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Abstract—Electrocardiogram (ECG) signals are vital tools in
assessing the health of the mother and the fetus during pregnancy.
Extraction of fetal ECG (FECG) signal from the mother’s ab-
dominal recordings requires challenging signal processing tasks
to eliminate the effects of the mother’s ECG (MECG) signal,
noise and other distortion sources. The availability of ECG data
from multiple electrodes provides an opportunity to leverage the
collective information in a collaborative manner. We propose
a new scheme for extracting the fetal ECG signals from the
abdominal ECG recordings of the mother using the multiple
measurement vectors approach. The scheme proposes a dual
dictionary framework that employs a learned dictionary for elim-
inating the MECG signals through sparse domain representation
and a wavelet dictionary for the noise reduced sparse estimation
of the fetal ECG signals. We also propose a novel methodology
for inferring a single estimate of the fetal ECG source signal
from the individual sensor estimates. Simulation results with real
ECG recordings demonstrate that the proposed scheme provides
a comprehensive framework for eliminating the mother’s ECG
component in the abdominal recordings, effectively filters out
noise and distortions, and leads to more accurate recovery of
the fetal ECG source signal compared to other state-of-the-art
algorithms.

Index Terms—Biomedical Signal Processing, Compressed Sens-
ing, Dictionary Learning, Electrocardiogram, Fetal ECG, K-SVD,
Multiple Measurement Vectors (MMV), Sparse Reconstruction,
Wavelets.

I. INTRODUCTION

Electrocardiogram (ECG) signals are vital tools in assessing
the cardiac health of the mother and of the developing fetus
during the course of pregnancy [1], [2], [3], [4]. While obtain-
ing the mother’s ECG (MECG) recordings using electrodes (or
sensors) attached to the mother’s chest is a straight forward
procedure, obtaining the fetal ECG (FECG) recordings can be
a much more complex procedure [5]. This is mainly because
the ECG signals recorded from the chest of the mother (called
thoracic ECG signals) represent the ECG signal from only
the mother herself. However, the fetal ECG signal needs to
be extracted from the ECG recordings measured with the
electrodes placed at mother’s abdomen.

Recordings from these abdominal electrodes comprise
mainly of two components, the MECG and FECG, both
superimposed on each other [6]. The FECG component is
much smaller in magnitude compared to the MECG part.
The recorded signals are also affected by distortions and
noise from other sources, including those originating from
the recording equipment itself. Eliminating the mother’s ECG

signal from these abdominal recording and extracting the fetal
ECG component in the presence of noise is thus an important
and challenging problem. Numerous approaches have been
proposed in the literature to address this problem, such as
those based on blind source separation (BSS) [5], [7], [8], [9],
[10], [11], independent component analysis (ICA) [6], [12],
[13], [14], [15], adaptive filtering [16], [17], sparse redundant
representations [18], [19], and Wavelets [7], [20], [21], [22],
[23].

In [10], a blind source separation technique is applied
requiring at least three abdominal signals to separate each
into MECG, FECG, and noise components. However, if the
required number of abdominal ECG signals are not avail-
able or if the algorithm is unable to distinguish between
the components within the abdominal recordings, the BSS
approach may completely fail in separating the MECG and
FECG components. In [8], another BSS technique is designed
taking into account the cyclo-stationary nature of the ECG
signals as useful prior information in the FECG extraction
process. The application of the proposed scheme is limited by
the fact that it requires prior knowledge of the cyclo-stationary
frequency of the signal to be estimated.

In [15], independent component analysis (ICA) based blind
source subspace separation is proposed as a tool for the ex-
traction of the antepartum fetal electrocardiogram from multi-
lead cutaneous potential recordings. As pointed out in [24],
the major shortcomings of the ICA approach stem from the
strong assumption on the nonstationary nature of the sources
and the presence of additive noise. In [25], a system with
100 abdominal electrodes is tested where a selected subset
of the electrodes is utilized for fetal ECG extraction using
ICA. A specialized sensor selection algorithm is proposed that
is based on a mutual information criterion. This system also
inherits the aforementioned shortcomings of the ICA approach.
The authors in [11] apply three different methods for BSS
of maternal and fetal ECGs: principal-component analysis
(PCA), higher-order singular-value decomposition (HOSVD),
and higher-order eigenvalue decomposition (HOEVD). The
latter two techniques belong to the ICA family and inherit the
same drawbacks mentioned earlier while the former requires
the sources to be uncorrelated.

In [26], the authors propose a method that employs singular
value decomposition (SVD) and singular value ratio (SVR)
spectrum. The elimination of the maternal ECG and determina-
tion of the fetal ECG are achieved through selective separation
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of the singular value decomposed components. The technique
is suggested for a single ECG recording. Extension to multiple
recordings is not discussed. Another major drawback of this
method is that it requires the two signals to be orthogonal.

The adaptive filtering algorithm proposed in [16] uses a
linear combiner (LC) to form a primary noise signal from the
abdominal signals for an adaptive noise cancellation (ANC)
structure. This LC assigns an adaptive weight for each signal.
The weights of the ANC and LC are recursively updated such
that the estimated FECG signal indicates a better waveform
than the one produced by the best single abdominal signal.
However, the proposed scheme does not exploit sparse do-
main representation for the ECG signals and utilizes a single
chest sensor as the MECG reference. An adaptive filtering
approach based on the wavelet transform of the ECG signals
is considered in [20]. The proposed technique is, however,
limited to the use of standard wavelet functions for the sparse
representation of the ECG signals and does not exploit any
knowledge of the structure of ECG signals. The method in [27]
extends the adaptive filtering approach by including a finite
impulse response (FIR) neural network in the adaptive noise
cancellation scheme to provide nonlinear dynamics in the
model. This method utilizes only one reference thoracic signal
and one abdominal signal and does not exploit measurements
from multiple electrodes.

The paper [28] considers enhancing the maternal ECG com-
ponent of an abdominal ECG signal based on the continuous
wavelet transform (CWT) before fetal ECG extraction. To
enhance the maternal ECG component, the authors resort to
optimizing the wavelet type and scale. As alluded to by the
authors, the procedure may not work in a fully automated
way; manual intervention might be required in some cases.
In addition, the paper does not discuss actual fetal ECG
extraction. Another wavelet transform based method to extract
the fetal ECG signal from the composite abdominal signal
is developed in [23]. Two approaches are propped: One that
requires a thoracic signal, and one where no thoracic signal is
needed. However, similar to [20], the proposed technique does
not utilize any knowledge of the structure of ECG signals.

The authors in [18] proposed the use of multi-component
dictionaries taking into consideration different structural parts
of the ECG signals. However, the dictionary components are
modeled based on a limited number of specific structural char-
acteristics of the ECG signals. In [19], a dictionary learning
approach for sparse redundant representation is investigated
based on spatially filtering the abdominal ECG recordings
while treating the fetal ECG component as noise to obtain
the MECG component. The estimated MECG component is
then subtracted from the abdominal recordings to extract the
FECG signal. Another technique based on the well-known
extended Kalman filter (EKF) is investigated in [29]. However,
both the proposed techniques in [19] and [29] are based on
single channel recordings and do not provide a mechanism to
collectively utilize the information from multiple sensors. In
[30], the authors present a literature review of interference of
power line (PLI) cancellation methods. Power line interference
is one of the main sources of noise that corrupts physiological
signals, including the ECG, thus impairing the extraction of

useful information from the signals.
The availability of ECG data from multiple electrodes

provides an opportunity to leverage the information from
the chest and abdominal sensors in a collaborative manner,
specially when utilizing carefully selected basis for their sparse
domain representation. In this work, we propose a new scheme
for extracting the FECG signal from the abdominal ECG
recordings of the mother by exploiting the support1 similarities
between the ECG recordings when they are represented in a
sparse domain. This approach leads to a Multiple Measurement
Vectors (MMV) approach [31]. The MMV approach enables
more robust estimation of the MECG signals as present at the
abdomen, leading to a more effective and efficient extraction of
the fetal ECG signals. The proposed scheme adopts a dual dic-
tionary framework that uses a dictionary learned using the K-
SVD algorithm [32] for eliminating the MECG signals through
sparse domain representation and a wavelet dictionary for the
noise reduced sparse estimation of the fetal ECG signals. The
K-SVD algorithm is a generalization of the K-means clustering
method and uses the SVD (Singular Value Decomposition)
to find a dictionary of atoms for sparse representation of
training signals [32]. We also present a novel methodology
of combining the FECG signal estimates from the individual
sensors, again leveraging the joint support feature, to infer a
single estimate of the FECG signal. Results obtained using real
ECG recordings demonstrate that the proposed MMV-based
dual dictionary approach provides a comprehensive framework
for eliminating the MECG components in the abdominal
recordings, effectively filters out noise and distortions, and
leads to accurate recovery of the fetal ECG signal.

II. THE MULTIPLE MEASUREMENT VECTORS
(MMV) FRAMEWORK

The MMV [31] is a sparse signal estimation framework in
which signals exhibiting a common support S (i.e. locations of
the non-zero values) are jointly estimated using measurements
available from multiple sensors. The MMV signal model is
given as

Y = ΨX + W, (1)

where X ∈ CL×N is a collection of N sparse vectors of
length L to be estimated from equal number of measurements
Y ∈ CM×N of length M based on the sensing matrix
Ψ ∈ CM×L. The matrix W ∈ CM×N represents the noise
that contaminates the observed signals. The MMV formulation
makes use of the fact that the non-zero values in any of the
vectors in X occur at the same locations, as illustrated in
Figure 1. The joint estimation framework of the MMV based
algorithms helps improve the quality of the estimated signals
using collaborative estimation formulations.

The MMV approach is well suited for the FECG extraction
problem since there are multiple observations of the ECG
data available from the different electrodes placed at the
abdomen. Moreover, in a sparse domain represented by an
over-complete dictionary of basis elements, ECG signals can

1The support S of a signal is defined as the locations of the non-zero values
within the signal.
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Fig. 1. Illustration of the MMV based sparse signal estimation problem. The
colored boxes represent non-zero values.

Fig. 2. Top to bottom: ECG signals recorded from the electrodes 1, 2, and
3, respectively placed at the chest of a pregnant woman.

be represented using a sparse linear combination of the basis
elements. Consider the ECG recordings obtained from the
chest and abdomen of a pregnant woman (real dataset available
online [33]) as shown in Figure 2 and Figure 3, respectively.
These ECG recordings can be represented in a sparse domain,
for example, of Daubechies wavelets2 basis function with as
low as 2% sparsity rate and reconstructed with significant
accuracy as shown in Figure 4. The ECG signals obtained from
the different electrodes share a significant percentage of the
support S, i.e. the signals are mostly made up of the same basis
elements. For the abdominal ECG signals shown in Figure 3,
we found (through Matlab) that they share up to 80% of the
basis elements when represented in the Daubechies wavelets
domain. This similarity in support is also evident by looking
at the plot of coefficients in Figure 5. In this work, we exploit
this property of their common support in joint estimation of
the ECG signals using a MMV based approach.

2Daubechies wavelets are one of the well known and commonly used
wavelet functions. For our demonstration in Figure 4, we used the db4 wavelet
functions which are Daubechies wavelets with 4 vanishing points.

Fig. 3. Top to bottom: ECG signals recorded from the electrodes 1, 2, and
3, respectively placed at the abdomen of a pregnant woman.

Fig. 4. An example of reconstructed abdominal ECG signal using the
Daubechies wavelets. Top: Observed ECG signal in time-domain, Middle:
ECG signal represented in wavelet domain with a 2% sparsity rate, Bottom:
Reconstructed signal from the wavelet coefficients in time-domain.

The multiple measurements from the chest and abdominal
sensors can be used to estimate the MECG component in
the abdominal ECG recordings using an MMV algorithm
while treating the FECG component as noise. Once estimated,
MECG component can then be subtracted from the abdominal
recordings, leading to a more robust estimation of the fetal
ECG signal. Furthermore, the same joint support characteris-
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Fig. 5. Top to Bottom: Wavelet coefficients for the abdominal recordings
from sensor 1, 2, and 3, respectively shown in Figure 3.

tics of the FECG signal estimates from the different abdominal
sensors can be used to infer a single and more accurate
estimate of the FECG source signal, as discussed in the next
section.

III. JOINT ESTIMATION OF THE FETAL ECG
SIGNAL

A. Problem Formulation

We begin by first representing the MECG signal ’m’ in
a sparse domain using an over-complete dictionary ΨM .
Mathematically this is given by the expression,

m = ΨMdM (2)

where dM is a sparse vector of coefficients used for repre-
senting the MECG signal in the sparse domain given by the
basis elements of the matrix ΨM .The MECG signal can be
recorded directly using the sensors placed at the chest of the
mother giving the measurements

yjM = m + wj , (3)

or
yjM = ΨMdM + wj (4)

where wj is the additive white Gaussian noise in the mea-
surement recorded from the jth chest sensor.

The ECG recordings at the abdominal sensors on the other
hand are a combination of the MECG signal m superimposed
with the fetal ECG signal f and noise. Mathematically this is
given by the expression

yiA = m + f + ni, (5)

or,
yiA = ΨMdM + f + ni, (6)

where yiA is the ECG recording obtained from the ith abdomi-
nal sensor for i = 1, 2, .., N and ni is additive white Gaussian
noise in the measurement from the corresponding sensor. The
attenuation of the MECG signal as it travels from the chest
of the mother towards the abdomen is assumed negligible and
hence ignored in the above formulation.

As such, the problem of extracting the FECG signal from
the abdominal recordings is converted to estimating the MECG
signal component and eliminating it, along with the noise and
distortions, to recover the FECG part.

B. The Fetal ECG Extraction Algorithm

We utilize the availability of multiple observations from
the different abdominal sensors which can be aggregated in
a single matrix as

YA = [y1
A,y

2
A, ..,y

N
A ] (7)

to employ the MMV framework in estimating the MECG
signal. Since direct ECG recordings of the mother are available
from the thoracic electrodes, we can use them to learn a suit-
able dictionary ΨM for efficient and accurate representation
of the MECG signals in a sparse domain. For this purpose,
we use the K-SVD dictionary learning algorithm [32] with
the MECG recordings yM available from the mother’s chest
as the training set. After constructing the dictionary, the goal
is to project the measurements yA available from the abdomen
onto the dictionary to obtain the sparse representation of the
MECG component in these measurements. The estimation
problem in this sparse domain is defined as estimating the
set of vectors D̂M = [d̂1

M , d̂
2
M , .., d̂

N
M ] that corresponds to

the set of abdominal measurements YA. The FECG signal is
considered as noise for the purpose of this step.

D̂M = MMV(YA,ΨM ). (8)

The set of coefficient vectors D̂M can be estimated using
a MMV algorithm. We utilize the ’MMV-Support Agnostic
Bayesian Matching Pursuit’ (M-SABMP) algorithm [31] for
this purpose. The M-SABMP is a sparse signal recovery
algorithm based on the multiple measurement vector approach
and allows to estimate a sparse signal by jointly exploiting
observations from multiple sensors. Once the coefficients are
estimated, they can be used to reconstruct the time-domain
MECG signal as present at the abdomen

M̂ = ΨMD̂M (9)

to subsequently eliminate from the abdominal ECG recordings,
yielding the initial estimates of the FECG signals

F̃ = YA − M̂, (10)

where M̃ = [m̃1, m̃2, .., m̃N ] and F̃ = [̃f1, f̃2, .., f̃N ] rep-
resent the mother and fetal ECG signal estimates from all
abdominal sensors, respectively.

However, even after the removal of the MECG component,
the estimated FECG signals, here denoted by F̃, may still
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Fig. 6. Flowchart representation of Algorithm 1.

contain high levels of noise and distortion. To eliminate these
effects, we project the estimates from the last step once more,
but this time onto a dictionary of wavelet basis elements
ΨWavelet. Wavelets basis have been useful for signal recovery
in a variety of applications, including ECG feature extraction
and de-noising [14], [34]. Different wavelet functions help
preserve the shape and characteristic features of a signal in
a particular application by representing the signal in a domain
defined by wavelet basis functions most suitable for that par-
ticular signal, thereby eliminating the features corresponding
to noise and distortions. By carefully selecting the wavelet
basis functions such that they capture the significant features
of the ECG signal, we can ensure that only the signal values
representing the fetal ECG signals are preserved in the sparse
domain while the effects of distortion are minimized. The
coefficients D̂F̃ selected for sparse representation of F̃ in the
wavelet domain are used to generate a distortion free version
of the fetal ECG signals

F̂noisy = ΨWaveletD̂F̃, (11)

which are passed through a low-pass filter with a cut-off
frequency of 5000 Hz to give the estimates of the fetal ECG
signals from the individual sensors as

F̂ = LPF (F̂noisy), (12)

where F̂ = [̂f1, f̂2, .., f̂N ] represent the final FECG signal
estimates from the individual abdominal sensors. The complete
FECG extraction procedure is summarized in Algorithm 1 and
depicted in Figure 6.

Algorithm 1 Fetal ECG Extraction Algorithm
• Input: Abdominal ECG recordings YA, MECG dictio-

nary ΨM learned using the K-SVD algorithm, Wavelet
dictionary ΨWavelet

• Step 1: Project abdominal recordings onto the MECG
dictionary:

D̂M = MMV(YA,ΨM ).

• Reconstruct MECG signal and subtract from original
abdominal recordings:

F̃ = YA − M̂,

where M̂ = ΨMD̂M .
• Step 2: Project again onto the wavelet dictionary:

D̂F̃ = MMV(F̃,ΨWavelet).

• Reconstruct distortion-minimized FECG signal estimates:

F̂noisy = ΨWaveletD̂F̃ .

• Step 3: Perform low-pass filtering:

F̂ = LPF (F̂noisy).

• Output: F̂ := [̂f1, f̂2, .., f̂N ].

C. The Fetal ECG Combination Algorithm

The above procedure allows to obtain the FECG signal
estimates from the individual abdominal sensors. As these
individual signals are the estimates of a single FECG source,
it is desirable to combine them in an appropriate manner
to recover the FECG source signal. These estimates from
different sensors might offer different estimation accuracies
based on the quality of the individual measurements. It is
important to take this into consideration when combining these
contributions to infer the FECG source signal. We identify
two important considerations when combining the individual
sensor estimates: (i) the support of the individual sensor
estimates should be common, and (ii) the amplitudes for the
support elements should be combined using a weighted linear
combination based on the quality of the individual estimates.

For this purpose, we first perform a scaling and alignment
operation on the estimated FECG and MECG (as estimated at
the abdomen) signals such that their combination regenerates
close replicas of the observed abdominal ECG (AECG) signal.
To this end, we define the residual error for each ith abdominal
sensor as

Ri =‖ ŷiA − yiA ‖22 (13)

where,

ŷiA = α.Shift
(
ŷiM , τ1

)
+ β.Shift

(
f̂ i, τ2

)
, (14)

α, β are the scaling coefficients and τ1, τ2 specify the amount
by which the estimated MECG and FECG signals are shifted
using the operator Shift(.), respectively. We then solve the
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Fig. 7. Illustration of determining the common support from the support of
the individual sensor estimates. The crossed boxes indicate the locations of
the non-zero values.

minimization problem

min
α,β,τ1,τ2

‖ Ri ‖22 (15)

or, in a complete form,

min
α,β,τ1,τ2

‖ α.Shift
(
ŷiM , τ1

)
+ β.Shift

(
f̂ i, τ2

)
− yiA ‖22 (16)

for each ith sensor. The above equation can be solved by
constructing a search space over a limited range of values for
each of the variables α, β, τ1, and τ2 to find the combination
yielding the least residual error. Although there are no theoret-
ical limits to the number of values that can be considered for
shifting and alignment process, we found that optimizing over
2-3 samples to both left and right shift directions and between
1.0 to 1.5 scaling factors proved sufficient for alignment
purposes.

The residual error helps determine the quality of the signals
estimated from each sensor. The residual error is inversely
related to the reconstruction quality and hence can be used to
determine the weights for the linear combination as

Ẇ i =
1

Ri
. (17)

However, for the sum of weights to equal unity, each weight
is normalized as

W i =
1/Ri

1/R1 + 1/R2 + ..+ 1/RN
. (18)

Next, we determine the common support of the estimated
FECG signals. Ideally, this task would be performed per-
fectly by the MMV estimation algorithm itself. However,
practical limitations, such as unsuitable positioning of the
measurement sensors, can result in small non-zero values at
different locations of the estimated vector. To achieve absolute
support similarity, we project all sensors estimates on a domain
represented by a simple identity matrix ΨI and retain values
corresponding only to the support locations that are common to
all vector of coefficients d1,d2, ..,dN , while setting the rest to
zero. The process is illustrated in Figure 7 and mathematically
given as,

Sd = S1d ∩ S2d ∩ ...SNd . (19)

Fig. 8. Flowchart representation of Algorithm 2.

Fig. 9. Illustration of the weighted linear combination of the individual FECG
signal estimates.

The single source FECG signal is then simply reconstructed
in the time domain, as illustrated in Figure 9, using

f̂combined = ΨI ∗
(
W 1d1Sd +W 2d2Sd + ...+WNdNSd

)
, (20)

where the coefficients diSd for the ith signal have non-zero
values only at the support locations given by Sd. The complete
steps for combining the sensor estimates are summarized in
Algorithm 2 and depicted in Figure 8.

.

IV. SIMULATION RESULTS

We validate the performance of our proposed algorithm us-
ing two real datasets available online that represent cutaneous
potential recordings of two pregnant women. We note that
our proposed technique is not sensitive to any pre-described
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Algorithm 2 Algorithm for Combining Individual FECG
Signal Estimates
• Define the residual error:

Ri =‖ ŷiA − yiA ‖22,

where

ŷiA = α.Shift
(
ŷiM , τ1

)
+ β.Shift

(
f̂ i, τ2

)
.

• Minimize the residual error for each individual sensor
estimate:

min
α,β,τ1,τ2

‖ α.Shift
(
ŷiM , τ1

)
+ β.Shift

(
f̂ i, τ2

)
− yiA ‖22 .

• Calculate the normalized weights for linear combination:

W i =
1/Ri

1/R1 + 1/R2 + ..+ 1/RN
.

• Determine common support for all sensor estimates when
represented in domain ΨI:

Sd = S1d ∩ S2d ∩ S3d ∩ ...SNd .

• Reconstruct combined FECG source signal:

f̂combined = ΨI ∗
(
W 1d1Sd +W 2d2Sd + ...+WNdNSd

)
.

positioning of the electrodes. As long as electrodes at the chest
can detect and record maternal ECG signal and electrodes at
abdomen can detect and record the composite maternal plus
fetal ECG signal, our algorithm can extract the fetal ECG
signal. For quantitative analysis, we assess the performances
of our proposed technique in terms of True Positives (TP :=
number of fetal ECG pulses estimated at correct locations),
False Positives (FP := number of fetal ECG pulses detected at
locations where they should not be), and False Negatives (FN
:= number of fetal ECG pulses missed from estimation at the
correct location) estimation events. Marking these events in
the recovered fetal ECG signal helps in further computing the
statistical measures of Precision, Recall, and F1-score which
are computed as

Precision =
TP

TP + FP
, (21)

Recall =
TP

TP + FN
, (22)

F1-score = 2.
Precision.Recall

Precision + Recall
. (23)

To compare the proposed technique with other methods,
we also applied the BSS technique presented in [10], adaptive
filtering technique presented in [16], and the K-SVD based
denoising technique presented in [19] to the same datasets.
These techniques and their limitations were discussed briefly
in Section I.

Fig. 10. Top to Bottom: MECG signals from Real Dataset 1 recorded using
chest sensors 1, 2, and 3, respectively.

Fig. 11. Top to Bottom: AECG signals from Real Dataset 1 recorded using
abdominal sensors 1, 2, and 3, respectively.

1) Real Dataset 1: The first dataset comprises recordings
from 8 channels, each of 5 seconds duration sampled at a rate
of 500 Hz [33]. Three ECG signals correspond to the maternal
ECG (MECG) signals recorded using electrodes placed at
the chest of the pregnant woman. These are partially shown
in Figure 10. These MECG signals are divided into smaller
signals using windows of 0.25 second durations and used as
the training set to generate the dictionary ΨM for representing
the mother’s ECG signals in the sparse domain. This choice of
window size was made so that a sufficient number of training
signals are available from the limited 5 seconds of ECG
recordings. The total number of resulting training signals from
the three electrodes is 60, which were then used to generate
the dictionary of 30 linearly independent basis elements using
the K-SVD algorithm [32]. We note that it is important to
use a small error tolerance value while learning the dictionary
using the K-SVD algorithm.

The remaining five cutaneous ECG recordings are available
from the electrodes placed at the abdomen of the pregnant
woman and correspond to the ECG signals which are the
combination of the maternal ECG signal superimposed on
the fetal ECG signal along with noise and other interference
sources. We use the first three recordings from these abdominal
signals, which are partially shown in Figure 11.

We apply our proposed fetal ECG extraction technique of
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Fig. 12. Top to Bottom: Initial fetal ECG estimates from sensor 1, 2, and 3,
respectively after the 1st stage of the proposed extraction scheme in Algorithm
1 for Real Dataset 1 (Blue: Abdominal ECG, Red: Recovered fetal ECG).

Algorithm 1 by first projecting the abdominal ECG recordings
on the dictionary ΨM using the M-SABMP algorithm [31]
and subtract the reconstructed MECG signals from the original
abdominal recordings. A sparsity rate of 25% is used with the
M-SABMP algorithm for this step. Although this single step
is able to significantly eliminate the MECG component in the
abdominal recordings, the recovered fetal ECG still suffers
from large noise and distortions as shown in Figure 12.

Proceeding to the second stage of the proposed technique in
Algorithm 1, the recovered fetal ECG signals are now further
projected onto a wavelet dictionary to mitigate the effects of
noise and any residual of MECG pulses left in the results from
the first step. We use the simple Kronecker delta function as
the wavelet of choice as it allows to process every sample data
point individually. By using a tight sparsity constraint with
the MMV based estimation algorithm, we force the algorithm
to retain only a few most significant values within each
window. This helps in preserving the signal values representing
the fetal ECG signals while effectively eliminating the low
amplitude distortions (such as those from noise or residual of
a suppressed MECG pulse) using a 4% sparsity rate with the
wavelet dictionary. A final post-processing of the recovered
estimates using a low-pass filter provides the extracted FECG
signals from the individual sensors shown in Figure 13.

The technique proposed in Algorithm 2 is applied for
combining these individual estimates, calibrating the scales
and alignment such that the residuals between the observed
and reconstructed abdominal signals are minimized. The com-
mon support is determined once again using the M-SABMP
algorithm and the weights obtained from residual calculation
are used to finally combine the individual sensor estimates to
provide the final estimate of the FECG source signal as shown
in Figure 14. As clearly demonstrated, the proposed algorithms
help significantly in eliminating the MECG component, noise,
and distortions, providing a very clean and accurate estimate
of the FECG source signal.

The proposed technique is compared with the BSS, adaptive
filtering, and the K-SVD based denoising techniques applied
to the same dataset. The BSS and the denoising techniques
provide three fetal ECG estimates from the three abdominal

Fig. 13. Top to Bottom: Individual fetal ECG signal estimates from sensor 1,
2, and 3, respectively recovered after complete steps of the proposed extraction
scheme in Algorithm 1 for Real Dataset 1 (Blue: Abdominal ECG, Red:
Recovered fetal ECG).

Fig. 14. Top to Bottom: Combined estimate of the fetal ECG source signal
plotted over the abdominal signal from sensor 1, 2, and 3, respectively for
Real Dataset 1 (Blue: Abdominal ECG, Red: Combined estimate of the fetal
ECG).

recordings used from this dataset. However, due to limited
space, the best estimated fetal ECG signal from each of
these techniques is plotted in Figure 15 along with the single
FECG signal estimated using the adaptive filtering technique
and the combined fetal ECG estimate obtained using the
proposed technique of this paper. Note that the amplitudes
of the fetal ECG signals estimated using the four techniques
differ significantly from each other and from amplitude levels
in the abdominal recordings. To facilitate visual inspection and
analysis (for qualitative purposes only), these amplitudes were
scaled so that the FECG pulses in the estimated signals and
in the abdominal ECG recordings appear at similar levels.

While estimation qualities from these techniques appear
to be comparable to the proposed technique, the algorithms
and their performances suffer from some limitations. The
BSS technique works by separating abdominal signals into
MECG, FECG, and noise components. Once these signal
components are separated, the FECG component needs to be
manually identified before further processing can take place.
The estimates from the denoising approach are only partially
accurate as the algorithm fails in recovering half of the fetal
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Fig. 15. Top to Bottom: Performance comparison of the proposed technique
with the BSS, Adaptive filtering, and Denoising approaches, respectively using
Real Dataset 1 (Blue: Abdominal ECG, Red: Estimated fetal ECG). TP marks
a ’True Positive’ event, FP a ’False Positive’ event, while FN marks a ’False
Negative’ event.

TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED APPROACH WITH BSS,

ADAPTIVE FILTERING, AND DENOISING APPROACHES USING REAL
DATASET 1 IN TERMS OF STATISTICAL MEASURES OF TP, FP, FN,

PRECISION, RECALL, AND F1-SCORE.

ECG pulses. The FECG signal estimated using the adaptive
filtering technique performs the closest to the proposed MMV
based approach, although still demonstrating some levels of
noise.

Figure 15 also allows to mark the recovered fetal ECG
signal in terms of ’True Positives’, ’False Positives’, and
’False Negatives’ estimation events. These events are marked
in Figure 15 with respective abbreviations3. The values for
statistical measures of Precision, Recall, and F1-score are then
computed and compared with the values for fetal ECG signals
recovered from all other algorithms.

The four techniques are compared in terms of these mea-
sures in the table shown in Table I which shows a perfect
F1 score for all but the denoising based estimation approach.
Comparison using this dataset suggests that the proposed
technique performs at least as good as the state-of-the-art BSS
and adaptive filtering algorithms.

2) Real Dataset 2:

3The development of an automated algorithm for counting True Positive,
False Positive, False Negative events is outside the scope of this manuscript
and such scoring has been done manually by visually inspecting if the FECG
pulses in the estimated signals overlap FECG pulses in the abdominal signals
or not.

Fig. 16. Top to Bottom: MECG signals from Real Dataset 2 recorded using
chest sensors 1 and 2 respectively.

Fig. 17. Top to Bottom: AECG signals from Real Dataset 2 recorded using
abdominal sensors 1 and 2 respectively.

For our second dataset of real ECG recordings, we use the
’ecgca906.edf’ ECG data available from the PhysioNet online
database [35]. This dataset provides about 33 minutes of ECG
recordings sampled at a rate of 1 KHz. Only two MECG
signals recorded using electrodes placed at the chest are
available in this dataset and these are partially shown in Figure
16. As before, the MECG signals are divided using windows of
0.25 second durations and used as the training set to generate
the dictionary ΨM for representing the mother’s ECG signals.
Other window sizes did not appear to significantly affect
the estimation performance of the proposed technique. These
settings resulted in a total number of 720 training signals when
utilizing 90 seconds of ECG recordings for a given simulation,
which were then used to generate a dictionary of 360 linearly
independent basis elements using the K-SVD algorithm [32].

Four cutaneous ECG recordings are available from the
electrodes placed at the abdomen of the pregnant woman.
However, to demonstrate that our multiple measurement vec-
tors based approach can work with data from as low as two
electrodes, we only utilize two of these abdominal recordings
which are partially shown in Figure 17. As before, we first
apply our proposed fetal ECG extraction technique of Algo-
rithm 1. The individual fetal ECG signals estimated using the
real dataset 2 are shown in Figure 18. We then proceed with
the combination of these individual fetal ECG estimation using
Algorithm 2 with the final combined fetal ECG estimate shown
in Figure 19.

Once again, we compare the proposed technique with the
BSS, adaptive filtering, and denoising approaches in Figure 20
using the real dataset 2. As before, only the best fetal ECG
estimate from the BSS and denoising techniques is plotted
along with the estimated FECG signal from the adaptive
filtering algorithm and the combined fetal ECG estimate
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Fig. 18. Top to Bottom: Individual fetal ECG signal estimates from abdominal
sensor 1 and 2 respectively recovered after complete steps of the proposed
extraction scheme in Algorithm 1 for Real Dataset 2 (Blue: Abdominal ECG,
Red: Recovered fetal ECG).

Fig. 19. Top to Bottom: Combined estimate of the fetal ECG source signal
plotted over the abdominal signal from sensor 1 and 2 respectively for Real
Dataset 2 (Blue: Abdominal ECG, Red: Combined estimate of the fetal ECG).

obtained using the proposed technique. The dataset from
PhysioNet proves to be far more challenging for all tested
algorithms. The BSS technique was implemented using three
abdominal signals (compared to two for all other techniques)
since it requires at least three abdominal signals to separate
each into MECG, FECG, and noise components. However
the BSS algorithm, which is often considered state-of-the-art,
still failed to separate the MECG and FECG signals, giving
estimated signals which are just the abdominal ECG signals
with less noise. The estimation performance from the adaptive
filter is not much different either. Although it preserves the
fetal ECG pulses at the right location, it fails to suppress the
MECG pulses at most of the locations. The denoising approach
also fails completely as the estimated signal is too random
to derive any useful information. The proposed technique
performs better than all other algorithms with real dataset 2
as well, successfully detecting all FECG pulses at the correct
locations and eliminating MECG pulses from the abdominal
ECG recordings with only one false positive event.

Similar observations and conclusion can be made when
analyzing the performances of the algorithms in terms of the
statistical measures of Precision, Recall, and F1 values. These
values are presented in the table shown in Table II for real
dataset 2. It is to be noted that there is a TP event marked
around 3.5 seconds in Figure 20 because of detection of a
FECG pulse that was overlapped by a MECG pulse in the
abdominal recording. While the BSS and adaptive filtering
algorithms are able to achieve the perfect TP score of 9 for
the length of the signal shown in Figure 20, they also result
in high rates of false positives. The signal estimated using the
denoising approach was not scored due to lack of usefulness.
The proposed MMV based approach outperforms all the other

Fig. 20. Top to Bottom: Performance comparison of the proposed technique
with the BSS, Adaptive filtering, and Denoising approaches, respectively using
real dataset 2 (Blue: Abdominal ECG, Red: Estimated fetal ECG). TP marks
a ’True Positive’ event, FP a ’False Positive’ event, while FN marks a ’False
Negative’ event. Note that a TP event is marked around 3.5 seconds because
of detection of a FECG pulse that was overlapped by a MECG pulse in the
abdominal recording

algorithms, both in terms of Precision and F1 scores, while
obtaining a perfect score for Recall.

TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED APPROACH WITH BSS,

ADAPTIVE FILTERING, AND DENOISING APPROACHES USING REAL
DATASET 2 IN TERMS OF STATISTICAL MEASURES OF TP, FP, FN,

PRECISION, RECALL, AND F1-SCORE.

Further results using longer portions of this dataset are
shown in Figure 21 and Figure 22 marked with TP, FP,
FN events. These figures do not include comparison with
other algorithms due to limited space and the fact that these
algorithm have already been shown to under-perform in Figure
20. The values for Precision, Recall, and F1-scores for Figures
21 and 22 are summarized in Table III.

Simulation results with these two real datasets provide good
basis for comparing the performance of proposed technique
with other algorithms. While most algorithms performed al-
most perfectly for the real dataset 1, their performances were
much poorer for the real dataset 2 with the BSS algorithm

TABLE III
PERFORMANCE ANALYSIS OF THE PROPOSED APPROACH IN TERMS OF

STATISTICAL MEASURES OF TP, FP, FN, PRECISION, RECALL, AND
F1-SCORE FOR THE SIGNALS RECOVERED IN FIGURES 21 AND 22.



11

Fig. 21. Fetal ECG signal extracted from a 12 second portion of the recording
from real dataset 2 marked with TP, FP, and FN events (Blue: Abdominal
ECG, Red: Estimated fetal ECG).

Fig. 22. Fetal ECG signal extracted from another 12 second portion of the
recording from real dataset 2 marked with TP, FP, and FN events (Blue:
Abdominal ECG, Red: Estimated fetal ECG).

failing completely in separating the MECG and FECG signals.
The results from the proposed technique are however quite
consistent and provide a significantly accurate extraction of
the fetal ECG signal in both cases. These results demonstrate

the potential of the proposed technique in providing useful
information on the fetal cardiac activity while dealing with
challenging ECG acquisition conditions and datasets.

V. DISCUSSION AND CONCLUSION

The availability of the ECG data from multiple electrodes
provides a valuable opportunity to extract fetal ECG signals
by taking advantage of the collective information in a col-
laborative formulation. We presented a comprehensive new
scheme for the joint sparse estimation and extraction of fetal
ECG signals from the abdominal ECG recordings of pregnant
women. The proposed scheme exploited the support similar-
ities between the ECG signals when they are represented in
standard wavelet and specifically learned dictionary domains.
We also proposed technique of combining the estimates from
different abdominal ECG electrodes based on the quality of
the estimates from the individual sensors, enabling inference
of a single fetal ECG source signal. Simulation results ob-
tained using real datasets demonstrate the effectiveness of
the proposed scheme in eliminating the mother’s ECG signal
component from the abdominal ECG recordings, and in the
removal of the noise and distortions from the recovered fetal
ECG estimates. It is clearly shown that the proposed joint
sparse estimation approach provides an efficient framework
to extract the fetal ECG source signal with good estimation
quality and accuracy compared with other state-of-the-art
algorithms, specially when dealing with challenging ECG
data. The proposed technique is able to demonstrate good
performances with even a few seconds duration of signals
available from the chest of the pregnant woman to facilitate
the MECG dictionary learning process. We also note that the
proposed technique works requires a minimum of just two
ECG signals available from the abdomen for the proposed
MMV based approach to work effectively. These conditions
can be met quite easily as ECG data is generally available from
more than one electrode at both the chest and the abdomen.
The proposed scheme can prove to be a valuable tool in the
monitoring of the fetal cardiac activity, enhancing access to
critical insights while utilizing standard non-invasive ECG
acquisition methodologies.
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