
Modelling Ocean Parameters

Through Graphical Models

Felix Schneider, Yanira Guanche Garcia, Joachim Denzler

Computer Vision Group

Friedrich Schiller University Jena

Jena, Germany

Email: felix.schneider@uni-jena.de

Abstract—Ocean parameter modelling is an important task for
many fields. While using simulations and simple statistical models
may not yield desired results in reasonable time, using graphical
models like Bayesian networks can address this problem. In this
paper, we show the application of Bayesian networks to the tasks
of estimating and predicting significant wave heights in the North
Sea. Additionally we present the K2 IO algorithm, a modification
to the K2 algorithm developed for the prediction task. Exper-
iments show the possibilities and problems of estimation and
prediction with Bayesian networks. They also show that the K2
IO algorithm produces a structure that is suitable for prediction
in a shorter time than the K2 algorithm.

I. INTRODUCTION

Research on environmental processes is vital for a wide

range of modern applications in engineering and sciences.

The need for knowledge about these processes is present

in research related to climate change, renewable energies

and coastal defence planning as well as flood and storm

risk assessment. All of these areas contain spatio-temporal

multivariate problems. On the one hand, these problems are

too complex to model with basic statistical tools. On the other

hand a detailed simulation is often not reasonable, because

this takes too much time to get the outcomes or there is not

enough process knowledge to create a model with plausible

results.

In many scientific fields methods of computer vision and

machine learning have acquired great relevance due to the

strong improvement in computational capabilities and the

increasing amount of available data. While these methods are

already widely applied in many industrial branches and in

medical sciences, there remain many possible applications in

fields like environmental sciences.

The fields of computer vision and machine learning en-

compass a multitude of techniques and models. Many of

them are fitting for multivariate data as well as for modelling

time series. Especially the methods from computer vision are

applicable for spatial data, as a grid filled with information can

be processed in the same way as an image. Graphical models

and in this case Bayesian networks are a widely used machine

learning method, that combines graph theory and probability

theory to model systems that are too complex to describe with

simple statistical methods.

Ocean parameter modelling is a part of environmental

sciences. The field is characterised by complex interactions

of different factors as the significant wave height and the

wind speed at different locations. Creating a simulation to

accurately estimate and predict wave heights takes a lot of

time and expert knowledge. This paper showcases that creating

Bayesian networks and training them on ocean data can

produce models that are capable of accurately estimating and

predicting wave heights.

One of the subfields of Bayesian networks is the creation

of the graph structure. One possibility is letting experts design

the network structure by hand, but knowledge and the time

of experts is needed to do so. Another possibility is learning

the network structure from data. As this is a time consuming

task, this paper proposes a method called the K2 IO algorithm

that decreases the time of the common K2 structure learning

algorithm when used for prediction.

In section II we present an introduction to Bayesian net-

works. Section III explains our modification to a common

Bayesian network structure learning algorithm. The appli-

cation and experiments we did are described together with

the data in section IV-A and section IV-B. Conclusions and

suggestions for further work are presented in section V.

II. BAYESIAN NETWORKS

Probabilistic graphical models combine graph theory and

probability theory. [KF09] Bayesian networks are a type of

graphical models that use a directed acyclic graph (DAG)

to model the dependencies between random variables. The

conditional probability distribution (CPD) P (x) is dependent

on the parents of the random variable in the DAG pax:

p(x) = p(x|pax) (1)

P (x1, ..., xn) =
n∏

i=1

P (xi|paxi
) (2)

A random variable in a Bayesian network can be discrete

or continuous.

In the discrete case, the CPD can be stored using a tabular

CPD, where every configuration xi of the random variable X

with k being the number of its configurations has a probability

P (xi) with P (xi) > 0∀i ∈ {1, ..., k} and
∑k

i=1
P (xi) = 1

assigned.

In the continuous case, the CPD can store the parameters

of the distribution function of the random variable. In the case

of a Gaussian distribution N (µ, σ2) this would be the mean

value µ and the variance σ2.

A discrete random variable with discrete parents can be

represented as a joint probability table of all combinations

of configurations of the parents, while the parameters of a

continuous random variable with continuous parents can be

represented as a function of the outcomes of the parents.

If a continuous random variable has discrete and continuous

parents, a combination of these methods can be used. For every

combination of configurations of the discrete parents, the CPD

can be represented by a distribution function whose parameters

are functions of the outcomes of the continuous parents.

The most common case of these mixed nodes is the

conditional linear Gaussian CPD (CLG CPD). For a con-

tinuous random variable X with the discrete parents D =
{D1, ..., Dm} and the continuous parents C = {C1, ..., Ck} a

CLG CPD has for every configuration d of D a set of k + 1
coefficients µ,wd,1, ..., wd,k and the covariance σ2 the form:

p(X|d, c) = N (µ+
k∑

i=1

wd,ici; σ2) (3)

A. Inference

Given a Bayesian network B, with the random variables X ,

a set of known evidence nodes E, a set of queried nodes Q,

and the unobserved nodes U = X \(E∪Q), we can formulate

a query as:

P (Q|E = e) =
P (Q, e)

P (e)
(4)

In the easiest way and in case of a fully discrete Bayesian

network, this can be solved by creating the joint probability

table over the whole Bayesian network and summing out the

unobserved variables:

P (q, e) =
∑

U

P (q, e, u) (5)

P (e) =
∑

Q

P (q, e) (6)

However, creating the full joint probability table is not only

undesired, but in the case of Gaussian or mixed Bayesian

networks even impossible. To solve this problem, there ex-

ists a variety of different exact and approximate inference

algorithms. The most basic algorithm that exploits the graph

structure of the Bayesian network is the variable elimination

algorithm. The basic idea of this algorithm is to follow the

graph structure of the Bayesian network and to sum out the

variables along the way. This can be done not only in discrete

models but also in Gaussian and mixed Bayesian networks.

While Bayesian network inference is still NP-hard, in most

application cases the problem of inference can be solved in

reasonable time.

B. Parameter Learning

One of the strengths of the Bayesian network model is that

its parameters can be learned from data. As the CPDs can

consist of parametrised distribution functions, these distribu-

tions can also compensate for cases where only small training

datasets are available.

If the training data D is complete, meaning that in every

sample the value of every random variable is given, the param-

eters can be learned by using maximum likelihood estimation.

The likelihood L of a distribution P (D : θ) over the data D

with the parameters θ from the hypothesis space Θ is defined

as:

L(θ : D) = P (D : θ) (7)

The likelihood describes how good parameters fit for a

certain distribution over data. Consequently the maximum

likelihood is defined as:

L(θ̂ : D) = max
θ∈Θ

L(θ : D) (8)

According to our definition of the Bayesian network in

equation 2, we can split the likelihood of the random variables

x ∈ X into:

L(θ : D) =
∏

x∈X

P (x|pax : θx) (9)

This allows us to estimate the maximum likelihood for every

random variable separately by varying the parameters of the

CPD of the variable.

C. Structure Learning

While the graph structure of a Bayesian network can be

learned by hand, it was also mentioned that learning the

structure from data is possible. The K2 algorithm is a simple

and greedy algorithm that searches for parents for each node

separately [CH92]:

1: K2 algorithm

2: Input: A set of n random variables, the maximum number

of parents u, the training dataset D with m samples.

3: Output: A list of parents for each random variable.

4: for i← 1 to n do

5: parents(i) := ∅
6: score old := score(i, parents(i))

7: potential ps := all random variables before i

8: while potential ps 6= ∅ do

9: score new := score old

10: for p ∈ potential ps do

11: if score(i, parents(i) ∪{p}) > score new then

12: score new := score(i, parents(i) ∪{p})
13: new p := p;

14: end if

15: end for

16: if score new > score old then

17: parents(i) := parents(i) ∪{new p}
18: potential ps := potential ps \{new p}

19: end if

20: if score new == score old or |parents(i)| == u

then

21: potential ps := ∅
22: end if

23: end while

24: end for

25: return parents

To avoid cycles the K2 algorithm takes a list of ordered

nodes. For every node Xi the set of potential parents Ppot,i

is the previous nodes X1, ..., Xi−1 in the list. The algorithm

assigns a score to every potential parent and adds the node with

the best score to the set of parents Pi. This step is repeated

until no potential parent can improve the score or a defined

maximum number of parents is reached. Compared to other

scoring algorithms the K2 algorithm is fast, but with a growing

number of nodes and a high maximum number of parents this

algorithm still takes significant time as shown in section IV-B.

III. K2 IO

A Bayesian network can also be trained for prediction tasks.

To do this, we can use a set of nodes for the past and one

set for the prediction. The DAG for this can be trained with

the K2 algorithm. However, when training the DAG for the

prediction, the algorithm usually creates connections that are

not necessary for this task. On the one hand connections

between the past nodes are created. As the values for the past

nodes are always given as evidence when predicting values,

this is not necessary. On the other hand connections between

prediction nodes are created. This could influence the results as

the wave heights at one time step are always correlated to some

point. However, these connections are not mandatory, because

these influences are already captured by choosing the parent

locations in the past set, especially for short term prediction.

To use this information we modified the K2 algorithm so

that only connections between past and prediction nodes were

allowed. This resulted in the K2 IO algorithm.

1: K2 IO algorithm

2: Input: A set of random variables divided in an input set of

k random variables rv input, one output set of n random

variables rv output, the maximum number of parents u,

the training dataset D with m samples.

3: Output: A list of parents for each random variable.

4: for i← k + 1 to k + n do

5: parents(i) := ∅
6: score old := score(i, parents(i))

7: potential ps := rv input

8: while potential ps 6= ∅ do

9: score new := score old

10: for p ∈ potential ps do

11: if score(i, parents(i) ∪{p}) > score new then

12: score new := score(i, parents(i) ∪{p})
13: new p := p;

14: end if

15: end for

16: if score new > score old then

17: parents(i) := parents(i) ∪{new p}
18: potential ps := potential ps \{new p}
19: end if

20: if score new == score old or |parents(i)| == u

then

21: potential ps := ∅
22: end if

23: end while

24: end for

25: return parents

In contrast to the normal K2 algorithm, this algorithm takes

two sets of nodes and no ordering. One set of nodes is the

input set and another is the output set, hence the name IO.

The algorithm then searches for parents only for the output

nodes. The set of potential parents for each node is the set of

input nodes. This way, every output node is guaranteed to be

connected only to input nodes and the time needed to search

for connections is reduced.

IV. CASE STUDY: WAVE HEIGHT AT THE NORTH SEA

In this section we show how we tested the application of

Bayesian networks and the new K2 IO algorithm on North

Sea data.

A. Data

The data we used was the CoastDat-1 dataset [HZG12].

This dataset encompasses various variables on a grid with

hourly observations on points in the distance of approximately

5 kilometres from 1958 to 2007 in the North Sea.

We chose 12 locations to observe as shown in Figure 2.

Three offshore locations were chosen in places with high max-

imum wave height and high variance, 9 coastal locations were

chosen near cities at the North Sea coast. The cities are Calais,

Antwerp, the Hague, Amsterdam, Groningen, Bremerhaven,

Cuxhaven, Husum and Esbjerg. In all experiments we used

20% of the data for testing and 80% for training. The data

was divided in alternating segments of one year of testing

data and 4 years of training data.

You can see the locations in Figure 2. The distribution of the

wave heights are shown in Figure 1. After logarithmisation,

the wave distributions mostly followed a Gaussian distribution.

Notable exceptions from this are especially the locations near

Amsterdam, Bremerhaven and Cuxhaven. In these cases the

water was shallow compared to the other locations which led

to big waves being broken and becoming small waves. In the

distribution plot this can be seen very well as the wave height

density rises left to the supposed Gaussian mean value.

For the discrete experiments we discretised the data into 5

bins using Lloyd’s algorithm. This algorithm is used in various

fields of computer science for discretisation of continuous val-

ues and iteratively minimises a quadratic noise function to find

fitting bin centres and borders [Llo06]. As the common wave

Fig. 1. Normalised wave height distributions of the different locations. Blue are the wave heights, red are the wave heights logarithmised, the x axis is the
wave height in meters..

Fig. 2. Locations in the north Sea. Offshore nodes are blue, coastal nodes
are green.

heights differ from location to location, we have discretised

the waves for every location independently. In the case of The

Hague, the bins are very low from 0− 0.71 meters, low up to

1.25 meters, medium until 2.00 meters, high up to 3.06 meters

and very high everywhere above.

B. Experiments

In this section we present the results of our experiments.

The first experiment was to train a Bayesian network on

the discrete wave heights to be able to estimate them. This

was done in two configurations: In the first configuration only

the 3 offshore nodes were used as evidence, in the second

configuration all nodes besides the queried one were used as

evidence. In the first case the overall recognition rate (ORR)

is 57%, in the second case the ORR is 78%. This means that

this percentage of waves are correctly detected. You can see

in Figure 3, that the most waves that are not detected correctly

are only one bin off.

Subsequently we evaluated the possibilities for training a

Bayesian network with continuous wave data. In Figure 4 you

Fig. 3. Bin deviation rates of the discrete estimation.

can see the probability density functions for the estimation

errors. The errors are relative to the mean wave height at their

respective location. The variance of the tests with the offshore

nodes used as evidence is 0.18, the variance of the tests with

all unqueried nodes used as evidence is 0.05. This means that

in the first case 95% of the errors do not exceed 36% of the

mean wave height and in the second case 95% of the errors

do not exceed 10% of the mean wave height.

The prediction of wave heights was another task. To predict

values the nodes were doubled into one past and one prediction

set. The results in Figure 5 show the prediction capabilities

of this structure for up to 100 hours. We tested for the first

10 hours hourly, up to 20 hours every second hour, up to

50 hours every fifth and up to 100 hours every tenth hour.

This was done because the biggest changes in the prediction

error happen in the first hours, later on the the error does not

change as fast. As expected the prediction quality decreased

with time. However it is notable that the prediction quality

for short term prediction is better than the estimation. The

Fig. 4. Probability density function of the relative continuous estimation
errors.

Fig. 5. Variances of prediction and estimation deviation from the ground truth
data. The prediction is shown per prediction time up to 100 hours.

estimation results are represented by the horizontal lines. The

short term prediction quality being better than the estimation

is due the system having information not only from offshore

or neighbouring locations but also from the queried locations

themselves, just from the past.

Examples of predictions can be seen in Figure 6. In a

you can see the example of an easy and accurate prediction.

However b shows that the prediction can cover general trends,

but the details of the curve are not anticipated. The plot in

c shows an example of a bad prediction. While the model

recognises that the wave development begins with a small

ascend, the long term prediction is unrelated to the ground

truth. There seems to be an event, as the wave height exceeds

the usual values. Example d shows another case of a fairly

good prediction. While the details aren’t captured, the general

development fits to the ground truth data.

The other prediction task was to use a DAG that was trained

with the K2 IO algorithm. In Figure 5 you can also see that the

Fig. 6. Examples of predictions. Blue is the ground truth value, red is the
prediction.

prediction quality decreased only marginally when connections

between nodes of one time slice were forbidden and the DAG

was trained with the K2 IO algorithm.

As expected the resulting DAG has a much lower number

of connections. In Figure 7 you can see that there are no

interconnections in one time step. The upper nodes always

represent the past nodes, the lower nodes are the prediction

nodes. In this case a maximum number of 4 parents per node

were allowed. The standard K2 algorithm generated a DAG

with 86 edges while the K2 IO algorithm created a DAG with

only 48 edges. This means that there are 38 less influences

that have to be learned when training the Bayesian network

weights.

This algorithm also fulfilled our expectations in its speed

up compared to the normal K2 algorithm. In figure 8 you

can see that the K2 IO algorithm is significantly faster than

the K2 algorithm. The algorithm had a mean speedup of 1.96
compared to the conventional K2 algorithm. Together with the

low loss of prediction quality this shows that this algorithm is

suitable for the creation of DAGs for prediction tasks.

V. CONCLUSION AND FURTHER WORK

This paper shows that Bayesian networks are a useful

tool for analysing and modelling ocean parameters as the

significant wave height. It also shows that the K2 IO algorithm

significantly outperforms the conventional K2 algorithm in

terms of the time needed for structure learning while only

marginally impacting the prediction quality.

However there are still tasks to solve and methods to try.

With the current DAG structure we assume that the waves

always follow the same creation process, independent from

other factors like storms, changes in big streams and similar

influences. To deal with this problem and increase the model

quality, a method named extending the conversation can be

used. This means adding additional nodes as parents of the

influenced nodes that represent these events like storms. This

way the Bayesian network can distinguish between the wave

Fig. 7. DAG created with the standard K2 algorithm vs. DAG created with the K2 IO algorithm.

Fig. 8. The learning times of the standard K2 and the K2 IO algorithms.

height probabilities during these events and during normal

For the creation of the DAG there are also different

possibilities. Besides the K2 algorithm there exist various

algorithms with different approaches to this subject. Also

conditions. Additionally this structure can be used to detect

storms and other events in the data.

Another idea is the addition of extra variables like the wind

speed and the wave period to the model. A model that takes

also these influence factors into account should have better

estimation and prediction properties when trained on sufficient

data.

domain knowledge can be used for a better DAG creation

process. An example would be to incorporate knowledge about

the directions of the wave movement to create the connections

in the DAG.

REFERENCES

[CH92] Gregory F. Cooper and Edward Herskovits. A bayesian method
for the induction of probabilistic networks from data. Machine

Learning, 9(4):309–347, 1992.

[HZG12] Zentrum für Material-und Küstenforschung GmbH Helmholtz-
Zentrum Geesthacht. coastdat-1 waves north sea wave spectra
hindcast (1948-2007), 2012.

[KF09] Daphne Koller and Nir Friedman. Probabilistic Graphical Models:

Principles and Techniques - Adaptive Computation and Machine

Learning. The MIT Press, 2009.

[Llo06] S. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf.

Theor., 28(2):129–137, September 2006.

