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ABSTRACT 

In this paper, we present the steady state analysis of adaptive 
IIR notch filters based on the least mean p-power error cri- 
terion. We consider the cases when the sinusoidal signal is 
contaminated with white Gaussian noise and p = 3,4.  We 
first derive two difference equations for the convergence of 
the mean and the Mean Square Error (MSE) of the adap- 
tive filter’s notch coefficient, and then give the steady state 
estimation bias and MSE. Stability conditions on the step 
size value are also derived. Simulation experiments are pre- 
sented to confirm the validity of the obtained analytical re- 
sults. It is shown that the notch coefficient steady state bias 
of the p-power algorithm for small step size values is in- 
dependent of the step size value and is equal for p = 1 , 2 , 3  
and 4. However, for larger step size values, the p-power al- 
gorithm with p = 3 provides the best performance in term 
of the MSE. 

1. INTRODUCTION 

Adaptive IIR notch filters have been successfully used for 
detecting sinusoidal signals in wide-band noise. So far, 
several adaptive IIR notch filtering algorithms based on 
least Mean Square Error (MSE) criteria have been pro- 
posed [13- [3]. However, MSE criteria do not always pro- 
vide the best performance, and accordingly there has been 
increased interest in developing adaptive algorithms based 
on L, normed minimization. So far several L, norm based 
adaptive IIR notch filtering algorithms have been proposed, 
such as the Sign Algorithm (SA) [4], [5] and the p-power 
algorithm [6]. However, the question to be asked here is: 
for which value of p does the p-power algorithm provide 
the best performance? The answer to this question, as sim- 
ulation experiments show, depends on the nature of additive 
noise. The SA algorithm seems to provide the best perfor- 
mance when the sinusoidal signal is contaminated with im- 
pulsive noise [ 5 ] .  However, for the case when the additive 
noise is Gaussian, Pei et al. [6] have shown by intensive sim- 
ulations that the performance of the p-power algorithm for 

p = 3 is better than that of the LMS algorithm (i.e. p = 2) 
and the SA (i.e. p = 1). The performance analysis for SA 
and LMS algorithm have been intensively studied in the lit- 
erature [1]- [3], [7]. However for p > 2, no performance 
analysis has been presented so far. 

In this paper, we present the steady state analysis of the 
p-power algorithm 161 for the cases when p = 3 and p = 4, 
and the additive noise is white Gaussian. After a short re- 
view of the p-power algorithm, two difference equations for 
the convergence of the mean and MSE are derived and sta- 
bility bounds on the step size value are discussed. Closed 
form expressions for the steady state bias and MSE are then 
concluded. Simulation experiments that confirm the ob- 
tained analytical results are presented with some compar- 
ison remarks on the performance of the p-power algorithm 
for different values of p .  

2. THE P-POWER ALGORITHM 

In this paper the second-order IIR notch filter with con- 
strained poles and zeros [8] is considered. Its transfer func- 
tion is given by 

1 + az - l+  2 - 2  

1 + paz- l+ p2z-2 
H ( z )  = 

where p is the pole radius of the adaptive filter which is 
restricted to the range [0, 1) to insure stability of the IIR 
filter. The parameter a in (1) is the filter notch coefficient; 
its true value is calculated by a0 = -2 COSWO, where WO is 
the frequency of the input sinusoidal signal 

.(TI,) = A C O S ( W O ~  + 0) + w(TI,) .  (2) 

The additive noise U(.) in (2) is assumed to be zero mean 
white Gaussian noise with variance U;; A and 0 are the un- 
known signal amplitude and phase. 

The p-power algorithm [6] updates the notch coeffi- 
cient a such that the mean p-power of the notch filter’s 
output signal e(n), that is E(le(n)lP), is minimized. Ac- 
cordingly, using the steepest descent algorithm, the update 
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equation of the filter’s notch coefficient estimation error 
&(n) = 6(n) - a0 is given by 

(3) b,(n + 1) = &(n) - p p e  P-’(n) sign(e(n)) s(n)  

for p odd, and by 

a,(n + 1) = ~, (n)  - p p  ep-’(n)s(n) (4) 

for p even. p p  is the step size value, and s(n)  is the gradient 
signal calculated by 

3. PERFORMANCE ANALYSIS 

At the steady state, the filter’s notch coefficient &(n) be- 
comes close enough to its true value ao. Thus, using Taylor 
series expansion of the notch filter transfer function (1) in 
the vicinity of ao, the output and gradient signals can be 
calculated by [3] 

e(.) = AB cos(won + 0 - 4)ha(n) (6) 

s(n) = A + e - (7) 
 AB C O S ( ~ ~ R .  + e - 
 AB^ cos(w0n + e - w0 - 24)6i(n) + v2(n) 

-pAB2 cos(won + 8 - 24)69(n) + wl(n) 

- 4)ha(n) 

where w1(n) and vz(n) are the additive noise in the filter’s 
output and gradient signal respectively. 4 and B are defined 
as 

(8) B =  
1 

(1 - p)J(1+ p)2  - 4 p  cos2 WO 

In our analysis for p = 3,  to handle the sign function in the 
update equation (3), we use similar approach to that used 
in the analysis of the SA [7] which is based on the assump- 
tion that the output signal e ( n )  is Gaussian distributed with 
mean value pe and variance U: that can be calculated di- 
rectly from (6),  and that e(n) and &(n) are jointly Gaus- 
sian distributed. This assumption has been tested in [7] and 
proved to hold as long as the noise v(n) is white and not 
necessarily Gaussian. 

3.1. Convergence of the Mean 

Substituting (6) and (7) in (3)((4)), applying the expectation 
operator E, and after long mathematical work, we can get 
the following difference equation for the convergence of the 
mean: 

whe,re for p = 3, 

u , , ~ A ~ B ~ ( c o s ( w o  - 24) + COS(WO)) 
3 

B:5,1 = -- f i  

and for p = 4,  

A4,l = ~ . ~ u % , A ~ B c o s ( u o  - 4) 
l?4,1 = - ~ . ~ u : , ~ A ~ B ~ ( c o s ( w o  - 24) + COS(WO)) 

+1.5A2B2R1,2 
(74,i = 3U;,Rl,2. (1 1) 

a;,, U $ ,  and R1,2 are respectively the variance of vl(n) ,  
the variance of wz(n), and the correlation between ~ ( n )  
ancl w2(n), and can be calculated using the theory of 
residues [ 31. 

In the calculation of (9) and (12) (presented in 
the following subsection), we need to go through 
the calculations of many terms of the general form 
E[6;,”(n)sign(e(n))w~(n)v~(n)] for p = 3 or of the 
form E[6F(n) vi(.) w,”(n)] for p = 3 , 4 ,  where m = 

These terms are calculated using the Gaussian factoring the- 
orem, the relations between higher order cumulants of ran- 
dom signals and their moments, and the property that higher 
order cumulants of Gaussian signals equal zero. The terms 
of dF(n), with m 2 3 are ignored. It is also assumed that 
the estimation error &(n) is uncorrelated with the noise sig- 
nals q ( n )  and wz(n). For p = 3, the joint moments of 
sign(e(n)) and each of d,(n), wl(n) and w2(n) are calcu- 
lated using the Gaussian probability distribution function of 
the. output signal e(n) [3]. Calculation details are omitted 
here due to space limitation. 

0, . . . , 16(p - l), 1 = 0, . . . , 2 ( p  - 1) and IC = 0,1,2.  

3.2!. Convergence of the MSE 

Squaring both sides of (3)((4)), using (6) and(7), and then 
averaging, we can after long calculations, derive the follow- 
ing difference equation for the convergence of the MSE: 

(12) 

P = 314 
E[&% + 111 = (1 - PPBP,2> E [ m l  

-ppAp,2 E[&(n)I + c~iCp,21 

where for p = 3, 

4 2  = -utJ1R1,2 12 - pp (12A2BRi,~u,,  2 COS(WO - 4) 
fi 

-3pA2Bu:, cos(4)) 
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Figure 1 : Comparison between theoretical and simulated 
steady state estimation bias and MSE versus the sinusoidal 
frequency of the input signal WO ( p p  = 0.00005,p = 
0.9, A = a, SNR=5). 

6 
B3,2 = - A ~ B ~ , ,  COS(W~ - 4) 

J21; 
-pp (1.5A4B2a:1(0.5 + C O S ~ ( W O  - 4 ) )  
+3A2 B2a:l a:2 + 6A2 B2 Ri,2 
+3pA2B2a,4, (cos(24) + 0 . 5 ~ )  

3 
-12R1,2pA2B2a;, (COS(WO - 24) + COS(WO)) )  

(13) C3,2 = 5 A 2 ~ t ,  + ~ u : ~ u : ,  + 12RT,20;, , 

and for p = 4, 

A4,2 = Sa:, Rf,2 - p p  (90A2Bu:, R1.2  COS(WO - 4)  
- i5pa:, A ~ B   COS(^)) 

B4,2 = 3A2u:, B COS(WO - 4) 
- p p  ((45/4)A4B2~t1(0.5 + C O S ~ ( W O  - $)) 
+(15/2)A2B2a:, p 2  - 15pA2Ba;,  COS(^) 
-90pA2B2a:, R ~ J ( C O S ( W O )  + COS(WO - 2 4 ) )  

2 2 2  4 +(45/2)A B %AJ,) 

3.3. Stability Bounds 

Stability bounds on the step size value can now be easily 
obtained. In fact if the influence of the the second term in 
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Figure 2: Comparison between theoretical and simulated 
steady state bias and MSE versus the pole radius p ( p p  = 
0.00005, WO = 0.3n, A = Jz, SNR=5). 

(9) is ignored, the sufficient condition for the convergence 
of the mean is then given by 

I1 - ppA,,11 < 1 ,  P = 394. (15) 

Providing that (15) holds, the sufficient condition for the 
convergence of the MSE can then be deduced from (12) as 

Using (17) in (9) and (12), solving the resulting two equa- 
tions simultaneously, the following closed form expressions 
for the steady state bias and MSE can be obtained 

3.5. Simulation Results 

To confirm the obtained analytical results, we have con- 
ducted several experiments. Figure 1 shows comparison be- 
tween simulated and theoretical steady state bias and MSE 
versus the sinusoidal signal frequency WO for p = 3,4. 
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Figure 3: Comparison between theoretical and simulated 
steady state bias and MSE versus the step size value p p  ( p  = 
0.9, WO = 0 . 3 ~ ,  A = 4, SNR=5). 

It can be observed that the theoretical results match the 
simulations very well except in the the neighborhood of 
WO = 0.5~. Figure 2 shows comparison between simulated 
and theoretical steady state bias and MSE versus the pole 
radius p for p = 3,4.  As expected, the bias and MSE de- 
crease as the pole radius p increases. Figure 3 shows com- 
parison between simulated and theoretical steady state bias 
and MSE versus the step size value p p .  This figure indicates 
that the p - power algorithm results in similar steady state 
bias for both p = 3 and p = 4 for sufficiently small step 
size values. In fact, for small step size values the second 
term in the numerator of (1 8) can be neglected and it can be 
verified that the p-power algorithm has similar expression 
for the steady state bias for both p = 3 and p = 4 which is 
independent of the step size value and is mainly due to the 
correlation R I , ~  = E[vl(n)vz(n)]. Interestingly, it is sim- 
ilar to the bias expression for the SA (i.e. p = 1) [7] and 
the LMS (i.e. p = 2) [3]. However, as it can be observed 
from Figure 3, the p-power algorithm with p = 3 performs 
better than that with p = 4 for larger step size values. It 
has been observed through many experimental results that 
the convergence speed of the p-power algorithm with p = 3 
is better than that with p = 1,2,4.  Detailed comparison of 
the performance of this algorithm for different values of p 
is out of scope of this paper and will be presented later on. 

4. CONCLUSION 

This paper presented steady state analysis for constrained 
adaptive IIR notch filters based on least mean p-power error 

criterion for the cases when p = 3 ,4  and the sinusoidal 
signal is contaminated with white Gaussian noise. Closed 
form expressions for the steady state estimation bias and 
MSB have been derived and step size stability bounds have 
been presented. Simulation results confirm the analytical 
results. It has been shown that for small step size values, 
the p-power algorithm produces similar estimation bias for 
all values of p. However, for larger step size values, the 
p-power algorithm with p = 3 performs better than that 
with p = 4. 
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