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Abstract 

In this paper, the problem of estimating the parameters of an FIR system from only the fourth-order cumulants of the 
noisy system output is considered. The FIR system is driven by a symmetric, independent, and identically distributed (i.i.d) 
non-Gaussian sequence. We propose a new formula called Weighted Overdetermined C(q, k) (WOC(q, k)) by extending 
the conventional C(q, k) formula. The optimal selection of the weights in WOC(q, k) is performed by using the Genetic 
Algorithm (GA) optimization method which minimizes a nonlinear error function based on the fourth-order cumulants alone. 
Simulations are provided to reveal the effectiveness and the superiority of this novel technique over the C(q, k) and other 
existing techniques. 0 1997 Elsevier Science B.V. 

In diesem Artikel wird das Problem der Parameterschatzung eines FIR-Systems nur aus Kumulanten 4. Ordnung eines 

verrauschten Systemausganges betrachtet. Das FIR-System wird von einer symmetrisch, unabhlngig identisch verteilten, 
nicht-gaubschen Sequenz angesteuert. Wir schlagen eine neue Methode, Weighted Overdetermined C(q, k) (WOC(q, k)), als 
Erweiterung des konventionellen C(q, k)-Verfahrens vor. Die optimale Wahl der Gewichte in WOC(q, k) wird von einem 
genetischen Algorithmus (GA) iibemommen, welcher einen nichtlinearen Fehlerterm lediglich anhand von Kumulanten 4. 
Ordnung minimiert. Simulationen zeigen die Effektivitiit und bessere Qualitat dieser neuen Technik gegeniiber C(q, k) und 
anderen Techniken. 0 1997 Elsevier Science B.V. 

Nous abordons dans cet article le probleme de l’estimation des parametres d’un systeme FIR a partir seulement des 
cumulants d’ordre quatre de la sortie bruit&e du systeme. Le systbme FIR est excite par une sequence non-gaussienne 
a distribution invariante, independante (i.i.d.) et symetrique. Nous proposons une formule nouvelle appelee C(q, k) sur- 
determinCe ponderee (WOC(q,k)) Ctendant la formule C(q, k) conventionnelle. La selection optimale des coefficients de 
pond&ration dans WOC(q, k) se fait a l’aide dune mtthode d’optimisation par algorithme genetique (GA) qui minimise une 

fonction d’erreur non-lineaire baste sur les cumulants d’ordre quatre seuls. Des simulations sont foumies pour mettre en 
evidence l’efficience et la superior&C de cette technique nouvelle vis-a-vis du C(q, k) et d’autres techniques existantes. 0 

1997 Elsevier Science B.V. 
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1. Introduction 

In the past few years higher-order cumulants 

have motivated considerable research work in system 
identification due to their ability to estimate nonmin- 
imum phase systems and their immunity from Gaus- 

sian noise. FIR system identification using higher- 
order cumulants has received considerable attention, 
and a lot of techniques have been developed [l-3, 

5-141. The well-known C(q,k) formula [2] was the 
first to show that an FIR system with non-Gaussian 

input can be identified by its third or fourth-order 
output cumulants alone. This formula carries over to 

any &h-order cumulants (m 25). However, it does 
not smooth out the effect of the measurement noise, 
and hence produces large estimation variance. Many 
techniques, such as the GM method [3], the T-method 

[lo], and so on [5], have been developed to overcome 
its statistical deficiency. These techniques use both 
the higher-order cumulants and the autocorrelation. 
They show improved performance compared to the 
C(q, k) formula [2] when the system is contaminated 

by a white Gaussian noise or by a colored noise 
generated by an MA process with known system or- 
der. However, if the additive measurement noise is 

an ARMA Gaussian process, their performance will 
be severely degraded due to the use of the autocor- 
relation which is not blind to the additive colored 

noise. 
Recently, several methods using third or fourth 

or both third- and fourth-order cumulants alone have 
been proposed [1,6-9, ll-12,141 to handle the col- 
ored measurement noise. They work much better than 
those methods using both higher-order cumulants 
and autocorrelation for colored measurement noise 
scenarios. However, in many digital communication 
applications (see [lo] and references therein), the in- 
put signals are symmetrically distributed, and hence 

their third-order cumulants are all zero. For such 
cases, only fourth-order cumulants can be used. So 
far, to the best of our knowledge, only two methods 
which make use of the fourth-order cumulants alone 
have been proposed. The first one is the method by 
Zhang et al. [14] which consists of a system of lin- 
ear and overdetermined equations derived using the 
C(q, k) formula and based on third- or fourth-order 

cumulants. This method was found to work better in 

general than the C(q, k) and the previous methods us- 
ing both higher-order cumulants and autocorrelation. 

However, its performance is system dependent, and it 
may give considerably large estimation variance due 

to the direct use of the C(q, k) formula in its deriva- 
tion. The second one is a ‘modified’ C(q, k) with over- 

determinacy derived by MO and Shafai [6], and the 
authors of [8,9,1 l] independently. It was referred to 
as Overdetermined C(q, k) (OC(q, k)) in [S, 9,111. It 
is very simple in the form, but works much better than 

the C(q,k) formula. In OC(q,k), all the used cumu- 
lant slices are treated equally. However, selective use 
of them may lead to further improved estimation if we 

weigh them in an appropriate way. It is this observa- 
tion that has motivated the present novel technique. 

This paper focuses on the FIR system identification 
in an additive Gaussian ARMA noise using the fourth- 

order cumulants alone. First, a Weighted Overdeter- 
mined C(q, k) (WOC(q, k)) formula is derived. This 
formula is based on the weighted least-squares (LS) 
solution of a system of overdetermined linear equa- 
tions derived by extending the C(q,k). The weights 
can provide a room to select the cumulant slices 
which are less noisy, or can contribute more informa- 

tion about the FIR system. Next, a Genetic Algorithm 
(GA) [4] is used to find the optimal weights via the 
minimization of a nonlinear error function of the 

fourth-order output cumulants. In this way, we can 
keep the linearity of the estimator WOC(q, k) while 
the information buried in other cumulant slices that 

are not included in WOC(q, k) formula is utilized. 
The introduction of weights to the OC(q, k) and the 
use of GA to search the optimal weights form the ma- 
jor novelty of this paper. Extensive simulations have 

revealed that this technique leads to a considerable 
improvement in estimation performance compared 
with many other previous techniques developed in 
the literature. 

The organization of this paper is as follows. 
Section 2 describes the derivation of the WOC(q, k). 
In Section 3 the use of the GA optimization method 
for the weights is considered. Simulation results are 
shown in Section 4 to demonstrate the better perfor- 
mance of the proposed technique. Finally, conclusions 
are drawn in Section 5. 
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2. The Weighted Overdetermined C(q, k) formula where 

Consider the following FIR system: A = [Uq, 0,O). . c4v(q, i, 0). . . qdq, q, ON’, 

Bk = [c‘t,v(q, 0, k). . cbv(q, i, k) . aJq, q, UT 

x(n) = c b(i)w(n - i), (1) 
i=o 

.Y(n) =x(n) + c(n), (2) 

where b(i) (i = 0,. . . , q) is the coefficient of the FIR 

system, and y(n) is the noisy output. It is assumed 
here that 

(Al 1 

(AZ) 

(A3) 

The driving noise sequence w(n) is a zero- 
mean, i.i.d non-Gaussian process that is not 
observed, and its fourth-order cumulant l/dV, 
satisfies 0 < Iy4,+, 1 < 0~). 

The system is nonminimum phase with b(0) = 1, 
and b(q) # 0, where q denotes the system order 
which is assumed to be known or correctly es- 
timated by the existing techniques such as [ 131. 

The additive noise u(n) is a zero-mean Gaussian 
ARMA process with unknown power spectrum, 
and is independent of the input w(n). 

The fourth-order cumulant of the output signal y(n) 
is calculated by 

= ;'4M c 
b(i)b(i + rl)b(i + z~)b(i + ~3). (3) 

i==O 

Setting TI =q, 72 =i (06idq) and ~3 =k in (3), 
and using the fact that b(i) = 0 for i > q, we find that 

(4) 

NextsettingTt=q,r2=i(O<i<q)andt3=Oin(3) 

and using the assumption that b(0) = 1, we find that 

Substituting (5) in (4), we can derive a system of 

(q + 1) linear and overdetermined equations for each 
of the unknown parameters b(k), k = 1,. . ,y, given 
in a matrix form as follows: 

GkAb(k)=GkBk, k=l,..., q, (6) 

and GA is a diagonal weight matrix 

Gk = diagbko, . . . Bki, . Clkc/) 

with 0 <qkl d 1, (i=O, . . . . q). Letting GkA =CX, 

GkBk =Dk and solving (6) for b(k) yield a least- 
squares solution as follows: 

b(k) = (C;Ck)-‘c;Dk, k = 1,. ,q, (7) 

which is called the Weighted Overdetermined 

C(q, k) (WOC(q, k)) formula [ 111. If Gk is a unit ma- 

trix, we call (7) the Overdetermined C(q, k) (OC(q, k)) 
[8]. Note that Ctck and ClDk are scalars, and hence 
matrix inversion is not needed here. 

By giving a weight to every equation in the pro- 
posed method a better exploitation of the information 
contained in the cumulant slices involved can be ex- 

pected. So far, we have not found an analytical way to 
handle the weight matrix selection, and here suggest 
to use the GA [4] to search the optimal weights. It 
is known that GA has the ability to efficiently search 
large spaces about which little is known, and spaces 
involving noise. The use of the GA is described in the 
following section. 

3. The selection of the weights using GA 

GA is a stochastic search and optimization algo- 

rithm based on the mechanics of evolution and natural 
genetics. In nature, competition among individuals for 
scanty resources results in the fittest individuals dom- 
inating over weaker ones. GA simulates the survival 
of the fittest among individuals over consecutive gen- 
eration for solving a problem. Each generation con- 
sists of a population of in&vicluals represented by the 
chromosomrs, a set of character strings. Each indi- 

vidual represents a point in a search space and a pos- 

sible solution. The individuals in the population are 
then made to go through a process of evolution. Each 
individual is evaluated, selected and recombined with 
other individuals on the basis of its overall fitness with 
respect to the given application domain. Therefore, 
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Fig. 1. (a) Crossover operation. (b) Mutation operation: the pre- 

ultimate bit to the right is mutated from a 1 to a 0. 

high-performing individuals may be chosen for repli- 
cation several times. This eventually leads to a popu- 
lation that has improved fitness with respect to the 

given goal. New individuals (offspring) of the next 
generation are formed using two main genetic op- 

erators, crossover and mutation. Crossover operates 
with crossover probability P,,,, by randomly select- 
ing a point in the two selected parents gene structures 
and exchanging the remaining segments of the parents 
to create new offspring. This operation is depicted in 
Fig. 1 (a). Mutation operates with mutation probability 
P mutation by randomly changing one or more compo- 
nents of a selected individuals as shown in Fig. l(b). 
It acts as a population perturbation operator and is 
a mean of inserting new information into the popula- 

tion. The evolution process, i.e, reproduction of new 
generation continues until the GA reaches a termina- 

tion criteria such as predefined maximum number of 
generations, fitness value, etc. 

The main issues in applying GA to any optimiza- 
tion problem are an appropriate representation of the 
individual (chromosome), and an adequate evaluation 
function (fitness). For the weight optimization prob- 
lem these two issues are explained as follows. 

3.1. Representation issue 

The first step in applying GA to any optimiza- 
tion problem is to map the search space into 
a representation suitable for genetic search. In our 
problem we present all the weights used in (6), 

(gki: 0 G i d q, 1 Q k < q) in one chromosome as 
a binary string of length L = Z,(q + 1 )q, where I, de- 
notes the number of bits used to code a weight gkj to 
a binary substring wk,i . This representation is depicted 

chromosome 

Fig. 2. The chromosome representation. 

in Fig. 2. Using this representation, it is easy to apply 
the GA operations, i.e, crossover and mutation, as 

shown in Fig. 1, to the weight optimization problem. 

3.2. Evaluation function 

The second important issue for successful use of 
GA is the appropriate selection of the evaluation func- 

tion which provides the GA with a feedback about the 
fitness of every individual in the population. Here, the 
evaluation function is defined as follows: 

fitness = 
E 

mF 
-E 

if E <E,,,, 
max (8) 

fitness = 0 if E >E,,,, 

where E is an error function defined as 

4 4 41 

E= c c ~(c+(Lm,n) 
I=0 mzl n=m 

4 

1 
2 

-f4w C &i)h(i + Z&i + m&i + n) (9) 
i=O ) 

and E,,, is the error function E evaluated by the sys- 
tem parameters obtained by the OC(q,k). The esti- 

mated value of j4,,, is calculated by 

?4w = 
c4yuJ o,o> 

ICE, &i)14 ’ 
(10) 

where i( 1 ), h(2) , . . . , J(q) are system parameters ob- 
tained from (7), with the weights obtained by decod- 
ing each 1, bits of the binary string of the chromosome 
(wk,i) as depicted in Fig. 2 into its corresponding real 
value gki. The decoding procedure is 

gki = 
1 + &, 2”-lWJ4 

2L ’ (11) 
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where wk,Jn) is the nth bit of the binary substring 
~k,~. Eq. ( 11) maps the binary range [0,2’X1] to the 
normalized real range [22”1, 11. 

3.3. Estimation ulgorithm 

The proposed method consists of the following two 
essential steps: 

Step 1. Perform parameter estimation using (7) In all these examples the system is nonminimum 

with Gk equal to unit matrix for 1 < k d q (the phase. The input w(n) is a uniformly distributed i.i.d 

OC(q, k) formula). Then, calculate the error E,,,ax non-Gaussian process with crz, = 1. The additive noise 

using (9). L’(n) is a Gaussian ARMA( 3,1) process defined as 

Step 2. Use the GA optimization method to search 

for an optimal weight matrix Gk in the sense of 
minimizing the error function E in (9). This solution 

is referred to as GA-WOC(q, k) [9] in this paper. 

u(n) + 2.2v(n - 1) + 1.77v(n - 2) - 0.52u(n - 3) 

=e(n) - 1.25e(n - l), (12) 
The GA terminates when no more improvement in the 
best fitness value can be obtained, i.e., the best fitness 
value remains the same during a specified number of 

consecutive generations. Then, the weights with the 
best fitness value in the last generation are taken as the 
final solution. If the GA fails to give a better solution 
than the OC(q, k), the unit weight matrix is considered 

as the final solution. We used the above termination 
strategies in our simulations. Furthermore, the number 
of generations needed in the optimization process is 

generally proportional to the system order q. 

It could be possible to use other optimization meth- 
ods to optimize the FIR system parameters using initial 

values obtained by the OC(q, k) like the GR-OC(q, k) 
(see next section), but they may involve high degree 
of nonlinearity, which results in a great increase in the 

computational complexity. In the case of using GA for 
the weight matrix optimization, we can take advan- 

tage of the linearity of the WOC(q, k). Furthermore, 
by using a specific range [2-“1, l] for the weights we 
can decrease to a great extent the search space, and 
hence can increase the convergence rate. 

4. Simulations 

In this section we illustrate the performance of 

the proposed algorithm through many examples. 
The simulation process was carried out for several 
algorithms, the conventional C(q, k) [2], the sim- 
ple OC(q,k), the GR-OC(q,k) (a gradient-based 
algorithm using error function (9) and initial val- 

ues obtained by the OC(q, k)), the GA-WOC(q, k), 

and the algorithm proposed by Zhang et al. [14]. In 

GR-OC(q, k), the F4&, estimated by (10) is fixed at its 
initial value, and not considered as a function of the 

coefficients. And, it was found in our extensive simula- 
tions that this way results in better coefficient estimates 
than treating it as a highly nonlinear function of the 

coefficients. 

where e(n) is a zero-mean white Gaussian noise with 
variance g,” = 1. We define the signal-to-noise ratio as 
SNR (dB)= lOlog(PJP,), with P, and P, the pow- 
ers of the system output and the observation noise, 

respectively. 
For the weight optimization we used the Simple Ge- 

netic Algorithm (SGA) software described in [4]. In 

our simulation we used 1, = 4 (the number of bits used 
to represent a weight). Generally, I,,, must be chosen 
large enough to give a good variation in the weights of 
the (q+ 1) set of equations derived for each of the filter 
coefficients. However, it must also be chosen as small 
as possible to decrease the search space. Generally, 
the larger the system order is, the more bits have to be 
used to get enough ‘resolution’ for the weights. We 

found that if I, is too small, then the GA-WOC(q, k) 

presents almost no performance improvement, and if 

it is too long, the performance improvement saturates 
and the search process will last much longer. For the 

systems considered in the simulations, we confirmed 
that I,V = 4 is a reasonable selection. 

The selection procedure for the next generation 
in these examples is based on the stochastic tour- 
nament selection, which operates by randomly 
picking a number of individuals equal to the 

tournament-size which is less than the total pop- 
ulation size. Then among the chosen individuals 
the one with the highest fitness is chosen for the 
next generation production. This process conti- 
nues until the population size is reached. In our 
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simulations we used tournament size = 4. Para- these operations operate 
meters for crossover and mutation operations in GA, process. 
P CTOSS = 0.7 and Mutation = 0.001, have been used in The numerical results 

properly during the search 

are shown in Tables l-4. 
all the simulations, and it is also confirmed that Fig. 3 shows a convergence process of the best fitness 

Table I 
Results for B(z) = 1 - 2.33~~’ + 0.667~~~ (25 runs) 

Data length 

SNR 

Algorithm 

C(q,k) 

Ref. [2] 

OC(q>k) 

Refs. [6, 81 

GR-OC(q,k) 

Zhang et al. 

Ref. [14] 

GA-WOC(q,k) 

True value 

b(t) -2.33 

b(2) 0.667 

b(t) -2.33 

b(2) 0.667 

b(1) -2.33 

b(2) 0.667 

b(l) -2.33 

b(2) 0.667 

b(t) -2.33 

b(2) 0.667 

1024 

OdR 

mean 

0.526 

1.300 

-0.357 

0.742 

-0.859 

0.733 

- 1.088 

0.317 

- 1.097 

0.828 

0 

1.188 

1.785 

0.466 

0.835 

0.669 

1.000 

1.233 

1.999 

0.917 

1.034 

IOdB 

mean 

0.156 

-0.208 

- 1.240 

0.644 

- 1.648 

0.632 

-0.763 

0.327 

- I.799 

0.721 

(r 

2.364 

2.193 

0.675 

0.491 

0.697 

0.536 

1.315 

1.183 

0.558 

0.486 

5196 

OdB 

mean 

-0.318 

1.094 

-1.085 

0.348 

- 1.486 

0.445 

-0.938 

0.429 

- 1.459 

0.409 

d 

2.132 

2.099 

0.619 

0.697 

0.677 

0.838 

0.639 

1.031 

0.995 

0.786 

IOdB 

mean 

-3.761 

1.527 

- 1.804 

0.749 

-1.861 

0.729 

-2.283 

3.360 

-2.227 

0.689 

(r 

10.87 

4.479 

0.767 

0.376 

0.772 

0.390 

2.408 

3.511 

0.357 

0.203 

Table 2 

Results for B(z) = I + 0.92-’ + 0.385~~’ - 0.7712~~ (25 runs) 

Data length 

SNR 

Algorithm 

C(q,k) 

Ref. [2] 

GC(q,k) 

Refs. [6,8] 

GR-OC(q, k) 

Zhang et al. 

Ref. [14] 

GA-WOC(q, k) 

True value 

b(1) 0.9 

b(2) 0.385 

b(3) -0.771 

b(t) 0.9 

b(2) 0.385 

b(3) -0.771 

b(l) 0.9 

b(2) 0.385 

b(3) -0.771 

b(t) 0.9 

b(2) 0.385 

b(3) -0.771 

b(l) 0.9 

b(2) 0.385 

b(3) -0.771 

1024 

OdB 

mean 

0.7089 

1.562 

-0.630 

0.862 

0.386 

-0.675 

0.867 

0.389 

-0.665 

-0.616 

-0.502 

-1.213 

0.880 

0.427 

-0.747 

CJ 

1.127 

6.632 

4.562 

0.271 

0.247 

0.336 

0.258 

0.243 

0.3 19 

5.572 

5.341 

6.99 I 

0.168 

0.406 

0.448 

IOdB 

mean 

0.872 

0.102 

-0.778 

0.873 

0.354 

-0.75 1 

0.876 

0.353 

-0.743 

0.808 

0.146 

-0.702 

0.892 

0.366 

-0.767 

q 

I.930 

2.515 

1.600 

0.151 

0.202 

0.272 

0.142 

0.195 

0.24 I 

0.793 

0.735 

0.733 

0.117 

0.149 

0.248 

5196 

OdB 

mean 

2.566 

1.558 

- 1.944 

0.887 

0.385 

-0.734 

0.894 

0.384 

-0.737 

0.527 

0.129 

-0.246 

0.888 

0.391 

-0.805 

LT 

7.443 

6.706 

4.965 

0.106 

0.137 

0.193 

0.097 

0.132 

0.175 

1.148 

1.257 

1.436 

0.079 

0.114 

0.154 

IOdB 

mean 

0.972 

0.441 

-0.815 

0.903 

0.380 

-0.793 

0.899 

0.380 

-0.788 

0.894 

0.227 

-0.780 

0.894 

0.396 

-0.771 

- 
0 

0.223 

0.195 

0.188 

0.081 

0.100 

0.101 

0.075 

0.096 

0.093 

0.075 

0.404 

0.076 

0.053 

0.079 

0.080 
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Table 3 
Results for B(z) = I - 0.8~~’ + 1.52z-’ - 0.64~~ + 0.99~~~ (data length= 5196, 25 runs) 

SNR 

Algorithm 

C(q,k) 

Ref. [2] 

OC(q,k) 

Refs. [6,8] 

GR-OC(q, k) 

Zhang et al. 

Ref. [I41 

GA-WOC(q, k) 

True value 

b(l) 

b(2) 

b(3) 

b(4) 

b(l) 

b(2) 

b(3) 

b(4) 

b(l) 
b(2) 

b(3) 

b(4) 

b(l) 

b(2) 

b(3) 

b(4) 

b(l) 
b(2) 

b(3) 

b(4) 

-0.8 

1.52 
-0.64 

0.99 

-0.8 

I .S2 

-0.64 

0.99 

-0.8 

I .S2 

-0.64 

0.99 

-0.8 

I .s2 

-0.64 

0.99 

-0.8 

I .s2 

-0.64 

0.99 

OdB 

mean 

-0.363 

I.345 

-0.217 

1.895 

-0.688 

1.262 

-0.569 

0.700 

-0.737 

1.322 
-0.613 

0.740 

0.180 

0.1 I6 

-0.097 

0.076 

-0.93 I 

I .295 

-0.708 

0.827 

u 

1.946 

2.157 

0.708 

6.678 

0.582 

0.518 

0.470 

0.452 

0.525 

0.491 

0.460 

0.436 

1.363 

I.378 

1.396 

I.437 

0.44 I 
0.434 

0.476 

0.363 

IOdB 

mean 

-0.635 

I.238 

-0.50s 

0.676 

-0.769 

I.396 

-0.540 

0.840 

-0.786 

1.425 

-0.553 

0.840 

-0.528 
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Fig. ? Convergence process of the best fitness value of each generation for the system B(z) = I -2.33~~’ +0.7Sz-* +OSe3+ 

0.3zP4- I .44zP5 (data length = 5196, SNR = IO dB, I,,, = 4, population size = 20, PCmss = 0.7, PmutatlOn = 0.001). 

value (8) of each generation for a fifth-order FIR sys- of cumulants, and also works much better than 
tern. From these simulation results we can draw the the method by Zhang et al. [14] while it has 
following conclusions: an elegant form and small computational load. 
( 1) The OC(q, k) formula yields a considerable im- Moreover, it can provide a very good initial 

provement in the performance compared to the values for the optimization process of the error 
conventional C(q,k), since it uses 2-D slices function (9). 
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Table 4 
Results for B(z) = 1 - 2.332-l + 0.75~~’ + 0.5~~~ + 0.3~~~ - 1 .44zi5 (data length = 5196, 25 runs) 

SNR OdB 1OdB 

Algorithm True value mean 4 mean (J 

C(q,k) b(1) -2.33 0.03 1 2.034 0.335 139.6 
Ref. [Z] b(2) 0.75 0.430 1.607 - 1.470 7.998 

b(3) 0.5 0.182 1.786 1.006 2.204 
b(4) 0.3 0.239 1.051 0.2 I I 3.086 
b(5) -1.4 0.064 2.644 0.270 IO.030 

GC(q,k) b(1) -2.33 - 1.067 0.406 - 1.745 0.713 
Refs. [6,8] b(2) 0.75 0.403 0.307 0.513 0.530 

b(3) 0.5 0.223 0.225 0.347 0.340 
b(4) 0.3 0.191 0.188 0.338 0.256 
b(5) -1.4 -0.821 0.479 -1.133 0.432 

GR-OC(q, k) b(l) -2.33 - 1.673 0.479 -1.621 0.542 
b(2) 0.75 0.487 0.307 0.350 0.245 
b(3) 0.5 0.346 0.178 0.207 0.219 
b(4) 0.3 0.258 0.156 0.448 0.273 
b(5) -1.4 -1.056 0.370 -t.050 0.384 

b(I) -2.33 0.064 1.737 -2.126 2.95 

b(2) 0.75 -0.330 1.749 0.663 2.131 
b(3) 0.5 0.269 1.698 0.133 0.941 
b(4) 0.3 0.528 1.438 0.649 0.636 

b(5) - 1.4 -0.553 1.426 -0.691 0.903 

GA-WOC(q, k) b(l) -2.33 -1.695 0.469 -2.002 0.550 
b(2) 0.75 0.45 1 0.308 0.596 0.344 
b(3) 0.5 0.339 0.172 0.394 0.194 
b(4) 0.3 0.272 0.159 0.354 0.114 

b(5) -1.4 -1.00 0.384 -1.230 0.346 

Zhang et al. 

Ref. [14] 

(2) The GA-WOC(q, k), in all these examples, enabled 

a better exploitation of the information of the cu- 
mulant slices involved, and ou~erfo~ed OC(q, k), 
GR-OC(q,k) and the method by Zhang et al. [14] 
in terms of both the mean value and the standard 
deviation. 

It should be noted that in our simulations for the 

method by Zhang et al. [ 141, we estimated the system 
parameters using both Algorithms 1 and 2 presented 
in it, and took the best estimates of these two algo- 
rithms according to Remark 2 in [ 143. 

5. Conclusions 

We have presented a fourth-order cumulant-based 
algorithm for an FIR system identification. This 
method is based on the weighted LS solution of a 

system of linear equations obtained by extending the 

conventional C(q, k). We suggested the use of the GA 
for the optimal weight selection. Simulations were 
carried out for several examples to show the marked 
estimation performance of the proposed technique. 

The authors would like to express their cordial 
thanks to the anonymous reviewers whose co~ents 
have helped improve the paper. 
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