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Segmentation of Remote Sensing Images Using
Similarity-Measure-Based Fusion-MRF Model

Tamas Sziranyi, Senior Member, IEEE, and Maha Shadaydeh

Abstract—Classifying segments and detecting changes in terres-
trial areas are important and time-consuming efforts for remote
sensing image analysis tasks, including comparison and retrieval
in repositories containing multitemporal remote image samples for
the same area in very different quality and details. We propose
a multilayer fusion model for adaptive segmentation and change
detection of optical remote sensing image series, where trajec-
tory analysis or direct comparison is not applicable. Our method
applies unsupervised or partly supervised clustering on a fused-
image series by using cross-layer similarity measure, followed by
multilayer Markov random field segmentation. The resulted label
map is applied for the automatic training of single layers. After the
segmentation of each single layer separately, changes are detected
between single label maps. The significant benefit of the proposed
method has been numerically validated on remotely sensed image
series with ground-truth data.

Index Terms—Change detection, cluster reward algorithm,
fusion-Markov random field (MRF), image segmentation, remote
sensing, similarity measure.

I. INTRODUCTION

EARTH observation based on aerial and satellite image
series, including high-resolution remote sensing image

time series (RSITS) [1], results in a large data volume con-
taining several known and maybe unknown details at different
sampling time rates. The sample series (of large image repos-
itories) can have long and irregular revisit times [2], where
usual time series’ evaluation methods of learning and retrieving
spatiotemporal structures [1] cannot be applied.

The definition of changes is usually related to some super-
vised segmentation method, where preliminary statistical or
semantic information is considered. For semantic-level reason-
ing, in [3], a model is shown to map heterogeneous pixels
with similar intermediate-level semantic meaning into land
cover classes of various mapping products. When different
land classes can be well characterized by different statistical
models, energy-optimization-based segmentation methods can
be applied for discriminating green and urban areas [2] in a
Markov random field (MRF) [4], [5] framework. As the above
examples show, very different levels of information may help in
defining terrestrial details of semantic meaning into land cover
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classes. However, in these cases, a kind of human interaction
defining semantic labels (e.g., in [3]) is needed, considering
that clustering is steady over time. If new details related to new
clusters occur, then it should be detected, and the cluster schema
should be updated.

Another class of problems occurs when the definition of
possible classes is uncertain, and we have more image samples
in time; however, the rare sampling rate makes it impossible to
find spatiotemporal structures. Exploring these rarely scanned
RSITS, the images in the series are usually different in light,
weather, season, traffic, flooding, or blooming conditions. For
this reason, a sort of prior segmentation, based on object (build-
ing roofs [6]), structure (urban and green areas and roads in [7]),
or pixel connection models [8], should precede the comparison
of the different time layers. Since comparison of time layers
needs a common basis for clusters, the segmentation of one
time layer should be parametrized by some preliminary cluster
consensus method (as an unsupervised training), where the map
of clusters related to similar areas on different time layers is
assigned to the common multilayer categories.

For MRF segmentation, unsupervised labeling is often used
[9], [10]. Hierarchical models or tree structures are also ap-
plicable for Markov chain models for unsupervised texture
segmentation [7], [11]. For remote sensing tasks, a color seg-
mentation method, using the unsupervised TS-MRF algorithm
[12], can be successfully used; however, this method is divisive,
which means largely unbalanced clusters. This problem is
partly solved in [7] by a graph-based representation related to
neighborhood relationships, by measuring the context similar-
ity. In the above examples, statistical or structural investigation
in the neighborhood or multiscale hierarchy gives solutions for
unsupervised or semisupervised methods to avoid direct human
annotation.

In this letter, remote sensing areas of fused-image series are
examined in different levels of MRF segmentation; the goal
is to automatically detect the category changes of the yearly
transmuting areas having rich variations within a category by
using more sample layers. The overlapping combination of
category variations can be collected in a multilayer MRF [13]
segmentation; this supports the layer-by-layer MRF segmen-
tation and change detection later. The definition of change
is parallel to the definition of similarity; locations of image
time series data that come from different sensors at different
lighting and weather conditions can be compared if we can
find robust in-layer and cross-layer descriptors. For this reason,
we add blockwise similarity measures to the stacking of the
layers’ pixel/microstructure information; we propose to use the
cluster reward algorithm (CRA) [14] in the multilayer fusion
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calculated between layer pairs in the series. The novelties of our
approach are discussed in the following.

• Finding clusters on the stack of image layers results in
aligned cluster definition for the different layers.

• Fused segmentation on the stack of image layers, resulting
in multilayer labeling.

• Multilayer labeling is used for the unsupervised clustering
of single-layer labeling; this aligned labeling makes the
change detection unequivocal.

• A noise-tolerant cross-layer similarity measure, i.e.,
CRA, is used to better identify some classes where ra-
diometric values are dubious.

II. MULTILAYER FUSION-MRF MODEL

In a series of N layers of remote sensing images, let xLi
s

denote the feature vector at pixel s of layer Li, i = 1, 2, . . . , N .
This feature vector might contain color, texture/microstructural
features, cross-layer similarity measures, or a mixture of these.
Set X = {xs|s ∈ S} marks the global image data. An example
of a feature vector would be

xLi
s =

[
xLi

C(s), x
Li

M(s)

]T
(1)

where xLi

C(s) contains the pixel’s color values, and xLi

M(s) is the
cross-layer similarity measures between the image and other
two or more images in the series. The cross-layer similarity
measure might be correlation, mutual information, or CRA.

The multiple layers of RSITS are characterized by the stack
x
Li1,...,in
s of these vectors for a reasonable set of them, n ≤ N ,

i.e.,

x
Li1,...,in
s =

{
x
Li1
s , x

Li2
s , . . . , x

Lin
s

}
. (2)

A. Fusion-MRF: Multilayer Segmentation and
Change Detection

For MRF segmentation, more details can be found in [2], [4],
[5], and [9]. Once feature vectors are generated, the six steps of
the algorithm proposed here are applied. This segmentation and
change detection procedure contains different levels of MRF
optimization in the following main steps.

1) Selecting and registering the image layers; an example
is shown in [14]. In case of professional data suppliers,
orthonormed and geographically registered images are
given; no further registration is needed. In our method, no
color constancy or any shape/color semantic information
is needed; the color of the corresponding areas and the
texture can strongly differ layer by layer.

2) Finding clusters in the set of vectors (x
Li1,...,in
s ) and

calculating the cluster parameters [mean and covariance
of the conditional term in (6)] for the fusion-based “mul-
tilayer clusters.” This step can be performed either by us-
ing unsupervised methods such as the K-means algorithm
or by choosing the characteristic training areas manually.

3) Running MRF segmentation (see Section II-C) on the
fused layer data (x

Li1,...,in
s ) containing the cross-layer

measures [see (5)] and the multilayer cluster parameters,
resulting in multilayer labeling ΩLi1,...,in

.

4) Single-layer training: The map of multilayer labeling
ΩLi1,...,in

is used as a training map for each image layer
Li; cluster parameters are calculated for each single layer
controlled by the label map of multilayer clusters.

5) For each single layer Li (containing only its color and
maybe texture features), MRF segmentation is processed,
resulting in labeling ΩLi

.
6) The consecutive image layers (. . . , (i− 1), (i), . . .) are

compared to find the changes among the different label
maps to get the δi−1,i change map, i.e.,

δi−1,i(.) =
[(
ΩLi

(.) �= ΩLi−1
(.)

)
= TRUE

]
. (3)

B. Cross-Layer CRA Similarity Measures in the Fusion

Different similarity measures have been considered in the
preliminary tests, namely, distance to independence, mutual
information, CRA [14], and Kullback–Leibler divergence (see
[15] and references therein).
CRA(I, J) between two images I and J is calculated using

the joint histogram of the two images, i.e., pIJ , and the marginal
histograms pI and pJ as follows [15]:

CRA(I, J) =

∑
i,j p

2
IJ (i, j)−

∑
i p

2
i (i) ·

∑
j p

2
j (j)√∑

i p
2
i (i) ·

∑
j p

2
j (j)−

∑
i p

2
i (i) ·

∑
j p

2
j (j)

.

(4)

The value of CRA(I, J) is large when there is high correlation
between the two images or when the joint histogram has little
dispersion. The CRA similarity measure is chosen as it gives
better segmentation and change detection results than other
similarity measures such as correlation and mutual information.
This is due to the fact that joint histogram estimation noise has
weak influence on the CRA values, and thus, smaller window
size can be used [15], which, in turn, enables detection of
changes in small areas. In the proposed segmentation algorithm,
a multilayer MRF model is applied by contributing the term
of the cross-layer CRA similarity measure calculated between
each pair in a subset of three or more consecutive images. In
our presentation here, we used three consecutive images only;
however, the algorithm can be easily extended to more layers.
The stack of feature vectors xL1,...,3

s is generated as follows.

1) For each pair of the three consecutive images Li, Li+1

and Li+2, the CRA image is calculated. In the calculation
of the CRA image at each pixel, we use D ×D-pixel
estimation window around this pixel to calculate the local
histograms; the window size can be varied according to
the required scale of change detection. Each CRA image
is then normalized to have values in the range [0, 1]. Let
the obtained CRA images be CRA(i, i+ 1), CRA(i+
1, i+ 2), and CRA(i, i+ 2).

2) Let xLi
s denote the luminance value of pixel s in image

Li. Construct the stack of feature vectors for pixels s in
the three images Li, Li+1 and Li+2 as follows:

x
Li,i+1,i+2
s =

[
xLi
s + αCRAs(i, i+ 1), xLi+1

s

+ α CRAs(i+ 1, i+ 2), xLi+2
s + αCRAs(i, i+ 2)

]T
(5)
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where α is a positive normalizing scalar ensuring the
same range of the two different terms.

Note that the use of the addition of xLi
s and CRAs(i, i+ 1)

in the feature vector, as given in (5), means lower dimensional-
ity than using these features as two separate values as in (1).
However, with the assumption that xLi

s and CRAs(i, i+ 1)
are statistically independent, it can be verified that they will
contribute similar terms to the energy of MRF as when they are
used as two separate features.

C. MRF Optimization

Let S = {s1, s2, . . . , sH} denote the image pixels, and Ω =
{ω = (ωs1 , . . . , ωsH ) : ωsi ∈ Λ, 1 ≤ i ≤ H} be the set of all
possible labels assigned to the image classes. We use a maxi-
mum a posteriori (MAP) estimator for the label field. The MAP
estimator is realized by combining a conditional independent
random field of observed data P (xs|ωs) and an unconditional
Potts model [16] for forming smooth connected regions [see
(7)]. The optimal segmentation corresponds to the global label-
ing Ω̂ and is defined by the energy minimum, i.e.,

Ω̂ = argmin
Ω

⎡
⎣∑

s∈S
− logP (xs|ωs) +

∑
r,s∈S

Θ(ωr, ωs)

⎤
⎦ (6)

where the minimum is searched over all the possible segmenta-
tions (Ω) of the input, and the Θ(ωr, ωs) neighborhood-energy
term is zero if s and r are not neighboring pixels; otherwise, Θ
can be modified by applying the β homogeneity weight. Thus

Θ(ωr, ωs) =

{
0, if ωr = ωs

+β, if ωr �= ωs
. (7)

In our application, we set β = 10.0, and we used a graph-cut-
based α-expansion algorithm for energy minimization of MRF,
with the adherent implementation in [5].

III. EXPERIMENTAL RESULTS AND DISCUSSION

Experiments have been tested on aerial scanned images of
Tiszadob area from years 2000, 2005, and 2007; the spatial
resolution is 0.5 m/pixel, and all the images have been aligned
as orthophoto. Images of 2000 and 2005 were scanned on
photo-films (Hasselblad 500 EL/M) before digital scan. The
2007 image has been originally scanned in digital form (Nikon
D3X, with AF-S Nikkor 50-mm 1.4G lens). The multilayer
fusion-MRF and the CRA cross-layer measure proposed in
Section II are validated on the above aerial images of very
different scanning time instants and seasonal conditions, having
complex (multiple patterns) classes. First, multiclass (having
four labels) segmentation is performed to find meaningful re-
gions in a partly supervised multilayer segmentation procedure.
Then, in a second experiment, we show results evaluated on
a ground-truth image series, which is artificially composed
of different parts taken from the Tiszadob image series. In
the experiment, MRF segmentation (see Section II-A) on the
fused images is applied following the unsupervised K-means
clustering of the fused data. The labeling resulting from the
fused segmentation is then fed into each single layer for train-

ing the Gaussian models [2], [9] of the in-layer clusters. In
both experiments, we compare the performance of our new
multilayer MRF segmentation against independently processed
single layer labeling [9], [10]. The comparison is carried out
with and without the CRA values in the feature vector to
highlight the effect of the proposed fusion of CRA images.
That is, we compare the performance of the best proposed ML-
MRF-CRA with the following three methods:

• single layer MRF on CIE Lab color values: SL-MRF;
• SL-MRF with CRA similarity measures: SL-MRF-CRA;
• the proposed multilayer fusion-MRF on Lab color values

only: ML-MRF.

A. Supervised Multiclass Segmentation of Image Time Series
Using Cross-Layer CRA

In this experiment, three 800 × 400 aerial image sections,
as shown in Fig. 1 (row 1), are evaluated in the comparison.
The images are from different scanning time conditions. They
consist of four main classes: meadow, forest, river, and sand
areas. We can check that the small island that appears in year
2000 input image does not exist in the other two images. The
rivers contain dense vegetation that is very different from one
year to the other; this makes it difficult to identify the water
class based on color or texture alone. Since only one variant per
class is trained (see selected training areas in Fig. 1, upper-right
image), other class variants (e.g., differently colored oxbow
sections of different vegetation in 2007) can be recognized by
the help of similarity measure among layers.

Segmentation results for the three layers are shown in Fig. 1;
we can see that only ML-MRF-CRA can detect the different
oxbow sections with success. For ground-truth illustration pur-
poses, we further ran a two-layer MRF optimization for the
fusion of the color and infrared images of 2007. The infrared
image and resulted labeling of this experiment are shown in
Fig. 2. The use of an infrared image helped in correctly iden-
tifying the water class and other details. Compared with Fig. 1
(2007, right), these results show that oxbow water surface vari-
ants cannot be identified by the methods SL/ML-MRF, but only
with ML-MRF-CRF. By using Fig. 2 (right) as ground-truth
reference, we can numerically evaluate the labeling methods;
rates for 2007 can be found in column 2 of Table I. These results
show that the use of fusion segmentation with CRA values has
improved the segmentation accuracy significantly from that of
the color data only, without using IR source. We can see here
that more information can be exploited from the single layers
by using cross-layer and fusion data.

B. Unsupervised Segmentation and Change Detection

In [13], we have successfully tested a two-class multilayer
change detection method. Now, numerical evaluation of a
three-class unsupervised segmentation and change detection
experiment is shown, where one of the classes is assigned by
three variations. A ground-truth image series has been gener-
ated: three 910 × 750 images composed of original textures
(meadow, forest, and river) from the Tiszadob aerial image
series. MRF segmentation (steps 1–3 in Section II-A) on the
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Fig. 1. (Row 1) Aerial photos around the Tiszadob oxbow area (Hungary, photos by FÖMI) from the years 2000, 2005, and 2007. (Rows 2–5) Segmentation
results for the proposed new ML-MRF-CRA algorithm compared the performance with that of the conventional SL-MRF method, its improvement with CRA
(SL-MRF-CRA), and the proposed ML-MRF without CRA. Training areas used in the segmentation process are shown in the upper-right image: Meadow (M),
Forest (F), Sand (S), and River (R).

Fig. 2. Ground-truth result by a one layer fusion with an infrared image to find
the class variants of different water covers. (Left) Infrared image from the year
2007 and (right) the segmentation results for 2007 using MRF segmentation on
CIE Lab color values (Fig. 1, top-right input layer) fused by the infrared image.
Compare the results to the third column in Fig. 1.

fused images is applied following a K-means clustering of the
fused data with three classes. The segmented fusion labeling is
then fed into each single layer for training (keeping together the
class variations), and then, MRF segmentation on each layer is
run separately (steps 4–5 in Section II-A); segmentation results
are shown in Fig. 3, whereas change detection results (see
Section II-A, step 6) are shown in Fig. 4 and in columns 3 and
4 of Table I. This experiment shows that the use of the fusion-
MRF model with CRA results in proper change detection for
compound classes.

C. Discussion

From the above experiments, we can conclude the following.
• The use of cross-layer similarity helps to better identify

some classes where radiometric values are dubious, i.e., in

TABLE I
MISCLASSIFIED PIXELS’ RATES IN FIGS. 1 AND 4, AND THE EXECUTION

TIME (MATLAB, 2.67 GHZ) OF THE THREE LAYERS IN FIG. 1

Fig. 1 the river class variants for 2007 and in Fig. 3 the
meadow, river, and forest/bush (three variants) classes.

• The proposed method relies on the δi−1,i change map
in cross-layer labeling [see (3)] and does not depend
on any threshold values; thus, it performs better than
similarity-measure-based change detection algorithms that
use thresholds for change/no-change classification [14].

• Since the outcome classes of multilayer segmentation are
later used in the training of each single layer, similar
classes are automatically given similar labels in all layers.

• No specific information of image sources is considered,
which makes it possible to use the method for any other
image sources or modalities.

The improved performance of the proposed algorithm for
both experiments comes along with additional computational
load due to the calculation of the CRA images (see column 5
of Table I). It depends on the used window size and on the esti-
mation method of the joint histograms. However, the projection
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Fig. 3. Unsupervised segmentation results for the multilayer image segmen-
tation for meadow, river, and the three variants of forest/bush categories; the
proposed similarity-measure-based fusion-MRF model gives the best result
with automatically synchronized cluster definition.

Fig. 4. Change detection results for unsupervised multilayer image segmen-
tation methods in Fig. 3; the ML-MRF-CRA method performs the best. Circled
areas denote misclassified regions. See the numerical results in Table I. First
row: changes 2000–2005; second row: changes 2005–2007.

of the multilayer labeling (step 4 in Section II-A) to each single
layer makes the MRF on single layers (step 5 in Section II-A)
converge faster compared with SL-MRF.

In the above experiments, we used 7 × 7-pixel estimation
window for the calculation of CRA local histograms; testing
the evaluation at different window sizes, this size was found to
give the best segmentation as well as change detection of the
small island in evaluation in Fig. 1. The choice of the window
size depends on the resolution of the images and the scale of
the desired change detection. The detection of small changes
requires small window size; however, larger window size gives
better estimation of the CRA similarity measures. Finding the
optimum CRA window size for each point adaptively, along
with the definition of the scale of change detection and the
image resolution, needs further research on the local scale
characteristics (see [11] or [17]).

For the present experiments, using three image layers in
the comparison gives good results. Using more layers requires
dimensionality reduction or larger training areas that assure
the presence of sufficient independent samples. Moreover, in
such case, the number of possible CRA image combinations is
larger than the number of layers. The used CRA images can
be selected on the basis of maximal cross-layer information

complexity. This problem needs further research on the quality
of images and the dimensionality of the feature vectors.

IV. CONCLUSION

We have shown that fused segmentation using cross-image
featuring may result in better segmentation or change detection
for sparely sampled remote sensing image series with classes
having more undefined variants. The unsupervised or partly
supervised (only one class variant in training) method results
in getting the common classes on the different layers, and its
projection to the single layers works as an adaptive training.
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