Appendix we discuss the conditions that should be imposed on the step size pa-
rameterµ1 and the constantα1 to ensure the stability of the difference equation (25). We
show that the forcing termAv1 will approach zero as the scaling factorτ1(m,n)→ 1. On
the other-hand, the output error feedback in the second part of the structure will be useful
to reduce the amount of bias caused by the forcing termAζ2.

4. Experimental Results

Example 1: Noisy desired signal (white measurement noise).In this example, the 2-D
adaptive algorithm [2] and the 2DBRA are applied to the system identification experiment.
A 2-D zero mean white Gaussian signal of unit variance and size 256 by 256 is used for the
input signalu(m,n). And a zero mean, unit variance Gaussian noise which is independent
of the input signal is used for the additive noisev(m,n). The processw(m,n) is generated
by filtering the input signalu(m,n) with the separable denominator 2-D IIR filter:

H
(
q−1

1 ,q−1
2

) = 1+ 0.8q−1
1 − 0.5q−1

2 − 0.4q−1
1 q−1

2

(1− 1.2q−1
1 + 0.36q−2

1 )(1+ 0.9q−1
2 + 0.2q−2

2 )
. (34)

Table 1 shows the obtained parameter estimates forµ1 = 0.0012,µ2 = 0.0008, and
α1 = α2 = 0.5.

Experimental results have shown that the amount of the reduction in the bias caused by
the interaction between the cascaded sections depends on the values of the used step size
parametersµ1 andµ2. For sufficiently small step size values, significant reduction in the
bias caused by both the measurement noise and the cascade interaction can be obtained.
This reduction in the bias is achieved, however, at the expense of moderate increase in
the computational load of the 2DBRA over the algorithm [2]. This increase is due to the
requirement of adjusting the time varying scaling factorsτ1(m,n) and τ2(m,n) at each
iteration.

Example 2: Noisy desired signal (colored measurement noise).In this example we
aim to compare the performances of the proposed 2DBRA with that of the 2-D LMS
algorithm [2] in the colored measurement noise scenario. We apply both algorithms to the
system identification experiment. The following transfer function is used for the unknown
system [8]:

H
(
q−1

1 ,q−1
2

) = 1+ q−1
1 + 2q−1

2 + 3q−1
1 q−1

2

1− 0.25q−1
1 − 0.5q−1

2 + 0.125q−1
1 q−1

2

. (35)
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Figure 2. The improvement of the SNR of the enhanced image through consecutive passes inExample2.

A 2-D white Gaussian noise of zero mean and 104 variance is used for the input signal
u(m,n). And the “Mandrill” image of mean 129.1378, varianceσ 2

v = 1749.8, and size 256
columns by 256 rows, is used for the measurement noisev(m,n). The image is processed
row by row repeatedly such that the values of the estimated parameters at the end of one
pass are used as the parameter initial values at the beginning of the next pass. The error
signale0(m,n) = d(m,n)− y(m,n) gives the enhanced image. The variance of the noise
left in the enhanced image is calculated by subtracting the noiseless image from it and then
computing the variance.

Figure 2 shows the improvement in the Signal to Noise Ratio (SNR) of the enhanced
image through successive passes using the algorithm [2] and the 2DBRA where SNR value
is calculated by

SNR= 10 log

(
σ 2
v

σ 2
n

)
(36)

with σ 2
n denotes the variance of the noise left in the enhanced image. The SNR value of

the initial noisy image is−7.711. As this figure indicates, for low SNR, the 2DBRA works
almost without the bias removal mechanism as the algorithm [2]. As the SNR increases
gradually, the effectiveness of the output-error-feedback becomes very clear. Figures 3 and
4 show the original and the noisy image “Mandrill” respectively. Figures 5 and 6 show the
enhanced images at the 10th pass using algorithm [2] and the 2DBRA respectively.

In both of the experiments presented here, stability monitoring was not required. It has
been observed that, for sufficiently small step size parameters, whenever the poles of the
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Figure 3. The original image “Mandrill” used inExample2.

Figure 4. The noisy image “Mandrill” used inExample2.

adaptive filters start to immigrate outside the unit circle, the output error of each section
increases suddenly and consequently the scaling factorsτ1(m,n) andτ2(m,n) decreases;
the adaptive algorithm works without output-error feedback and is able to draw the poles
back to the unit circle.
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Figure 5. The enhanced image at the 10th pass using algorithm [2],µ1 = µ2 = 7.6894× 10−8.

Figure 6. The enhanced image at the 10th pass using the 2DBRA,µ1 = µ2 = 7.6894× 10−8, α1 = α2 = 0.7.

5. Conclusion

The bias removal algorithm for 2-D equation error adaptive IIR filters has been presented.
The filter structure in the proposed algorithm is based on backpropagating the desired signal



BIAS REMOVAL ALGORITHM 439

through a cascade of the denominator vertical and horizontal sections. The key idea in the
proposed algorithm is to use a scaled value of the output error of each of the cascade sections
to counteract the effect of the measurement noise embedded in the regressor of the update
procedure of that section. I/O stability analysis has been carried out. It has been shown
that the proposed algorithm remains stable and the effect of the measurement noise can be
significantly suppressed under general conditions imposed on the values of the used step
sizes and scaling factors. Image enhancement and 2-D system identification experimental
results have been presented to support the effectiveness of the proposed 2DBRA algorithm.

Appendix: Stability Analysis of the Difference Equation (25)

i) Stability Analysis of the Autonomous Part of Eq. (25)

The autonomous perturbed system

E{θ̃1(k)} = [ A1+ B1(m,n)]E{θ̃1(k− 1)}, (37)

is exponentially and asymptotically stable if [6]

1. All the eigenvalues of the stability matrix A1 are within the unit circle. Such condition
is satisfied if

µ1 ≤ 2σ1

tr(Rϕ1ϕ1)
, 0< σ1 ≤ 1. (38)

Then we can define the state transition matrix

81(k) = Ak
1, k > 0 (39)

that satisfies

‖81(k)‖ ≤ c1β
k
1, c1 > 0, β1 ∈ [0,1]. (40)

2. The perturbation term B1(m,n) satisfies.

0≤ β1+ c1‖B1(m,n)‖ ≤ 1. (41)

From Eq. (27) we have

‖B1(m,n)‖ = ‖E
{
τ1(m,n)µ1ϕ1(m,n)ε

T
2 (m,n)

} ‖
≤ α1E

{‖ϕ1(m,n)‖
‖ε2(m,n)‖

2σ1‖ϕ1(m,n)‖
tr(Rϕ1ϕ1)

‖ε2(m,n)‖
}

≤ 2σ1α1. (42)
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Thus, the value ofα1 should satisfy

0≤ α1 ≤ 1− β1

2σ1c1
. (43)

ii) The Boundedness of the Forcing Term Av1

Making use of Eq. (17) in Eq. (28), invoking the assumption that the measurement noise
v(m,n) is independent ofu(m,n) and w(m,n), and providing that the poles of the
adaptive filter’s denominator horizontal section are inside the unit circle, we can find
that

‖Av1‖ = µ1‖E{[bT
1 v1(m,n)− v1(m,n)][v1(m,n)− τ1(m,n)v1(m,n)]}‖

= µ1‖[1− τ1(m,n)][Rv1v1b1− E{v1(m,n)v1(m,n)}]‖
≤ µ1‖Rv1v1b1− E{v1(m,n)v1(m,n)}‖ (44)

with Rv1v1 = E{v1(m,n)vT
1 (m,n)}. Hence, the forcing termAv1 is bounded, and‖Av1‖

will approach zero asτ1(m,n)→ 1.

iii) The Boundedness of the Forcing Term Aζ2

From Eq. (29) we have

‖Aζ2‖ = µ1‖E{[1, −b1]ζ2(m,n)[ϕ1(m,n)− τ1(m,n)ε2(m,n)]}‖

≤ µ1

(
M1∑
i=0

b2
1(i )

)1/2

E{‖ζ2(m,n)‖‖[ϕ1(m,n)− τ1(m,n)ε2(m,n)]‖}. (45)

Equation (45) states that the norm of the forcing termAζ2 is bounded providing that the error
signalζ2(m,n) has finite variance. The boundedness of the errorζ2(m,n) is guaranteed if
the step sizeµ2, used in the update procedure of the denominator vertical section, satisfies
the necessary condition for the convergence of the LMS FIR filterB̂2(q

−1
2 ) in the variance

which is given by [7]

µ2 <
2

3tr(Rϕ2ϕ2)
(46)

with Rϕ2ϕ2 = E{ϕ2(m,n)ϕ
T
2 (m,n)}. In order to reduce the influence of the forcing term

Aζ2, a sufficiently small step sizeµ2 that guarantees small variance forθ̃2(k), and hence
for ζ2(m,n), should be used.



BIAS REMOVAL ALGORITHM 441

References

1. F. X. Y. Gao and W. M. Snelgrove, “An Adaptive Backpropagation Cascade IIR Filter,”IEEE Trans. Circuits
Syst. II, vol. CAS-39, no. 9, September 1992, pp. 606–610.

2. K. Toshima, M. Ohki, X. Zhou, and H. Hashiguchi, “2-D Backpropagation Cascade Adaptive Recursive
Filter with the Separable Denominator Function,”Third International Symposium on Consumer Electronics,
vol. 2, November 1994, pp. 441–446.

3. D. E. Dudgeon and R. Mersereau,Multidimensional Digital Signal Processing, Prentice Hall, 1994.

4. M. Shadaydeh and M. Kawamata, “Bias Removal Algorithm for 2-D Equation Error Adaptive IIR Filters,”
Proc. 5th IEEE International Workshop on Intelligent Signal Processing and Communication Systems,
November 1997, Malaysia.

5. J. N. Lin and R. Unbehauen, “Bias-Remedy Least Mean Square Equation Error Algorithm for IIR Parameter
Recursive Estimation,”IEEE Trans. Signal Processing, vol. 40, no. 1, January 1992, pp. 62–69.

6. Z. Gajic̀ and M. T. J. Qureshi,Lyapunov Matrix Equation in System Stability and Control, Academic Press,
1995.

7. V. Solo and X. Kong,Adaptive Signal Processing Algorithms, NJ: Prentice-Hall, 1995.

8. A. C. Tan, S. T. Chen, and S. Basu, “Image Filtering Using Hyperstable Adaptive Algorithms,”IEEE Trans.
Circuits Syst. II, vol. CAS-44, no. 5, May 1997, pp. 358–370.


