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Abstract We present new methods for fast Gaussian

process (GP) inference in large-scale scenarios including

exact multi-class classification with label regression, hy-

perparameter optimization, and uncertainty prediction.

In contrast to previous approaches, we use a full Gaus-

sian process model without sparse approximation tech-

niques. Our methods are based on exploiting general-

ized histogram intersection kernels and their fast kernel

multiplications. We empirically validate the suitability

of our techniques in a wide range of scenarios with tens

of thousands of examples. Whereas plain GP models are

intractable due to both memory consumption and com-

putation time in these settings, our results show that

exact inference can indeed be done efficiently. In conse-

quence, we enable every important piece of the Gaus-

sian process framework – learning, inference, hyperpa-
rameter optimization, variance estimation, and online

learning – to be used in realistic scenarios with more

than a handful of data.

Keywords Large-scale learning · Gaussian pro-

cesses · hyperparameter optimization · visual

recognition

1 Introduction

Over the last years, visual image categorization has

been dominated by a few classification concepts. Sup-

port Vector Machines represented the state-of-the-art

for the last decade, e.g., the famous solvers LibLinear

by Fan et al (2008) as well as LibSVM of Chang and
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Lin (2011). More recently, they were replaced by Con-

volutional Neural Networks trained with deep learning

techniques (Krizhevsky et al, 2012). Today, deep net-

works are established as excellent black-box tools which

lead to impressive results in image categorization chal-

lenges (Russakovsky et al, 2015). However, these models

only provide what they were designed and trained for:

estimated class labels for previously unseen data. Are

class labels and plain predictions the only thing we are

interested in?

Nonparametric Bayesian methods based on Gaus-

sian process models have the advantage of providing a

complete probabilistic framework for inference. In con-

sequence, they allow for estimating the variance of a

prediction or finding suitable hyperparameters with mar-

ginal likelihood optimization as shown by Kapoor et al

(2010). Unfortunately, their application to large-scale

learning scenarios is limited since required computa-

tion times and memory consumption scale cubically

and quadratically with the number of collected exam-

ples, respectively. On the other hand, current research

is shifting more and more towards large-scale learning

scenarios due to the huge number of available image

data. Thus, there exists an increasing gap between the

benefits of the GP framework and their applicability to

current visual recognition scenarios.

Contributions of this article In this paper, we show

how to overcome the scaling issues of the GP frame-

work even in the presence of a large number of learn-

ing examples. Our insights are based on inherent prop-

erties of histogram intersection kernels (HIK) which

serve as similarity measure between histogram features.

Histograms arise from a large number of popular im-

age representations, e.g., SIFT, HOG, or visual Bag-of-

words (BOW). Also more recent representations based

http://link.springer.com/
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on CNN activations are non-negative after being passed

through rectified linear units. Thus, kernel functions

particularly tailored to histogram characteristics are

well applicable to a wide range of computer vision sce-

narios.

Exploiting HIK for efficient GP models has been in-

spired by several previous works also exploiting HIK

properties to speed up kernel SVM learning and pre-

diction (Maji et al, 2008; Wu, 2010; Wang et al, 2012).

Our first contribution is to transfer their insights to

Bayesian methods, which allows for fast multiplications

of the kernel matrix K with an arbitrary vector v.

Thereby, solving the GP inference equations is efficiently

possible using iterative solvers.

We then go beyond pure classification aspects and

provide efficient techniques for marginal likelihood op-

timization, variance prediction, and online learning. In

particular, we demonstrate that hyperparameter op-

timization with the complete GP marginal likelihood

can be performed with reduced computational costs by

exploiting an upper bound for the log-determinant of

the kernel matrix. We prove that our bound, which is

a modification of the one provided by Bai and Golub

(1997), indeed specifies an upper limit and show how to

calculate it efficiently. For predictive variance estima-

tion, we present several approximation methods with

different asymptotic times and accuracies. The mem-

ory and runtime requirements of our methods are sub-

quadratic allowing for scalability.

The main contributions of this article can thus be

summarized as follows:

1. We show how to perform learning and inference in a

Bayesian manner with Gaussian processes and HIK

for a large number of training examples.

2. We introduce a technique for optimizing hyperpa-

rameters based on efficient evaluation of the GP

marginal likelihood.

3. We demonstrate how to estimate and approximate

the GP predictive variance and show the implica-

tions for active learning.

4. We derive efficient update routines for online learn-

ing, which are a pre-requisite for active learning.

In addition to theoretical derivations, we also empiri-

cally validate our techniques for image categorization,

incremental learning, and active learning tasks in sev-

eral experiments. For categorization, we use GP regres-

sion with binary labels in a one-vs-all manner similar

to Kernel-SVM. Since our experiments are centered on

visual object recognition, the application of HIK as a

similarity measure is well suited due to the commonly

used histogram representations of images. We further

use parameterized versions of the kernel that are more

flexible, e.g., by appropriate non-linear scaling or indi-

vidual weighting of histogram elements. Our methods

for hyperparameter optimization are useful to handle

this increased flexibility and circumvent the necessity

of techniques like cross-validation.

The article is based on previous conference publi-

cations. In detail, we presented the efficient GP multi-

class classification with regression and hyperparameter

optimization at ECCV (Rodner et al, 2012). Further-

more, we published the predictive variance approxima-

tion techniques and the incremental learning aspects at

ACCV (Freytag et al, 2012b). In this article, we go

beyond these individual publications and present all

aspects in a coherent view. In addition, we extended

them with detailed mathematical proofs, an error anal-

ysis of the quantization method, adaptive quantization

as well as multiple additional experimental results and

comparisons. An application of our approach towards

semantic segmentation was demonstrated in an ICPR

paper (Freytag et al, 2012a).

Structure of this article We start by reviewing relevant

literature for this article in Sect. 2. The Gaussian pro-

cess framework for regression, classification, and hy-

perparameter optimization is reviewed in Sect. 3. In

Sect. 4, we define the histogram intersection kernel as

well as its parameterized versions and review how effi-

cient kernel multiplications can be done. Furthermore,

we present how a quantization approach leads to further

improvements regarding computational speed.

Based on these foundations, we describe how to effi-

ciently learn and test a GP model for multi-class classi-

fication with Gaussian noise models using HIK in Sect. 5.

Fast hyperparameter optimization and speeding up pre-

dictive variance estimations are discussed in Sect. 6 and

Sect. 7, respectively. How our methods can be extended

to incremental learning as well as applied for active

learning is presented in Sect. 8.

Our findings are complemented by extensive exper-

iments on publicly available computer vision datasets.

In Sect. 9, we experimentally prove the suitability of

our approach for the tasks of large-scale classification

and incremental learning. Efficient hyperparameter op-

timization with Gaussian processes is evaluated in Sect. 10.

We further analyze our variance approximation tech-

niques as well as their application for active learning

in Sect. 11. A summary of our findings concludes the

article.

2 Related Work

In the following, we review related work for different

aspects of this article: learning with histogram intersec-
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tion kernels (Sect. 2.1), parameterized kernels (Sect. 2.2),

current approaches for fast GP classification and regres-

sion (Sect. 2.3), and the application of the GP frame-

work for visual recognition tasks (Sect. 2.4).

2.1 Fast Learning and Classification with HIK

For almost two decades, kernel methods have been pop-

ular tools for handling non-linear relations present in

real world problems. The idea of kernels is to directly

compute scalar products between transformed feature

vectors without the necessity of actually computing the

transformation. While model complexity and resulting

accuracy can be dramatically improved via kerneliza-

tion of linear algorithms, resulting benefits come at

the cost of potentially increased memory consumption

and computation time. To overcome these drawbacks,

Vedaldi and Zisserman (2010) presented how to ap-

proximate the histogram intersection kernel with ex-

plicit feature transformations. These transformations

can then be directly used in combination with linear

classifiers. In contrast, Maji et al exploited the prop-

erties of HIK directly for efficiently calculating SVM

decisions (Maji et al, 2008; Maji et al, 2013). When

m denotes the number of support vectors and D the

number of feature dimensions, their technique scales

only with O (log(m)D) time compared to O (mD) for

standard SVM inference. Going one step further, Wu

(2010, 2012) presented fast SVM training by using the

HIK properties to reformulate the SVM dual problem.

Similar techniques have been applied later by Wang

et al (2012) for large-scale image similarity calculation.

In the present article, we go beyond these works by

showing that the special properties of the HIK can be

exploited for GP classification with regression, hyper-

parameter optimization, and variance estimation.

2.2 Generalized HIK and Hyperparameter

Optimization

Barla et al (2003) applied the HIK for image classifi-

cation and proved it to be a Mercer kernel for images

having the same size. Since that time, a lot of improve-

ments on this kernel have been proposed, e.g., HIK with

polynomial transformations (Boughorbel et al, 2005) or

the weighted multi-level extension known as pyramid

match kernel (PMK) by Grauman and Darrell (2007).

We show how to further generalize the HIK with order-

preserving and positive-valued feature transformations

and weights for each dimension. Therefore, our work

is similar to the one of Ablavsky and Sclaroff (2011),

where a cross-validation procedure is proposed to es-

timate multiple weights of histogram kernels. In con-

trast, our hyperparameter optimization is theoretically

sound and directly optimizes the data likelihood. We

compare our results to the ones achieved by Ablavsky

and Sclaroff (2011) and show the resulting benefits of

optimizing generalized histogram intersection kernels in

Sect. 10.

Our approach for hyperparameter optimization should

not be confused with the recent work on Bayesian opti-

mization presented by Snoek et al (2012). In fact, both

approaches are orthogonal. Here, we present how to ef-

ficiently compute the marginal log-likelihood of a GP

model. Thereby, it can be combined with the optimiza-

tion method of Snoek et al (2012) using GP regression

for predicting suitable sample points of hyperparame-

ters.

2.3 Fast GP Classification and Regression

Similar to Kernel-SVM, GP classifiers require compu-

tation time and memory cubic and quadratic in the

number of training examples, respectively. Thus, their

direct application to large-scale problems is limited. A

growing number of publications tackle this problem by

introducing sparse approximations. At the core of these

approximations is the assumption of conditional inde-

pendence between sets of certain examples. These ex-

amples could be a selection from the training set or

can be learned during training (Quiñonero Candela and

Rasmussen, 2005). Although these techniques lead to

impressive results, the necessary independence assump-

tions neglect information provided in training and test

data. The only work we are aware of tackling full GP

inference is the greedy block technique of Bo and Smin-

chisescu (2012), which circumvents storing the full ker-

nel matrix in memory. However, kernel values have to

be calculated explicitly, which is not necessary in our

case. In Sect. 9, we empirically show that their method

can be improved by orders of magnitude in computation

time.

A complementary approach has been presented by

Urtasun and Darrell (2008) who apply local learning

to tackle the long training time and high memory de-

mands of standard GP regression. In particular, they

learn models from the k nearest neighbors selected by

evaluating kernel distances. In contrast, our approach

is sublinear during testing and does not involve an ad-

ditional training step for each test example.
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2.4 Applications of the GP Framework: Active

Learning and Beyond

In active learning scenarios, we have been given a set of

unlabeled examples, an expert who is willing to anno-

tate a few of these examples, and a classifier which shall

be trained. Thus, we search for the instances within the

given set which are as informative as possible after be-

ing labeled and added to the model.

Active learning with the Gaussian process frame-

work has been introduced by Kapoor et al (2010). The

authors present three different selection strategies based

on the predictive mean, variance, and a combination

of both. Thus, our techniques presented in this arti-

cle allow for using their ideas in large-scale scenarios

with a large number of unlabeled examples and an in-

creasing size of the training set. Note that this also

holds for our recently introduced active learning meth-

ods that involve the computation of expected changes

in model parameters for GP regression to develop a new

active learning criterion (Freytag et al, 2013) as well as

a generalization based on measuring the differences in

expected model outputs (Freytag et al, 2014a; Kding

et al, 2015).

Besides active learning, GPs serve as easy-to-use

probabilistic model in a range of other applications.

Three exemplary scenarios are their application for de-

tector adaptation (Vázquez et al, 2014), for super-resolution

tasks (He and Siu, 2011), or for human pose infer-

ence (Urtasun and Darrell, 2008).

3 GP Regression and Hyperparameter

Optimization

In this section, we briefly introduce the Gaussian pro-

cess framework for regression and classification to en-

sure theoretical basics important for understanding this

article. An experienced reader may directly jump to

Sect. 4 for a review on exploiting HIKs for efficient in-

ference in general or directly to Sect. 5 for a description

of efficient GP inference using HIKs.

3.1 Gaussian Process (Label) Regression

Let Ω be the space of all possible input data, e.g., D-

dimensional feature vectors, which are often L1-normalized

in case of histogram representations. Furthermore, let

Y be the space of possible targets. For now, let us focus

on binary classification with Y = {−1, 1}. Multi-class

scenarios are discussed in Sect. 3.3. Given N training

examples xi ∈ X ⊂ Ω and corresponding binary labels

yi ∈ {−1, 1}, we would like to predict the label y∗ of an

unseen example x∗ ∈ Ω.

The relationship between inputs and outputs can be

modeled by a latent function f and an additional noise

process y = f(x)+ε. Well known frequentist approaches

such as SVM would now seek for a single function f

which optimizes some criterion such as the regularized

risk (Vapnik, 1998). In contrast, a Bayesian approach

assumes that f is a sample of a stochastic process F and

inference requires marginalization over all possible re-

alizations. A specific choice of a stochastic process is a

Gaussian process GP. We can thus express our assump-

tions as a GP prior with zero-mean and covariance (ker-

nel) function κ ( · , · ), i.e., f ∼ GP(0, κ). Furthermore,

we assume that labels yi are conditionally independent

from xi given f(xi).

We follow Kapoor et al (2010) and solve a given

binary classification problem as a regression problem

where labels yi are treated as real-valued function val-

ues instead of discrete labels. This is very much related

to Kernel-SVM but with an L2-loss instead of a Hinge

loss. Since it can be interpreted as kernelized least-

squares regression, this technique is also known as label

regression. In practical applications, it has proved to be

useful for classification and it outperforms approximate

inference techniques like Laplace approximation with

more sophisticated noise models in most cases (Kapoor

et al, 2010; Rodner et al, 2010; Kemmler et al, 2010).

For the noise process ε in label regression, a simple

additive Gaussian noise model with variance σ2
n is used:

p(yi | fi) = N (yi | fi, σ2
n) . (1)

An advantage of the Gaussian noise model is that the

GP assumptions lead to analytic solutions of the in-

volved marginalizations. In consequence, they allow for

directly predicting the expectation µ∗ as well as the

variance σ2
∗ of the posterior distribution for the label y∗

of a new example x∗ (Rasmussen and Williams, 2006):

µ∗ = kT
∗ (K + σ2

n · I)−1y = kT
∗α , (2)

σ2
∗ = k∗∗ − kT

∗ (K + σ2
n · I)−1k∗ + σ2

n . (3)

Here, the vector k∗ contains the kernel values (k∗)i =

κ(xi,x∗) corresponding to the test example x∗, K is

the kernel matrix of the training data with (K)ij =

κ(xi,xj), k∗∗ = κ(x∗,x∗) is the prior variance of x∗,

and y is the vector containing all training labels. Al-

though noted before, let us again emphasize that when

we write “GP classification” in this article, we always

refer to the label regression technique in Eq. (2) as pre-

sented by Kapoor et al (2010). Thereby, we are able to

estimate the predictive variance for classification set-

tings which is one important benefit of the Bayesian
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framework. Another benefit arises when dealing with

parameterized kernel functions, which is reviewed in the

next section.

3.2 Hyperparameter Optimization

Kernel functions often depend on hyperparameters η,

which have an important impact on the resulting classi-

fication model. In contrast to SVM techniques, the GP

framework allows for finding their optimal values by

marginal likelihood maximization instead of expensive

cross-validation. As shown by Rasmussen and Williams

(2006) the negative marginal log-likelihood for GP re-

gression models can be expressed as:

− log p(y | X,η) =
1

2
yT
(
K̃η

)−1

y +

1

2
log det

(
K̃η

)
+
N

2
log 2π . (4)

We introduced the short-hand K̃η =
(
Kη + σ2

n · I
)

as

the parameterized kernel matrix having the noise vari-

ance σ2
n added to the main diagonal. It should be men-

tioned here that for continuous hyperparameters and

differentiable kernel functions, it is even possible to use

the derivative of the negative marginal log-likelihood

for the optimization (Rasmussen and Williams, 2006).

3.3 Multi-class Classification

As common for SVM classifiers, GP multi-class classifi-

cation can be done by utilizing the one-vs-all technique

as shown by Kapoor et al (2010). For each class m,

a binary classifier with label regression (Nickisch and

Rasmussen, 2008) is trained which uses all images of

m as positive examples and all remaining examples as

negatives. Classification is then done by returning the

class with largest predictive mean estimate of the cor-

responding binary classifier.

We can also perform model selection for the one-

vs-all approach by jointly optimizing hyperparameters

of all involved binary problems (Kapoor et al, 2010).

Thereby, the objective function turns out to be the sum

of all binary negative marginal log-likelihoods as given

in Eq. (4). In addition, the predictive variance as shown

in Eq. (3) is independent of the actual class labels and

has therefore to be calculated only once for an arbitrary

number of classes.

We can thus summarize that GP models can be

seen as useful probabilistic counterparts to SVM clas-

sifiers with a range of interesting properties. Thus, effi-

cient inference tools for GP models should be available

to computer vision researchers for their “classification

tool-boxes”, which is one aim of the current article. To

tackle this goal, we present in the next section how to

exploit fast kernel multiplication for speeding up com-

putation times by orders of magnitude and significantly

reduce memory demands.

4 Efficient Kernel Multiplications with

Histogram Intersection Kernels

Kernel methods are one of the fundamental tools used

to handle the complexity of visual recognition and al-

low for expressing non-linear relations with otherwise

linear models. A possible kernel function often used to

compare histogram feature vectors x,x′ ∈ RD is the

histogram intersection kernel:

κHIK(x,x′) =
D∑
d=1

min(x(d) ,x′(d)) . (5)

As shown by Maji et al (2008) and Wu (2010), this

kernel offers two important properties:

1. for any test input x∗, the computation of the inner

product kT
∗α between kernel vector k∗ and weight

vector α of a trained representer model (e.g., GP

regression in Eq. (2)) scales only sub-linear with the

number of known examples, and

2. for an arbitrary vector v, the matrix-vector product

Kv between the kernel matrix K and v scales only

sub-quadratic.

While the first property allows for efficient inference

with representer models, the second property enables

reduced computation times for learning (as also noted

in (Bottou et al, 2007, Sect. 9.4)). We refer to these

properties as fast kernel multiplications. In consequence,

we refer to kernels fulfilling these properties as fast mul-

tiplication kernels. Note that these kernels should be

not confused with multiplicative kernels as introduced

by Yuan et al (2008).

In the following, we review the work of Maji et al

(2008) and Wu (2010). Since the authors presented how

fast HIK multiplications can be exploited for fast SVM

learning and classification, we put their work into a

Gaussian process perspective. In addition, we derive a

worst-case bound for quantization errors of the tech-

niques presented by Maji et al (2008). The section closes

by presenting generalizations of currently known his-

togram intersection kernels important for adaptations

such as automated feature scaling or feature relevance

determination.
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Fig. 1 Piecewise linearity of the regression function when
using Gaussian process regression for classification (dis-
crete y) together with the histogram intersection kernel: 2-
dimensional input vectors x are used but due to the normal-
ization ‖x‖1 = 1, we only display the predictive mean (blue
graph) and confidence areas (shaded area) derived from the
predictive variance with respect to the first dimension of the
input vectors. Training points are shown as blue crosses and
the noise variance is set to 0.1

4.1 Fast Kernel Multiplications

As we have seen in Eq. (2), the predictive mean is a

weighted sum of kernel values. This property is shared

by all representer models such as SVM and GP. The

HIK allows for decomposing this sum into two parts (Maji

et al, 2008):

kT
∗α =

N∑
i=1

α(i)

D∑
d=1

min (xi(d) ,x∗(d))

=

D∑
d=1

( ∑
{i : xi(d)<x∗(d)}

α(i) xi(d) + . . .

. . .x∗(d)
∑

{j : xj(d)≥x∗(d)}

α(j)
)
. (6)

From Eq. (6) we make the important observation, that

for each dimension the predictive mean of Gaussian pro-

cess regression with HIK is piecewise linear. This prop-

erty is also visualized in Fig. 1 for a simple toy example.

We can now significantly reduce the computational

costs using the following trick. Let us assume given per-

mutations πd which rearrange the training examples

such that they are sorted in an ascending order in each

dimension d. Then, we can rewrite Eq. (6) as

kT
∗α =

D∑
d=1

(
rd∑
i=1

α
(
π−1
d (i)

)
xπ−1

d (i) (d)︸ ︷︷ ︸
·
= A(d,rd)

+ . . .

. . .x∗ (d)

N∑
i=rd+1

α
(
π−1
d (i)

)
︸ ︷︷ ︸

·
= B(d,rd)

)
(7)

=

D∑
d=1

(A (d, rd) + x∗ (d) B (d, rd)) , (8)

with rd being the number of examples that are smaller

than x∗ in dimension d. We can precompute the two

terms of the linear function during learning and store

the values in look-up tables A and B as displayed in

Eq. (8). Calculating the scores for test examples can

be done by accessing only few elements of A and B,

in particular one element of both A and B for each

dimension.

Given the vector α, the resulting computation time

for building A and B is dominated by sorting, which

requires O (ND logN) operations. In terms of mem-

ory usage, we only have to store O (ND) elements in

contrast to the kernel matrix of size O
(
N2
)
. This is

especially important for large dataset sizes, for which

the kernel matrix would not fit into memory. For calcu-

lating the score of a new example, we need O (D logN)

operations to find the correct position rd in each dimen-

sion and compute the linear function in Eq. (8) using

look-up tables A and B.

Similar considerations hold for multiplications of an

arbitrary vector v ∈ RN with the kernel matrix K,

which can be done in O (ND) based on already sorted

features in each dimension:

(Kv)i =

N∑
j=1

v(j) ·κ(xi,xj)

=

N∑
j=1

v(j)

D∑
d=1

min(xi(d) ,xj (d)) . (9)

From this equation, we observe that we can further

exploit sparsity of feature vectors since corresponding

terms of zero-valued dimensions vanish.

As we will show in the next sections, the efficient

computation of products Kv will be an essential part

in our overall framework. In detail, we will require it for

learning in Sect. 5.1 and for optimizing hyperparame-

ters as shown in Sect. 6. Furthermore, computations

of products kT
∗α will allow for efficient classification as

shown in Sect. 5.2.
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4.2 Quantization of the Feature Space

The previously shown techniques for computing scores

kT
∗α already result in valuable savings of required com-

putation times. Nonetheless, they still depend on the

number of available training examples. If feature val-

ues in dimension d are bounded by x∗ (d) ∈ [ld, ud], the

evaluation can be further speeded up by quantizing the

feature space (Maji et al, 2008) leading to an approxi-

mate inference method.

For L1-normalized histogram features, all elements

are obviously bounded by the interval [0, 1]. Using a

quantization for each dimension with q bins, only q dif-

ferent prototypical outputs p(k) (1 ≤ k ≤ q) are pos-

sible in each summand of Eq. (7). With already com-

puted tables A and B, we can proceed with building a

final look-up table T of dimension D × q:

T (d, k) = A (d, rd) + p(k) ·B (d, rd) , (10)

with rd being the number of examples that are smaller

than p(k) in dimension d. Since permutations πd are al-

ready computed, this step requires onlyO (Dmax (q,N))

operations.

As a result, the time spent for evaluating the score

of a new test example decreases to O (D) if the quan-

tizer works in O (1). Consequently, for a given number

of dimensions, the score of a new test example can be

computed in constant time independent of N . It should

be noted that in the case of quantization, GP regression

can be restated as piecewise Bayesian linear regression.

Adaptive quantization In contrast to previous works,

we use an adaptive quantization for every single dimen-

sion of the input feature vectors. The necessity of our

adaptive quantization becomes apparent when we re-

place BOW features by CNN activations. For the latter,

the common activation strength typically varies heavily

between dimensions. Furthermore, L1-normalized acti-

vations come without theoretical motivation. Thus, nei-

ther are all values guaranteed to be smaller than one

as for histogram entries, nor is a quantization equal

for all dimensions suitable. We therefore compute the

maximum value ud in each feature dimension for the

training set. For each dimension, we then use [0, ud] to

define the bounds for a uniform quantization.

Quantization error analysis The quantization trick re-

duces the runtime during testing significantly. However,

the question remains how much the approximation af-

fects the classification scores. Therefore, we study the

error induced by this trick when computing the predic-

tive mean, an analysis that has not been performed in

previous works. The proofs of the results are given in

Appendix A. The results are not restricted to Gaussian

process regression and also hold for support vector ma-

chines, because of the decision made with a weighted

sum of kernel values.

Theorem 1 (Worst-case error analysis) If a quan-

tization with a maximum quantization error of εq is

used as well as L1-normalized features, the error of the

quantized predictive mean µ̃∗ can be bounded as follows:

|µ∗ − µ̃∗| ≤
D · εq

2
· ‖α‖1 . (11)

Proof See appendix.

The L1-term of the weights α does not depend on

the quantization, because the quantization trick is only

applied when a new test input is given and the position

in the sorted list has to be determined in constant time.

However, the term can be further bounded for SVM

models by using ‖α‖1 ≤ C ·N :

|µ∗ − µ̃∗| ≤
D · εq

2
·C ·N , (12)

where C is the trade-off parameter used in the soft-

margin version (Schölkopf and Smola, 2001). For GP

regression, we can use the bounds derived by Rodner

(2011, p. 64), which lead to:

|µ∗ − µ̃∗| ≤
D · εq

2
· N
σ2
n

. (13)

Conclusions of Theorem 1 What do we learn from the

previous analysis? First, we observe that the upper bound

of the error depends linearly on the dimension and

the number of training examples. Furthermore, also the
strength of regularization (for SVM determined by C

and for GP regression by the noise variance σ2
n) in-

fluences the error induced by the quantization. For a

strong regularization (low C or high σ2
n), the error de-

creases.

4.3 Very General Histogram Intersection Kernels

In the previous sections, we restricted our analysis to

the standard HIK as introduced in Eq. (5). To increase

the kernel functions flexibility, Boughorbel et al (2005)

have shown that the HIK equipped with any positive

valued function g ( · ):

κGHIK (x,x′) =

D∑
d=1

min (g (x(d)) , g (x′(d))) (14)

still remains a positive definite kernel. The obvious ques-

tion is whether efficient calculations as shown previ-

ously also hold for the generalized versions of HIK?
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In fact, if g ( · ) is an automorphism, the relative or-

der of the training elements stays valid after evaluating

g ( · ). Therefore, the proposed techniques can also be

applied to these generalized variants of the HIK which

we denote with GHIK in the remainder of the article.

Note that we can even use the same quantization by

storing the original feature values. Two common exam-

ples are the polynomial feature transform:

g| · |,η (x(d)) = |x(d)|η , η ∈ R+ , (15)

and the exponential transformation:

gexp,η (x(d)) =
exp(η |x(d)|)− 1

exp(η)− 1
, η ∈ R+ . (16)

In the remaining sections, we refer to them as HIK-

POLY and HIK-EXP. Interestingly, Eq. (14) even holds

if we consider functions gd specifically parameterized for

each dimension. Thereby, we can individually weight

each feature dimension:

gard,η (x(d)) = η(d) ·x(d) , η ∈ RD∗ . (17)

In Sect. 6, we present how to optimize hyperparameters

η of generalized HIKs even for large-scale training data.

5 Efficient GP Multi-class Classification with

GHIK

In this section, we demonstrate that learning and test-

ing a GP model can be performed efficiently when us-

ing GHIKs. Most of our algorithms are also applicable

for general fast multiplication kernels, but since GHIK

is the only practical family of kernels known to fit to

this class, we focus on the GHIK in our presentation of

the algorithms. This theoretical investigation is com-

plemented by experimental results given in Sect. 9 and

following, where we tackle several applications such as

classification of real-world large-scale datasets, model

regularization, and feature relevance determination.

As shown in Eq. (2), inference with a GP model

requires two steps: (1) solving the linear equation sys-

tem K̃η ·α = y and (2) calculating the scalar product

kT
∗α. Step (1) has to be done only once for each class of

a given training set X and is known as learning. In con-

trast to that, the second step is used to test the learned

model in order to infer labels for new test data. For

transferring the techniques of Maji et al (2008) to GP

inference, we need to handle both steps. Let us start

with step 1.

5.1 Step 1: Efficient Learning

For the training phase in step 1, we notice that stor-

ing the full kernel matrix is impossible for large-scale

datasets. Furthermore, applying a Cholesky decompo-

sition with a runtime of O
(
N3
)

is far from being prac-

tical. However, the HIK explicitly allows for multipli-

cations with the kernel matrix in linear time O (ND).

Therefore, an iterative linear solver can be used to tackle

the learning step and only needs to perform several

cheap multiplications with the kernel matrix.

Wu (2010) used a coordinate descent method to

solve the quadratic program related to SVM learning.

In contrast, our experiments show that a linear con-

jugate gradients (CG) method converges faster for GP

problems. Note that in absence of round-off errors, we

obtain the exact solution after N iterations (see also

(Hestenes and Stiefel, 1952)). In practice, we can even

stop the iteration significantly earlier, e.g., when the

maximum norm of the residual drops below a specified

threshold.

Let us analyze the resulting asymptotic cost to com-

pare against the GP baseline. To this end, let M denote

the number of classes and let T1 be the number of iter-

ations the CG method performs, which depends on the

condition number of the kernel matrix (Nocedal and

Wright, 2006). Among others, the condition of the ker-

nel matrix itself depends on N and can be corrected by

adapting the regularization parameter σ2
n . Since the bi-

nary label vectors differ for each class, we need to com-

pute M weight vectors α(1), . . . ,α(M). As previously

noted, solving the resulting linear equation system us-

ing an iterative linear solver is possible in linear time,

which leads to the first term O (DNT1M). A second

term O (DN logN) arises from the effort for sorting all

N examples in every dimension.

In summary, we require O (ND(T1M + logN)) op-

erations for learning. Note that in practice, we often

observe sparse features which leads to a significant re-

duction of the necessary computation times for this

step. We also see that the runtime performance of our

method is linear in the number of classes M allowing for

scalability towards large-scale scenarios with hundreds

or even thousands of classes.

5.2 Step 2: Efficient Testing

After estimating the coefficients α, the test step only

involves evaluating inner products kT
∗α, which can be

done in logarithmic time. Note that we can further re-

duce the asymptotic cost to constant time by applying

the quantization idea of Maji et al (2008) as reviewed

in Sect. 4.
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Fig. 2 Main outline of our approach for GP classification and hyperparameter optimization using fast multiplications with
the kernel matrix. Details are given in Sect. 5 and Sect. 6.

Table 1 Overview of asymptotic runtimes for learning, testing, and optimization of hyperparameters for baseline GP compared
to our approach. The parameter D denotes the number of dimensions, M the number of classes, and T1 and T2 the number
of iterations used for the linear solver and the optimizer, respectively. We highlight the number of training examples N with
bold font.

Asymptotic computation time

Step GP baseline GP + (G)HIK GP + (G) HIK + Quant.

Learning O (N3 +MN2) O (DN (logN + T1M)) O (DN (logN + T1M))

Hyperp. opt. O (T2 (N3 +MN2)) O (T2NMDT1) O (T2NMDT1)

Testing O (MDN) O (MD logN) O (MD)

Memory O (N2) O (DN) O (Dmax (q,N))

In summary of this section, we visualized the in-

terplay of all steps of our approach in Fig. 2 including

hyperparameter optimization as explained in the next

section. An overview of asymptotic computation times

and memory demand for our approach is finally given

in Table 1.

6 Large-Scale Hyperparameter Optimization

While the previous section dealt with efficient large-

scale classification, we are now interested in optimally

adapting our system to a specific task. Here, we realize

adaptations by optimizing involved hyperparameters.

Due to our probabilistic model, this optimization can

be done by minimizing the negative GP log-likelihood

as given in Eq. (4).

Exact optimization of the negative GP log-likelihood

is very time consuming and intractable for large-scale

datasets. We show how to solve this drawback by opti-

mizing a proxy function instead which can be evaluated

efficiently. A theoretical analysis reveals that our proxy

function is indeed an upper bound of the exact negative

GP log-likelihood and thus results in similar optima.

6.1 An Upper Bound of the Log-Determinant

As we reviewed in Eq. (4), computing the negative log-

likelihood mainly requires the evaluation of two terms:

a quadratic data term yTK−1
η y and a complexity term

log det (Kη). Since the data term involves solving the

same linear system as required for learning, we can com-

pute it efficiently using the techniques presented previ-

ously. In contrast to that, the complexity term requires

the determinant of the kernel matrix, which is a costly

algebraic operation even with fast HIK multiplications

(Yuster, 2008). Due to this reason, we develop an up-

per bound of the log determinant which will ultimately

lead to the upper bound of the negative log-likelihood.

The derived bound is based on the results of Bai and

Golub (1997), which turns out to be efficiently com-

putable with HIKs. Let us therefore assume that for a

given positive definite matrix M ∈ RN×N , all eigenval-

ues λi can be bounded by 0 < λi ≤ β. Then, an upper

bound of the log-determinant is given by:

log det(M) ≤
[
log β, log t

] [ β t

β2 t
2

]−1 [
µ1

µ2

]
(18)

·
= ub(β, µ1, µ2) (19)

with t̄ =
βµ1 − µ2

βn− µ1
, (20)

where µ1 = tr (M) is the trace of the matrix and µ2 =

‖M‖2F is the Frobenius norm (Bai and Golub, 1997).

While Bai and Golub (1997) proved the correctness

of that bound, its tightness is what finally matters in

practical applications. From this point of view, it is in-

teresting to note that the bound is tight for regular-



10 Rodner,Freytag,Bodesheim,Fröhlich and Denzler

ized rank-1 matrices M = uuT + τI. This fact arises

as a direct generalization of the result from Bai and

Golub (1997) on Pei matrices. Fortunately, kernel ma-

trices computed on common datasets are often of low

rank as observed by Williams and Seeger (2000). Thus,

we can expect that the bound can indeed offer sufficient

accuracy in many scenarios. We give an empirical proof

for this statement in Sect. 10.1.

How to efficiently evaluate the upper bound function

To calculate the bound given in Eq. (19) for the reg-

ularized kernel matrix K̃η, we need its largest eigen-

value λmax, its trace µ1, and its squared Frobenius norm

µ2. We first compute the largest eigenvalue λmax with

the Arnoldi iteration, which only requires matrix vector

products. In our experiments, the algorithm needed ap-

proximately T3 ∼ 10 steps until convergence with high

accuracy for various settings.

The trace of the regularized kernel matrix can be

decomposed into two terms:

tr(K̃η) =

N∑
i=1

(
κ(xi,xi) + σ2

n

)
= σ2

n ·N +

N∑
i=1

D∑
d=1

min(xi(d) ,xi(d)) . (21)

The first part arises from the noise model, whereas the

sum of self-similarities constitutes the second part. For

the specific choice of HIK, the latter one is equal to the

sum of all feature values:

tr(K̃η) = σ2
n ·N +

N∑
i=1

D∑
d=1

xi(d) . (22)

If we use L1-normalized histograms with ‖xi‖1 = 1, this

further simplifies to tr(K̃η) = (σ2
n + 1) ·N . Note that

similar derivations hold for GHIKs. As we can see, in-

corporating prior knowledge about kernels and features

helps for speeding up the computations.

However, the squared Frobenius norm of K̃η is not

directly available. Nonetheless, we can approximate it

as shown next. To this end, let M again denote the

number of classes of the classification task and let λi
be the ith largest eigenvalue of the regularized ker-

nel matrix such that λ1 ≥ . . . ≥ λN are sorted in

decreasing order. Then, an intuitive approximation is

µ2 =
∑N
i=1 λ

2
i ≥

∑M
i=1 λ

2
i = µ̃2. The motivation for

this approximation is as follows: if we have M classes

with very compact clusters and large distances between

each other, the kernel matrix should obey a simple block

structure of rank M leading to M non-zero eigenvalues

and hence µ2 ≈ µ̃2.

Due to the fact that our approximation of µ2 is a

lower bound of ‖K̃η‖2F , the necessary computations in

Eq. (19) are still well-defined. We verify in the next

section that we still have a proper upper bound of the

log-determinant. The final upper bound is:

log det(K̃η) ≤ ub

(
λmax, tr

(
K̃η

)
,

M∑
i=1

λ2
i

)
. (23)

With our experimental results in Sect. 9.3, 10.1, and

10.4, we show how to successfully utilize the resulting

upper bound of the negative GP log-likelihood for hy-

perparameter optimization.

6.2 Proof of the Upper Bound in Case of Frobenius

Norm Approximation

So far, we have proposed to use a lower bound for

the Frobenius norm of K̃η based on the sum of the

M largest eigenvalues to avoid expensive computations

of the original negative log-likelihood. In the follow-

ing, we prove that we are able to obtain a valid up-

per bound of the log-determinant with the bound of

Bai and Golub (1997) even when using a lower bound

of the Frobenius norm. Our proofs are completely al-

gebraic and do not require knowledge of the Gaussian

quadrature techniques used in Bai and Golub (1997).

First of all, we show the validity of the modified upper

bound for β = 1. The proofs of the results are given in

Appendix B.

Lemma 1 (Monotonicity for β = 1) Let µ̃2 with

0 < µ̃2 ≤ µ2 be a lower bound of the squared Frobenius

norm of a regular positive definite matrix M, e.g., µ̃2 =∑M
i=1 λ

2
i with M < N . Then the following holds for

every positive definite matrix M with µ1 = tr(M) and

β = 1 being the largest eigenvalue of M:

ub(1, µ1, µ̃2) ≥ ub(1, µ1, µ2) . (24)

The next lemma shows that scaling the matrix M

with γ > 0 leads to an additive constant in the bound,

which is independent of µ1 and µ2. This constant is

equivalent to the one occurring in log det (γM) =

log det (M)+N log γ, therefore, the quality of the bound

is invariant with respect to γ. Note that the squared

Frobenius norm scales with γ2 and t̄ with γ (see Eq. 20).

Lemma 2 (Multiplicative scaling) For all suitable

parameters β, µ1, and µ2 of a positive definite matrix

and every positive factor γ > 0, the following holds:

ub(γβ, γµ1, γ
2µ2) = ub(β, µ1, µ2) +N · log γ . (25)
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The last step is to combine both lemmas, which

leads directly to the validity of the bound of Bai and

Golub for our Frobenius norm approximation:

Theorem 2 (Upper bound with µ̃2) Let M ∈ RN×N
be a positive definite matrix with trace µ1, squared Frobe-

nius norm µ2, and upper bound β for the eigenvalues

(e.g., the largest eigenvalue). If µ̃2 is a lower bound of

µ2, the following holds:

log det(M) ≤ ub(β, µ1, µ2) ≤ ub(β, µ1, µ̃2) . (26)

With this theorem on hand, we are able to efficiently

optimize hyperparameters even in large-scale scenarios

as validated in the experimental sections.

6.3 Optimization Technique

The actual optimization is carried out with a method

that does not require any gradient information, be-

cause calculating the gradient of the log-likelihood or

the gradient of our upper bound is still a costly opera-

tion. A popular technique for this task is the downhill-

simplex method, which is also known as Nelder-Mead

method (Nelder and Mead, 1965). Note that any other

black-box optimization method could be applied as well.

In experimental evaluations, however, we stick to the

downhill-simplex technique.

7 Estimating the GP Predictive Variance

Up to now, we only considered fast computations of the

predictive mean derived from GP regression. However,

in many scenarios such as active learning or novelty

detection it is important to get an estimate for the un-

certainty of the prediction as well. The uncertainty is

mostly measured in terms of class entropy. For Gaus-

sian distributions, it is directly related to the variance.

Due to this reason, we develop methods to efficiently

compute the GP predictive variance also in large-scale

scenarios.

As presented in Eq. (3), the predictive variance σ2
∗

depends on three terms. From these three terms, the a-

priori variance is formed by the first term and the third

term, i.e., by k∗∗ = κ(x∗,x∗) known as self-similarity

and the noise variance σ2
n . Thus, there are no previously

known training examples considered so far. In contrast,

the second term reduces this a-priori variance based on

the similarities between test example x∗ and training

examples X.

To efficiently compute σ2
∗, we start in Sect. 7.1 by

applying the techniques for fast classification introduced

in Sect. 5.2. However, since the second term is a quadratic

form instead of a linear form in k∗, these computations

are not highly efficient. Therefore, we further show how

to approximate the second term in an efficient manner

using fast kernel evaluations (Sect. 7.2 and Sect. 7.3).

7.1 PUP – Precise Uncertainty Prediction

Naively computing the predictive variance for a single

test example x∗ involves three steps:

1. explicitly computing the kernel vector k∗,

2. solving α∗ = K̃−1k∗ specific for x∗, and

3. computing the inner product of k∗ and α∗.

For step 1, we require O (ND) operations to explicitly

evaluate the kernel function for all examples and dimen-

sions. After that, we can apply an iterative linear solver

in step 2 to compute α∗. As noted previously, this re-

quires O (NDT1) operations. Finally, we can compute

the product of k∗ and α∗ in O (N) operations to ob-

tain the desired data term. Since no approximation is

involved, we refer to this method as Precise Uncertainty

Prediction (PUP).

In total, we need O (NDT1) operations to compute

the exact predictive variance for an unseen example

during testing. However, since T1 is implicitly related

to N , the resulting runtime might be too slow for large-

scale applications. In addition, the exact values of clas-

sification uncertainties are not even required in certain

scenarios. Active learning is one example, where only

the relative order of uncertainty values is important.

For these scenarios, we develop efficient approximations

as shown in the following.

7.2 FAPU – Fine Approximation of the Predictive

Uncertainty

To obtain efficient approximations of the predictive vari-

ance, we start by considering fundamental properties of

the involved computations. Since the regularized kernel

matrix K̃ is symmetric and positive definite, the same

holds for its inverse. Therefore, we can use upper and

lower bounds for quadratic forms to obtain suitable ap-

proximations for σ2
∗ (see Appendix C for details ).

To this end, let M ∈ RN×N be a positive definite

matrix. Then, linear algebra provides us with the fol-

lowing lower bound on the quadratic form of M for any

vector x ∈ RN :

xTMx ≥
N∑

i=N−k+1

λix̃(i)
2

+

λN−k

||x||2 − N∑
j=N−k+1

x̃(j)
2

 ,

(27)
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where x̃(j) is the projection of x onto the jth eigenvec-

tor of M. With the parameter k, we can influence the

tightness of the bound which is exact for the extreme

case of k = N . As before, each variable λj denotes the

jth largest eigenvalue of M.

We can now apply the lower bound of Eq. (27) to

the data term of the predictive variance given in Eq. (3)

by instantiating M = K̃−1:

σ2
∗ ≤ k∗∗ −

( N∑
j=N−k+1

λjk̃∗(j)
2
)
−

λN−k

(
||k∗||2 −

N∑
j=N−k+1

k̃∗(j)
2
)

+ σ2
n .

(28)

While this result looks promising, we spent major ef-

forts in previous sections to circumvent explicit com-

putations of the inverse kernel matrix. In consequence,

we can not access corresponding eigenvalues or eigen-

vectors directly. Fortunately, linear algebra provides us

with relations between eigenvalues and eigenvectors of

a matrix M and its inverse. In fact, for any symmet-

ric and positive definite matrix M, eigenvalues λ of

M are in relationship with eigenvalues ξ of M−1 via

λj = 1
ξN−j+1

. Furthermore, the eigenvector of M corre-

sponding to λi is the same as the eigenvector of M−1

belonging to ξN−i+1. Consequently, we obtain ν (i) =

k̃∗ (N − i+ 1) for the projection of k∗ onto the ith eigen-

vector of K̃ .

Using both relations, we can reformulate the previ-

ous bound in terms of eigenvectors and eigenvalues of

the implicitly accessible kernel matrix K̃:

σ2
∗ ≤ k∗∗ −

( k∑
i=1

1

ξi
ν (i)

2
)
−

1

ξk+1

(
||k∗||2 −

k∑
i=1

ν (i)
2
)

+ σ2
n .

(29)

Since we can adjust k for the desired precision, we call

this technique a fine approximation of the predictive

uncertainty (FAPU).

As noted previously, eigenvalues and eigenvectors

can be computed using the Arnoldi iteration. For k+ 1

eigenvalues and k eigenvectors, this requires O (NkT3)

operations. Again, the number of iterations T3 until

convergence was almost constant about 10 in our ex-

periments. For the explicit computation of the kernel

vector k∗, we still have to spend O (ND) operations.

Squared projections k̃∗(i)
2

of k∗ onto eigenvectors can

then be computed inO (N). Similar considerations hold

for the norm ||k∗||2.

In summary, we need O (ND +NkT3) operations

to compute the fine approximation of σ2
∗ as given in

Eq. (29). Although we thereby reduce the quadratic

scaling, we still depend linearly on N . Nonetheless, us-

ing the histogram intersection kernel, we can even de-

velop a coarser approximation leading to a further speed-

up as shown next.

7.3 CAPU – Coarse Approximation of the Predictive

Uncertainty

The extreme case of the previous approximation is ob-

tained with k = 0:

σ2
∗ ≤ k∗∗ −

1

ξ1
||k∗||2 + σ2

n . (30)

Thus, even for the most extreme approximation using

FAPU, we still require a computation time linear in N

to compute k∗ and its squared norm. However, for the

specific choice of HIK as the kernel function, we note

that ||k∗||2 can be expressed as follows:

||k∗||2 = kT
∗ k∗ =

N∑
i=1

( D∑
d=1

min (x∗(d) ,xi(d))
)2

. (31)

We will now exploit the properties of the HIK to ap-

proximate ||k∗||2 by a lower bound. Thereby, we will

still obtain a valid upper bound approximation for the

predictive variance as given in Eq. (30).

One important aspect for the approximation arises

from properties of sparse features. When features have

only a few non-zero entries, the majority of mixed terms

min(x∗(d1) ,xi(d1)) · min(x∗ (d2) ,xi(d2))

between different dimensions in Eq. (31) will vanish.

For a sparsity ratio of 0.1, these are already 99% of all

terms! In these scenarios, neglecting the mixed terms is

well justifiable and we obtain an expression that looks

like a Parzen density estimation with squared kernel

values:

||k∗||2 ≥
N∑
i=1

D∑
d=1

(min (x∗(d) ,xi(d)))
2

=

N∑
i=1

D∑
d=1

min
(
x∗(d)

2
,xi(d)

2
)
. (32)

On a closer look, we notice that Eq. (32) is similar to

Eq. (6) but with squared features and α ≡ 1. There-

fore, we can apply the same techniques as described

in Sect. 4.1 with squared feature values. Furthermore,

we can even use the same permutations of the learning

data. The only additional overhead comes from comput-

ing a new matrix Aσ2
∗
∈ RD×N storing the cumulative

sums of squared feature values similar to A of Sect. 4.1.
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In consequence, we can compute the squared kernel

vector within O (D logN) operations for an unseen ex-

ample x∗. Note that we can now even apply the quanti-

zation idea described in Sect. 4.2. Thereby, the compu-

tation time is ultimately reduced to O (D) operations

and only requires the additional computation of a look-

up table Tσ2
∗

similar to T of Sect. 4.2. We refer to this

fastest uncertainty approximation with q-CAPU.

We visualized all approximations in Fig. 3 for the

2D scenario already used in Fig. 1. As we can nicely see,

the approximation error of FAPU is inversely related to

the number of eigenvectors used. Furthermore, the ap-

proximation converges from a piecewise quadratic func-

tion (FAPU) to a piecewise linear function (CAPU).

While the precision is thereby reduced, we simultane-

ously reduce the required evaluation time as well.

A final overview of all the presented approaches for

predictive variance computations as well as their re-

sulting runtimes and decision functions is given in Ta-

ble 2. In summary, we are able to efficiently compute

the predictive variance with adjustable precision as well

as adjustable time to spend. Note that the predictive

variance is the same for all known classes (Rasmussen

and Williams, 2006), thus, our computation times are

efficient even for an extremely large number of different

classes. In Sect. 11, we compare our techniques in terms

of runtimes needed in large-scale experiments and study

their usability for the task of active learning.

8 Incremental and Active Learning

Large-scale learning is not only important for training

based on a large chunk of data in batch mode, but also

when the dataset is growing incrementally. We therefore

show that incremental learning can be realized within

our framework with just a few minor modifications. Fur-

thermore, we also show how standard active learning

methods can be directly used with our efficient esti-

mates of the GP predictive mean and variance.

8.1 Fast Incremental Learning

The usual blueprint for object recognition systems is to

train a classifier on a given set of labeled data and to ap-

ply the resulting model on unseen examples. Although

current research led to impressive results even on highly

challenging datasets with this strategy (Lazebnik et al,

2006; Vedaldi et al, 2009; Kapoor et al, 2010), it suffers

from two main drawbacks. First of all, there is no pos-

sibility to exploit labeled examples that are available

after the training process. In consequence, we often ne-

glect potentially useful information. Besides, this strat-

egy will fail in situations where existing categories vary

over time (e.g., cell phone designs) or new categories

become available (e.g., Apple’s iPod in 2001).

We can naively resolve these drawbacks by trivial

training from scratch as soon as new data is accessible.

However, we would thereby suffer from huge compu-

tational costs. For representer models such as Kernel-

SVM or GP, every retraining would require O
(
N3
)

since no information about the previously trained model

is used. In contrast to that, incremental or online learn-

ing methods explicitly rely on previously trained mod-

els to efficiently adapt them over time. In the following,

we show how to extend our GP/HIK for incremental

learning.

As presented in the previous sections, training of

GP/HIK models mainly consists of three stages: (1)

sort training examples in every dimension, (2) compute

the weight vector α using an iterative linear solver, and

(3) compute the matrices A and B as well as the look-

up table T if required. For new training examples, we

can exploit the previous calculations in every stage to

significantly speed-up the process of retraining:

(1) We can build on the given sorting of each dimension

and find the correct position for a novel example in

each dimension, which takes O (logN) time for a

single dimension and O (D logN) in total.

(2) Using the previously calculated α as an initializa-

tion for the iterative linear solver, we can signifi-

cantly speed-up the process until convergence since

the variations of α are smooth and small, especially

for large training sizes.

(3) For updating the arrays A and B as well as the look-

up table T, we only need to correct entries that are

affected by new examples.

In addition to updates of the classification model, we

could also adapt hyperparameters and optimize them

on the fly. This would allow for adapting our model

to new situations, e.g., when other feature dimensions

become important to distinguish between categories. To

speed up the optimization, we can easily use previous

values of the hyperparameters as initial values for the

optimization method, which is also known as warm-

start.

In summary, we significantly benefit from previous

calculations in every training step. We further validate

this aspect in our experiments in Sect. 9.9.

8.2 Active Learning with Gaussian Processes

A main advantage of Gaussian processes is the possibil-

ity for giving feedback about how certain the classifica-
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Fig. 3 Approximating the predictive variance σ2
∗ using our techniques which exploit properties of the HIK. Approximations

are obtained with FAPU (left) for different numbers of k (see Eq. (29)) or using the the coarse approximation (right) without
and with quantization of test inputs (see Eq. (30)). The setup is identical to Fig. 1 where no approximation was applied.

Table 2 Overview of the presented approaches to compute the predictive variance σ2
∗. For details see the derivations in

the corresponding sections. The parameters D and T1 are defined as in Table 1, The number of eigenvectors used in the
approximation is denoted with k. Variable T3 is the number of iterations needed by the Arnoldi technique. We highlight the
number of training examples N with bold font.

Method Asymptotic runtime Resulting score Approximation

GP-standard O (N2 +ND) Eq. (3) none (exact)

PUP (Sect. 7.1) O (DNT1) Eq. (3) none (exact)

FAPU (Sect. 7.2) O (T3kDN) Eq. (29) rank k approx. of K̃

CAPU (Sect. 7.3) O (D logN) Eq. (30) rank 1 approx. of K̃, sparse feature assumption

q-CAPU (Sect. 7.3) O (D) Eq. (30) rank 1 approx. of K̃, sparse feature assumption,
quantized test inputs

tion result is. Aside from this apparent use of the pre-

dictive variance, it was successfully applied as a query

strategy in active learning by Kapoor et al (2010). The

goal of active learning is to improve a classification

model by selecting a few but highly informative exam-

ples for manual annotation. In this section, we briefly

review the main ideas of Gaussian process based active
learning.

For active learning, one typically has a small set

X = {x1, . . . ,xN} consisting of labeled data and a large

set XU = {x′1, . . . ,x′N ′} of unlabeled examples. To ob-

tain a classifier A trained with most informative exam-

ples, one exploits a query function Q that scores each

unlabeled example. An oracle (e.g., a human expert)

is then asked for the ground-truth label of the exam-

ple x∗ with best score. Consequently, an active learning

scenario can be seen as a quadruple (A,Q,X,XU).

One further distinguishes query strategies in two

groups (Ebert et al, 2012). Exploitative methods uti-

lize examples of X including their labels and rely on

scores derived from outputs of the involved classifier.

In contrast to that, explorative methods neglect the la-

bel information and query new examples only based on

the distribution of the current examples. For the choice

of Gaussian processes, Kapoor et al (2010) introduced

three possible query strategies which directly build on

the trained model. Selecting examples based on small-

est absolute predictive mean:

Qµ∗ (x′) = − |µ∗ (x′)| , x∗ = argmin
x′∈XU

|µ∗ (x′)| (33)

is an exploitative method and selects examples close to

the current decision boundary. Complementary, select-
ing examples with large predictive variance:

Qσ2
∗

(x′) = σ2
∗ (x′) , x∗ = argmax

x′∈XU

σ2
∗ (x′) (34)

is explorative and prefers examples with highest clas-

sification uncertainty regarding the known training ex-

amples. Finally, Kapoor et al (2010) propose to select

examples with small uncertainty1:

Qunc (x′) = − |µ∗ (x′)|√
σ2
∗ (x′)

, x∗ = argmin
x′∈XU

|µ∗ (x′)|√
σ2
∗ (x′)

. (35)

as a combination of Qµ∗ and Qσ2
∗
. The motivation here

is to obtain a query function similar to the minimum

margin approach suitable for SVMs (Tong and Koller,

2001) but with the additional consideration of the clas-

sification uncertainty. We apply our techniques for effi-

cient GP inference to these query strategies in Sect. 11.3

1 Note that in the remainder of the article, the term un-
certainty refers to classification uncertainty, and not to the
query strategy introduced by Kapoor et al (2010).
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enabling active learning with a large pool of unlabeled

examples.

9 Experimental Analysis: Large-scale

Classification

Our experimental evaluation is divided in three parts,

thereby following the structure of the previous theo-

retical sections. In the current section, we analyze our

techniques for efficient classification in large-scale sce-

narios. The suitability of our optimization approach is

evaluated in Sect. 10 and experiments with our vari-

ance computation techniques are finally presented in

Sect. 11.

9.1 Main experimental datasets

The majority of evaluations in the following three sec-

tions is done on two datasets which we shortly introduce

here.

ImageNet for multi-class classification To evaluate com-

putational scalability of our introduced techniques, the

ImageNet dataset as used for the ILSVRC’10 competi-

tion (Berg et al, 2010) serves as a perfect benchmark.

We use in total 150,000 images from 1,000 different cat-

egories from this dataset. Learned models are evaluated

on 50,000 examples from the ILSVRC’10 validation da-

taset. As commonly done for ImageNet experiments,

the flat-1-error is used as a measure of accuracy indi-

cating the ratio of correctly classified examples among

all test data.

ImageNet for binary classification Training of multi-

class GP models with 1,000 categories and hundreds

of thousands of training examples is extremely time

consuming even with our efficient GP/HIK techniques.

Therefore, we also derive binary classification tasks from

this dataset to allow for further analyses that have

taken less time. Binary tasks are derived in a one-vs-all

manner, i.e., we use all images of a single class as pos-

itive examples and ` examples from each of the other

999 categories as negative examples. Thereby, we ob-

tain 200 tasks from the first 200 categories. Models are

evaluated on the validation set using average AUC as a

measure of accuracy.

15Scenes for detailed analyses We also use the 15Scenes

dataset as a small-scale benchmark (Lazebnik et al,

2006), where all 15 classes are used for multi-class classi-

fication. Following the suggestion of Quattoni and Tor-

ralba (2009), all images are scaled to a size of 256×256

pixels to get results which are not biased on different

characteristic image sizes for specific categories. Accu-

racy of learned models is measured with the averaged

class-wise recognition rate (ARR).

9.2 Experimental Setup

Generalized histogram intersection kernels are designed

to compare histogram-like image representations. There-

fore, we represent images using either bag of visual

words (BOW) features or non-negative activations of

convolutional neural networks (CNNs). BOW features

are computed using the available toolkit2 provided with

the ILSVRC’10 challenge (Berg et al, 2010). We use the

provided visual codebook with 1,000 elements to allow

for easy reproducibility. CNN activations are obtained

from the AlexNet CNN learned on ImageNet (Donahue

et al, 2014) and extracted using the Caffe toolbox.

For optimization of hyperparameters, we use the

Nelder-Mead technique (Nelder and Mead, 1965) as men-

tioned in Sect. 6.3.

9.3 Large-Scale Experiments with ImageNet

The first question we are particularly interested in is

whether our provided techniques allow for applying GP

models to large-scale data. Therefore, we investigate

two scenarios on the ImageNet dataset: binary classifi-

cation and multi-class classification.

Binary classification scenarios Let us start with eval-
uating computational benefits arising from GP/HIK in

comparison with the GP baseline implementation using

a Cholesky decomposition and explicit kernel evalua-

tions. Here, we only create binary classification scenar-

ios to obtain at least some results for the baseline ap-

proach in affordable time. Images are represented using

provided BOW features with 1,000 dimensions. Results

are shown in Table 3 for ` = 10 and ` = 50 resulting

in 10,090 and 50,050 training examples, respectively.

Computation times are measured on a single-core In-

tel 2.6GHz machine and our method makes use of a

quantization with 100 bins to speed up classification.

As can be seen in Table 3, we are able to learn GP

classifiers within a few minutes without loss in accuracy.

In contrast to that, the baseline GP implementation is

not applicable to more than some thousands of exam-

ples – due to computation time and memory demand.

2 http://www.image-net.org/challenges/LSVRC/2011/

ILSVRC2011_devkit-2.0.tar.gz

http://www.image-net.org/challenges/LSVRC/2011/ILSVRC2011_devkit-2.0.tar.gz
http://www.image-net.org/challenges/LSVRC/2011/ILSVRC2011_devkit-2.0.tar.gz
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Table 3 Large-scale learning and classification for 200 binary ImageNet tasks: Computation times are given as median values
of measurements for each task (learning) and each test example (classification). * not possible due to excessive memory demand.

10,090 examples (` = 10) 50,050 examples (` = 50)
learning classif. learning classif.

Method AUC time time AUC time time

GP with HIK (Cholesky) 0.836 > 3.5h 1.1s —∗ —∗ —∗

GP with HIK (Ours) 0.836 64s 44µs 0.856 321s 44µs
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Fig. 4 Flat-1 error for multi-class classification using all
1,000 categories of ImageNet and provided BOW features.

In particular, standard GP regression for ` = 50 ex-

ceeded our memory capacities by resulting in a 19 GB

kernel matrix.

In summary, we observe that our approach for train-

ing and classification is significantly faster than the

baseline GP (speed-up factor: 196) and has only a lin-

ear memory requirement. Due to both aspects, it allows

for learning on large-scale datasets that are otherwise

intractable for exact GP inference.

Multi-class classification scenarios For a multi-class clas-

sification experiment on ImageNet, we compare against

SVM solvers publicly available. Specifically, we choose

the popular LibSVM package as Kernel-SVM solver

with default parameter settings. Since κHIK is not di-

rectly supported by LibSVM, we follow provided sug-

gestions and apply an RBF kernel instead. Further-

more, we compare against LibLinear as standard solver

for linear SVM models in large-scale image classifica-

tion scenarios (Deng et al, 2010). We apply an adap-

tive quantization with q = 100 bins for each dimen-

sion as introduced in Sect. 4.2. As before, we use pro-

vided BOW features with 1,000 dimensions. For differ-

ent numbers of training examples, we average over ten

random splits. Results in terms of Flat-1 error rates are

shown in Fig. 4.

We observe that GP/HIK can successfully be used

in large multi-class classification scenarios with 1,000

categories. For a small number of training examples N ,

GP/HIK even outperforms LibLinear but is slightly in-

ferior for increasing training sets. In addition, LibSVM

leads to significantly larger errors. We believe that this

results from fixed default settings for regularization pa-

rameters used in our experiment.

In summary, we observe that GP/HIK is a useful

alternative to established SVM solvers in large multi-

class scenarios.

9.4 Detailed Analysis using the 15Scenes Dataset

The previous experiments confirmed the applicability of

our GP/HIK to large-scale data. Nonetheless, a simple

BOW image representation can not compete with state-

of-the-art today. Thus, previous results only serve as

proof-of-concept. We are now interested in investigat-

ing whether GP/HIK is also useful to work on recent

image representations extracted from CNN activations.

We chose the 15Scenes dataset to guarantee that all

training data fit into our available memory even with

the largest applied image representation of D = 64,896

feature dimensions (relu3).

GP/HIK on CNN activations For different numbers of
training examples, we trained GP/HIK models on top

of different CNN activations. We used layers relu3 to

relu7 due to their non-negativity. Results are shown in

Fig. 5.

First of all, we note that GP/HIK is indeed applica-

ble as model on top of CNN activations. Besides, we find

that high-level activations of layers relu6 and relu7

give the best performance for this task. Interestingly,

earlier experiments in (Freytag et al, 2014b) showed

that humans only obtain an accuracy level of 85.67% on

this dataset. Thus, the accuracy of 87.98% with relu7

and the largest train size is indeed remarkable.

GP/HIK vs. SVM baselines As in the previous section,

we also compare against linear and kernelized SVM as

baselines. Based on the previous results, we use relu7

features as representations. For consistency, we also add

results for BOW representations and an overview is

given in Table 4. As can be seen, we again outperform

the SVM baselines when the same features are used.
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Fig. 5 Performance of GP/HIK on 15Scenes with CNN fea-
tures extracted from different relu layers and a varying num-
ber of training examples per class.

The recognition rate of a linear SVM is even lower when

an L1-normalization of the features is applied, a pre-

processing technique which we use for our GP methods.

Another not so surprising fact is the superiority of CNN

compared to BOW or SPMK (BOW with spatial pyra-

mid matching) features. The only technique currently

outperforming our method is an AlexNet carefully fine-

tuned on 15Scenes. However, this method often requires

a grad-student tweaking hyperparameters for a day.

In summary, we find that our techniques can serve

as powerful, probabilistic classification technique on top

of recent image representations.

9.5 Evaluation of Linear Solvers with Fast HIK

Multiplications

In the following, we compare the performance of con-
jugate gradients with fast HIK matrix multiplications

as presented in Sect. 4 against two coordinate descent

approaches: (1) the coordinate descent method of Wu

(2010) applied to GP and (2) the greedy block coor-

dinate descent (GBCD) approach of Bo and Sminchis-

escu (2012). The first one was originally presented for

fast SVM learning with HIK and directly operates on

the look-up table T (Sect. 4). GBCD calculates parts

of the kernel matrix on the fly to solve sub-problems.

For our experiments, the size of the sub-problems is

set to 10 and the number of components for greedy

selection is 20. We also tested other values like a sub-

problem size of 60 and 500 number of components as

suggested by (Bo and Sminchisescu, 2012), but did not

achieve a significant speed-up. Note that our approach

and (Wu, 2010) exploit fast HIK matrix multiplications,

while (Bo and Sminchisescu, 2012) can be applied for

every kernel function.

We use again the ImageNet dataset with binary

tasks and solve the linear system K̃η ·α = y with
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Fig. 6 Evaluation of the runtime and convergence of linear
solvers: (1) our conjugate gradients method, (2) the coor-
dinate descent method of Wu (2010), and (3) greedy block
coordinate descent of Bo and Sminchisescu (2012).

all three methods. Since we only care about the speed

of convergence, we use a rather small-scale setup with

` = 1. Figure 6 shows the residual of the linear system

with respect to the computation time needed. Termi-

nation is done when the maximum norm of the residual

drops below 10−6. Computation times are measured on

a single-core Intel 2.6GHz machine.

As can be seen in Fig. 6, there are orders of mag-

nitude between all three methods. Conjugate gradients

reaches a solution in 3.7 seconds, which is superior to

the coordinate descent method of Wu (2010) applied to

GP (32s until convergence). GBCD is slow (convergence

after 16 minutes) due to the long time needed for ex-

plicit calculation of kernel values for features of dimen-

sion D = 1,000. It should be noted that solving the lin-

ear system of GP regression needs more time than solv-
ing an SVM optimization problem as presented by Wu

(2010). This is due to the additional sparsity constraints

of SVM. Furthermore, runtime results presented by Bo

and Sminchisescu (2012) looked more promising, which

is likely due to the low dimensionality of chosen fea-

tures (D ≤ 37) in the paper. In summary, we find that

the CG method nicely fits to our techniques for fast

matrix-vector multiplications using HIKs.

9.6 Early Stopping of the Linear Solver

Early stopping refers to performing optimization not

until convergence but only up to the point when the

residual is lower than a predefined threshold. For large-

scale SVMs, Perronnin et al (2012) figured out that

regularization by early stopping leads to suitable gen-

eralization abilities with the additional benefit of com-

putation time saved. Since the iterative linear solver in

our proposed methods allows for early stopping as well,
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Table 4 Evaluation of GP/HIK on the 15Scenes dataset with standard BOW features (upper part) and CNN features (lower
part).

Method Features ARR

Linear SVM (Fan et al, 2008) BOW 68.4%

SVM/HIK (Quattoni and Torralba, 2009) BOW 64.1%

SVM/HIK (Quattoni and Torralba, 2009) GIST 73.0%

SVM/HIK (Quattoni and Torralba, 2009) SPMK 73.4%

GP/HIK (Ours) BOW 70.8%

Linear SVM (Sun and Ponce, 2013) learned patches 86.00%

Linear SVM (Fan et al, 2008) AlexNet-relu7 85.87%

GP/HIK (Ours) AlexNet-relu7 87.95%

AlexNet CNN with fine-tuning - 90.92%
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Fig. 7 Evaluation of model regularization by early stopping.
Desired accuracies for the iterative linear solver to stop the
computation are displayed on the x-axis, whereas the y-axis
shows the resulting recognition rate as a measure of general-
ization abilities. The standard HIK serves as kernel function.

we evaluate in the following whether their findings also

hold here.

For an experimental evaluation, we conduct experi-
ments on the 15Scenes database (Lazebnik et al, 2006)

using our GP/HIK and BOW features. We stopped

the process of training at different levels of accuracy

reached by the iterative linear solver, i.e., if the residual

dropped below predefined values. Experimental results

are shown in Fig. 7.

First of all, we notice a rapid convergence of the re-

sulting classification accuracy even if we stop the linear

solver with an extremely high residual. In fact, an early

stopping might even lead to better generalization per-

formance. We therefore conclude that early stopping

the calculation of weights α is advisable. In our ex-

periments, the number of iterations needed until reach-

ing the stopping criterion grew exponentially with the

desired accuracy. This fact additionally highlights the

benefit of early stopping.

In summary, we find that early stopping of the iter-

ative linear solver leads to well regularized models and

significantly saves computation times.
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Fig. 8 Comparison of our approach with the FITC method
of Quiñonero Candela and Rasmussen (2005) on the 15Scenes
dataset with relu7 features. For FITC, different relative sizes
of the inducing set are used.

9.7 Comparison with GP Sparsity Methods

An important family of methods for large-scale Gaus-

sian process inference covers sparse approximation tech-

niques. Among them, the Fully Independent Training

Conditional Approximation (FITC) is presumably the

most powerful representative (Quiñonero Candela and

Rasmussen, 2005). It is therefore interesting to com-

pare our efficient techniques for exact inference against

FITC as a representative for sparse GP approximations.

Similar to previous experiments, we use the 15Scenes

dataset and relu7 features. Results for other CNN lay-

ers lead to comparable conclusions. Again, we average

over ten random splits. For FITC, we evaluate differ-

ent sizes of the inducing set. The accuracies depending

on the number of training examples per category are

visualized in Fig. 8. Furthermore, we compare required

computation times for training and inference in Fig. 9.

With respect to classification accuracy (Fig. 8), we

outperform FITC especially for small inducing sets with

a large margin. We can thus conclude that our tech-
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Fig. 9 Comparison of our approach with FITC with respect
to (top) time needed during inference for each test example
and (bottom) total time needed for training. See Fig. 8 for an
analysis of the resulting accuracies.

niques allow for exact GP inference and circumvent the

necessity of sparse approximations. Regarding time for

inference, we observe in Fig. 9 that the our quantiza-

tion approach leads to constant computation time. In

contrast, FITC’s computation time increases with the

number of known examples. For training, however, we

notice that FITC results in faster learning times. Al-

though this does not hold asymptotically (see Table 1),

the investigated setting has too few examples and too

large feature dimensions to fully unveil the gain in com-

putation time. In direct comparison, we thus conclude

that our techniques is especially beneficial for learning

from large datasets without requiring sparse approxi-

mations.

9.8 Evaluation of the Quantization

We already applied the quantization idea in Sect. 9.3

to evaluate GP models trained with hundreds of thou-

sands of examples within milliseconds. For simplicity,

we set the number of bins per dimension to q = 100

and obtained identical accuracies as the baseline GP.

Let us now evaluate the resulting classification accu-
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Fig. 10 Effect of different quantization levels on classifica-
tion accuracy (top), required computation times during train-
ing (middle), and for inference (bottom). Results are obtained
on the 15Scenes dataset and averaged over ten random splits.

racy as well as required computation times for train-

ing and inference with varying numbers of quantization

bins per dimension.

Our experiments in this section are performed on

15Scenes with L1-normalized relu7 features. For ten

random splits, each setting is evaluated to allow for

statistically significant but comparable results. Com-

putation times are measured on an Intel Core i7-3930K

CPU desktop computer with 3.20 GHz and without

any parallelization. All computation times include over-

head arising from converting features from Matlab data

structures to C++ pendants in Mex-interfaces. Results

are shown in Fig. 10.

As we can nicely observe in Fig. 10(a), quantizing

feature values does not negatively affect the classifica-

tion accuracy. In fact, for all evaluated settings, classi-

fication results are comparable to those achieved with

exact inference. It should be noted that this effect is

also due to the adaptive quantization. For a uniform
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quantization equal in all dimensions, accuracy drops

significantly for small number of bins (not shown here).

From Fig. 10(b), we further observe that the train-

ing time grows over the exact baseline the more bins

are required, since larger LUTs need to be computed

and stored. Finally, classification times are shown in

Fig. 10(c). We observe clear speed-ups compared to the

exact baseline.

In summary, we find that quantization of features

saves valuable time during classification at the cost of

an affordable overhead. Already with 100 bins per di-

mension, classification results are on-par with the exact

baseline.

9.9 Comparing Incremental and Batch Learning

In Sect. 8.1, we analyzed how to efficiently handle new

data without the necessity of retraining the classifier

from scratch. To evaluate the resulting benefit, we show

results of experiments conducted on the 15Scenes data-

set with BOW features. In 100 runs, we randomly pick

10 examples per class as an initialization. During each

run, we incrementally add 1 example per class over 50

iterations resulting at most 900 examples used for train-

ing the model. Every iteration consists of training the

classifier as well as optimizing kernel hyperparameters

to perform parameter optimization on the fly. Perfor-

mances are evaluated on a disjoint test set consisting of

50 examples per class and the results are visualized in

Fig. 11.

From the plot in Fig. 11(a), we make the well-known

observation that using more examples is beneficial for

training better models. In addition, we notice that the

models learned in an incremental manner lead to al-

most identical results as those from models trained from

scratch. However, when taking the computation times

given in the plot of Fig. 11(b) into account, we obtain

a clear advantage of our incremental learning approach

compared to simple retraining. This speed-up increases

with the number of examples and is therefore especially

useful for large-scale scenarios.

Note that the major update time is spent for find-

ing optimal hyperparameters during updates. Thus, we

could obtain further speed-ups by running optimization

steps only after a batch of new data with several ex-

amples has been recorded. Since hyperparameters only

vary slowly, this would be well justifiable in practice.

Summarizing, we are able to efficiently update our

model when new data is available even with an involved

parameter optimization, which allows for using Gaus-

sian processes for large-scale scenarios in lifelong or ac-

tive learning.

10 Experimental Analysis: Hyperparameter

Optimization

In this section, we are interested in evaluating our ap-

proach for efficient hyperparameter optimization as pre-

sented in Sect. 6. The results of this section can be

summarized as follows:

1. Optimizing the exact log-likelihood and our upper

bound approximation lead to similar optima in prac-

tice (Sect. 10.1).

2. Generalized histogram intersection kernels improve

the classification performance significantly compared

to standard HIK (Sect. 10.2 and Sect. 10.3).

3. Feature relevance determination can be done by op-

timizing the marginal likelihood of a weighted HIK

(Sect. 10.4).

4. Early stopping is also applicable when hyperparam-

eters are optimized (Sect. 10.5).

10.1 Verifying the Bound of the Negative Marginal

Log-Likelihood

Before we evaluate potential benefits which arise from

optimizing hyperparameters, we are first of all inter-

ested in the tightness of our introduced bounds for

the negative GP marginal log-likelihood presented in

Sect. 6. We therefore train GP models on the 15Scenes

dataset with BOW features as image representations

and different values of η for HIK-POLY. Then, we eval-

uate our upper bound approximation as well as the ex-

act value for the negative log-likelihood− log p(y |X, η).

Furthermore, we evaluate trained models on hold-out

test data and report average recognition rates to in-

vestigate the relation between likelihood and accuracy.

Results are shown in Fig. 12.

First of all, we notice that the exact log-likelihood is

closely connected to the resulting accuracy. Thus, the

log-likelihood is a useful criterion for adapting hyper-

parameters of models to training data. Furthermore, it

can be seen that our bound closely matches the true

negative marginal log-likelihood in this setup. In con-

sequence, the minima of both curves only differ slightly

and our optimization technique can be successfully ap-

plied. For higher values of η, our bound converges to the

exact value because the influence of the log-determinant

term compared to the data term of the marginal log-

likelihood decreases. Consequently, possible approxima-

tion errors become less important and the data term

can be computed without any approximation even for

large-scale datasets. We observed a similar behavior for

other datasets and settings.
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In summary, we find that our upper bound approx-

imation is well suited for optimization of hyperparam-

eters.

10.2 Different Generalized HIK for binary

classification

Since we found that our upper bound tightly matches

the exact log-likelihood, we are now interested in the re-

sulting benefits of optimizing generalized variants of the

HIK. We again start with evaluations on binary clas-

sification tasks similar to Sect. 9.3. The experimental

setup is kept identical but with activated optimization

of hyperparameters for κHIK-POLY and κHIK-EXP. Ex-

perimental results are shown in Table 5.

As we can see, our optimization technique based

on the upper bound approximation is able to handle

datasets with tens of thousands of training examples.

Thereby, we obtain accuracy gains statistically signifi-

cant with p < 10−7 measured by a paired t-test.

In summary, we find that our optimization tech-

nique leads to valuable accuracy gains in binary classi-

fication settings.

10.3 Different Generalized HIK for multi-class

classification

For an analysis of hyperparameters in multi-class classi-

fication scenarios, we build on the previous evaluations

of Sect. 9.4 and use the 15Scenes dataset with BOW

and CNN features. In contrast to the previous evalua-

tion, we now optimize hyperparameters of HIK-POLY

and HIK-EXP with our GP marginal likelihood opti-

mization technique. Thus, this analysis complements

the previous results shown in Table 4. Results are given

in Table 6.

For the BOW features, we observe that optimizing

hyperparameters of GP/HIK-EXP results in the high-

est accuracy. In fact, it is even comparable to the re-

sult of the spatial pyramid matching kernel (SPMK)

by Quattoni and Torralba (2009) as shown in Table 4.

This highlights the power of generalized HIK and our

hyperparameter optimization.

When applying CNN features (lower part of Ta-

ble 6), results show a huge increase of performance

in general leading to state-of-the-art results. It should

be noted that in contrast to results by Sun and Ponce

(2013), we do not perform patch discovery or fine-tuning

to obtain features especially suited for the dataset, but
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Table 5 Benefit of hyperparameter estimation for 200 binary ImageNet tasks: Computation times are given as median values
of measurements for each task (learning) and each test example (classification). Optimization was done for the hyperparameters
of κHIK-POLY and κHIK-EXP, respectively.

10,090 examples (` = 10) 50,050 examples (` = 50)
learning classif. learning classif.

Method AUC time time AUC time time

GP/HIK 0.836 64 s 44 µs 0.856 321 s 44 µs
GP/HIK-POLY 0.865 435 s 44 µs 0.883 2815 s 44 µs
GP/HIK-EXP 0.889 579 s 44 µs 0.893 2578 s 44 µs

Table 6 Evaluation of hyperparameter optimization for
κHIK-POLY and κHIK-EXP: classification accuracy is obtained
on the 15Scenes dataset with standard BOW features (upper
part) and CNN features (lower part). Compare also against
Table 4.

Method Features ARR

GP/HIK BOW 70.8%

GP/HIK-POLY BOW 72.9%

GP/HIK-EXP BOW 74.0%

GP/HIK AlexNet-relu7 87.95%

GP/HIK-POLY AlexNet-relu7 87.07%

GP/HIK-EXP AlexNet-relu7 87.87%

still improve on their results listed in Table 4. Inter-

estingly, the generalized HIK does not further increase

classification accuracy – it even reduces the performance

slightly. We have not yet a convincing explanation for

this phenomenon, which requires further research.

In summary, we find that our GP marginal likeli-

hood optimization method is technically suited to opti-

mize hyperparameters in multi-class classification sce-

narios. Useful adaptations and other kernel parameter-

izations for recent CNN features remain an open ques-

tion.

10.4 Feature Relevance Estimation

We have already seen that Gaussian processes allow for

hyperparameter optimization by marginal likelihood es-

timation. In this experiment, we show the suitability of

GP equipped with optimized weighted HIK for efficient

feature relevance determination leading to superior re-

sults compared to those of SVM-based estimations.

Since there is no exact gradient information during

the optimization available, the Nelder-Mead method

converges poorly for huge numbers of parameters to be

optimized. Consequently, computing feature relevance

for features with thousands of dimensions, as in our

previous experiments, is almost impossible right now.

Nevertheless, as a proof of concept we follow the

same synthetic experimental setup as Ablavsky and

Sclaroff (2011): for different numbers of training ex-

amples, we randomly sample eight-dimensional feature

vectors with relevant information only available in the

first two dimensions. The performance is estimated with

500 tests. For the specific random distributions, we refer

the reader to the work of Ablavsky and Sclaroff (2011)

and references therein. The results of our experiments

can be seen in Fig. 13.

The information included in each dimension is well

reflected by the estimated relative weights ηi, which

can be observed from the plot in Fig. 13(a). Further-

more, the plot in Fig. 13(b) shows the recognition ac-

curacy for standard and weighted HIK with respect to

the training size. The improvement is highly significant

with p < 10−7 using the paired t-test. In comparison

with Ablavsky and Sclaroff (2011), our approach addi-

tionally leads to more consistent weights and higher ac-

curacies. The experimental results emphasize the ben-

efits of a probabilistic framework for hyperparameter

optimization.

In addition, regularization terms could be added to

the objective, such as terms based on the minimum de-

scription length principle. However, this is beyond the
scope of this paper.

10.5 Early Stopping of the Linear Solver

In Sect. 9.6, we investigated the effect of early stopping

for GP/HIK. However, we did not optimize hyperpa-

rameters and applied the plain κHIK instead. Let us

therefore investigate whether the same findings hold if

optimization is additionally activated. We therefore re-

peat the same experiments as in Sect. 9.6 but optimize

parameters of HIK-POLY using our marginal likelihood

optimization technique. Results are shown in Fig. 14.

As for the plain κHIK, we again notice a rapid con-

vergence of the resulting classification accuracy. In con-

trast, to the results without hyperparameter optimiza-

tion there is no benefit of early stopping in terms of

accuracy. In addition, it should be noted that the opti-

mal hyperparameter value remained unchanged for all
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Fig. 14 Evaluation of model regularization by early stop-
ping. Desired accuracies for the iterative linear solver to stop
the computation are displayed on the x-axis. The y-axis shows
the resulting recognition rate as a measure of generalization
abilities. In contrast to the previous evaluation in Sect. 9.6,
we now optimize the hyperparameter η of the HIK-POLY.

settings of the stopping criterion throughout our exper-

iments.

We conclude that early stopping is well applica-

ble for hyperparameter optimization using our upper

bound for the negative log-likelihood, since it leads to

a significant speed-up due to a decrease in iterations of

the linear solver. However, an increase in accuracy with

early stopping cannot be expected.

11 Experimental Analysis: Uncertainty

Prediction

The third part of our experimental analysis deals with

the uncertainty approximation introduced in Sect. 7.

We can summarize the results of this section as follows:

1. The predictive variance of Gaussian processes can

be approximated efficiently even in large-scale sce-

narios with a speed-up of up to 45,000× (Sect. 11.1).

2. Our upper bound approximations closely follow the

exact variance scores (Sect. 11.2).

3. Approximation of the predictive variance leads to

active learning results comparable to the ones achieved

with the exact predictive variance (Sect. 11.1).

11.1 Fast Computation of the Predictive Variance

We start this section by evaluating the efficiency of

our proposed techniques for computing the predictive

variance in terms of computation times needed. As in

the previous sections, we conduct experiments on the

15Scenes dataset (Lazebnik et al, 2006) as well as on

the large-scale ImageNet dataset. For the 15Scenes da-

taset, we randomly pick 100 examples of each class for

training resulting in 1,500 training examples in total.

Training on the large-scale ImageNet dataset with bi-

nary tasks is carried out using ` = 10 or ` = 50 ran-

domly chosen examples per negative class and 100 ex-

amples for the positive class, which results in 10,090 and

50,050 training examples in total. Computation times

are averaged over all remaining examples. Experiments

in this section are conducted on a 3.4 GHz CPU with-

out any parallelization.

Experimental results are shown in Table 7. Espe-

cially for large-scale datasets, we obtain a significant

speed-up compared to the direct computation of the

variance (GP-standard). For rapid uncertainty predic-

tion, the CAPU method turns out to be highly suitable
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Table 7 Runtimes needed for the computation of the predictive variance using the presented techniques from Sect. 7 in
comparison to the baseline GP on two image categorization datasets (see Sect. 11.1). * not possible due to excessive memory
demand.

Number of training examples

Method 1,500 10,090 50,050

GP, plain formulation 60.36 ms 1.54 s —∗

PUP (Sect. 7.1) 2.11 s 22.92 s > 1 min

FAPU (Sect. 7.2), k = 8 13.73 ms 105.63 ms 1.47 s

FAPU (Sect. 7.2), k = 2 13.35 ms 105.37 ms 1.15 s

CAPU (Sect. 7.3) 5.92 ms 62.07 ms 266.97 ms

q-CAPU (Sect. 7.3) 13.32 µs 33.89 µs 33.89 µs

with computation times in the order of microseconds. It

should be noted that the PUP method is relatively slow

due to the involved computations of the iterative linear

solver. Although we have already seen the efficiency of

a linear conjugate gradient method for this problem, it

still needed some hundreds of iterations until conver-

gence, especially for large training sets. Therefore, we

argue to use the precise method only in cases where

time is not the limiting factor, but the GP baseline can

not be computed explicitly due to the huge memory

demand.

11.2 Investigating the Tightness of Variance

Approximations

In a second experiment, we investigate the deviation

between exact variance scores and our introduced ap-

proximations. As argued before, two outcomes can be

acceptable which depends on the application scenario:

(1) either the approximations should be close to the

exact scores (e.g., for security applications with fixed

thresholds), or (2) only the correct relative order is of

interest (e.g., active learning). We analyze our tech-

niques regarding both aspects in the following.

As previously, we use the 15Scenes dataset for evalu-

ation. Images are represented using L1-normalized relu7

features. For training, we select three categories with 50

randomly chosen examples of each category. All remain-

ing data serves for model evaluation. Thereby, we ob-

tain a small set of examples from known categories and

a significantly larger pool of unknown categories. The

noise level for model regularization is fixed to σ2
n = 0.1.

For FAPU, we spend T3 = 100 iterations for the Arnoldi

technique to estimate even 16 eigenvectors reliably The

quantization for q-CAPU is done with q = 100 bins per

dimension and dimension-adaptive.

To analyze the deviation of scores, we sort variance

scores of the exact PUP technique increasing order. Pre-

dictions of the remaining techniques are re-arranged ac-

cordingly. Results are shown in the left part of Fig. 15.

For visualization, only every 5th sample is plotted.

The relative order of scores is additionally analyzed

by normalizing scores of each method individually into

[0, 1]. Again, scores of PUP are ordered decreasingly

and scores of remaining methods are plotted accord-

ingly. Results are shown in the right part of Fig. 15.

First of all, we clearly observe the upper bound re-

lationship among our introduced techniques. Regard-

ing exact scores, it can be seen that PUP is closed

matched by the FAPU approximation. Hence, FAPU

should be used when approximation errors are undesir-

able. Besides, we observe that q-CAPU and CAPU lead

to identical results although their scores differ strongly

from the exact counterparts. Nonetheless, the relative

order is comparable (right figure). Hence, CAPU is a

reasonable choice if only the relative order of variance

estimates is required.

11.3 Application for Active Learning

In a final experiment, we are interested in applying our

GP/HIK to active learning scenarios. Therefore, we ap-

ply the three query strategies by Kapoor et al (2010) as

reviewed in Sect. 8.2. We evaluate our methods on the

difficult real-world ImageNet dataset. For each experi-

ment, we randomly pick a single positive class as well

as four, nine, or nineteen classes providing negative ex-

amples. Starting with two randomly chosen examples

per class, we query new examples using the proposed

methods. Each task is repeated with 100 random ini-

tializations. Final results are achieved by averaging over

100 different tasks. For variance estimation, we apply

our FAPU technique with k = 2 eigenvectors for the ap-

proximation. Experimental results are given in Fig. 16.

We first notice that concerningQσ2
∗
, we again obtain

interesting results, since it is inferior to random sam-

pling for a small number of negative classes but slightly

superior for larger number of classes. Query strategies
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Fig. 15 Tightness of GP/HIK variance approximations on the 15Scenes dataset with relu7 features. Scores of the exact
method are increasingly ordered. Predictions of remaining techniques are re-ordered accordingly. GP/HIK is trained on L1-
normalized relu7 activations. Left : variance predictions of each method. Right : we normalized variance predictions of each
method individually into [0, 1] to better visualize the overall trend. Best viewed in color.
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Fig. 16 Active learning results on 100 binary classification tasks derived from the ImageNet dataset. Best viewed in color.

Qµ∗ and Qunc tend to pick similar examples even on

this challenging dataset resulting in almost identical

performances, which is due to the strong influence of

the mean term in Qunc.

As a concluding remark we state that for active

learning, a suitable combination of mean and variance

is beneficial to obtain satisfying learning rates, and our

techniques are appropriate for computing query scores

even for thousands of possible queries in large-scale

learning scenarios.

12 Conclusions

In this article, we presented solutions for efficient Gaus-

sian process inference in large-scale scenarios. Our tech-

niques cover all aspects of inference, i.e., exact multi-

class classification with label regression, hyperparame-

ter optimization, and uncertainty prediction. A key as-

pect of all techniques is to exploit generalized histogram

intersection kernels, which have proved to be highly

suitable for measuring similarities between histogram-

like representations. Thereby, our derived methods yield

significant asymptotic as well as practical speed-ups
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(several orders of magnitude) while requesting only a

linear amount of memory. We empirically validated our

techniques for a wide range of application scenarios

and provided detailed analyses of all involved aspects.

Experimental results disprove common belief that full

non-parametric Bayesian methods are too expensive for

large-scale data.

We believe that the presented techniques can be ap-

plied to a wide range of other uses of a GP model (Bonilla

et al, 2008; Pillonetto et al, 2010; Bo and Sminchisescu,

2010), where the inversion of the kernel matrix or com-

puting its log-determinant is the main bottleneck. Fi-

nally, the joint possibility for efficient and exact classifi-

cation, uncertainty prediction, hyperparameter adapta-

tion, and online learning ultimately allows for life-long

learning applications with never-ending data streams.

Our developed source code is publicly available at

https://github.com/cvjena/gp-hik-core and licensed

under LGPL. Since we provide C++ implementation as

well as Matlab interfaces, we hope that other computer

vision researchers can use our techniques as additional

classification tool besides LibSVM or LibLinear.

A Quantization error analysis

Proof of Theorem 1 The quantization trick approximates
a new example x∗ with a quantized version x̃∗. In the follow-
ing, we assume D quantizations with q bins are given for each
dimension. For each input value x(d) ∈ [ld, ud], we can com-
pute a quantized value z̃. The maximum quantization error
εq is then defined as follows:

εq = max
x(d)∈[l,u]

max
1≤d≤D

|x(d)− z̃| . (36)

Our goal is to analyze the difference between the exact
predictive mean µ∗ and the one computed with the quanti-
zation trick µ̃∗:

|µ∗ − µ̃∗| = |kT
∗α− k̃T

∗α|

= |(k∗ − k̃∗)
Tα| ≤

N∑
i=1

|4k (i) ||α (i) | (37)

where we have defined 4k (i) = κ(xi,x∗) − κ(xi, x̃∗) as an
abbreviation. Let us analyze this term in more detail using

the relation min(a, b) = 1
2
· (a+ b− |a− b|):

|4k (i) | = |κ(xi,x∗)− κ(xi, x̃∗)|

=

∣∣∣∣∣
D∑
d=1

min(xi (d) ,x∗ (d))−min(xi (d) , x̃∗ (d))

∣∣∣∣∣
=

1

2

∣∣∣∣∣
D∑
d=1

xi (d) + x∗ (d)− |xi (d)− x∗ (d) | . . .

. . .− xi (d)− x̃∗ (d) + |xi (d)− x̃∗ (d) |

∣∣∣∣∣
=

1

2

∣∣∣∣∣
D∑
d=1

x∗ (d)− x̃∗ (d)− |xi (d)− x∗ (d) |+ . . .

. . . |xi (d)− x̃∗ (d) |

∣∣∣∣∣ . (38)

We can now exploit the fact that x∗ is normalized to sum up
to a constant value, e.g., 1. Furthermore, we assume that this
also holds for x̃∗. This assumption is reasonable for a high di-
mension D and a quantization error with zero mean. Putting
both aspects together, we obtain the following equality:

|4k (i) | =
1

2

∣∣∣∣∣
D∑
d=1

|xi (d)− x̃∗ (d) | − |xi (d)− x∗ (d) |

∣∣∣∣∣
=

1

2
|‖xi − x̃∗‖1 − ‖xi − x∗‖1| (39)

Due to the symmetry in the inequality with respect to x∗
and x̃∗, we can assume without loss of generality that ‖xi −
x̃∗‖1 ≥ ‖xi − x∗‖1. This allows us to apply the triangle
inequality and we finally obtain:

|4k (i) | =
1

2
(‖xi − x̃∗‖1 − ‖xi − x∗‖1)

≤
1

2
(‖xi − x∗‖1 + ‖x∗ − x̃∗‖1 − ‖xi − x∗‖1)

=
1

2
‖x∗ − x̃∗‖1 . (40)

This directly leads to |4k (i) | ≤ D · εq
2

. Combined with Eq. (37),
this proofs the final result of the Theorem.

The bound can be also improved by considering the sum
of quantization errors in each dimension, but we skipped this
fact for brevity and ease of notation.

B Proof of the Bound

Proof of Lemma 1 First note that due to the conditions
of the lemma, the following holds: 1 ≤ µ2 < µ1 ≤ N and
t̄ > 0. Furthermore, the bound is only valid for β 6= t̄, because
otherwise the 2×2 matrix within the bound would be singular.

We now start by deriving the coefficients for µ1 and µ2.
The first part of Eq. (19) can be written as:[

log β, log t̄
] [ β t

β2 t2

]−1

=
[
log β, log t̄

]( 1

βt̄2 − t̄β2

[
t̄2 −t̄
−β2 β

])
=

1

βt̄2 − t̄β2

[
t̄2 log β − β2 log t̄ , β log t̄− t̄ log β

]
=

1

t̄− β

[
log β

β
t̄−

log t̄

t̄
β ,

log t̄

t̄
−

log β

β

]
. (41)

https://github.com/cvjena/gp-hik-core
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Therefore, we get the following short form of Eq. (19) with
β = 1:

ub(1, µ1, µ2) =
log t̄

t̄ (t̄− 1)
(µ2 − µ1)

definition of t̄ = log

(
µ1 − µ2

N − µ1

)
·(

µ1 − µ2

N − µ1

(
µ1 − µ2

N − µ1
− 1

))−1

(µ2 − µ1)

simplify = log

(
µ1 − µ2

N − µ1

)
·

(N − µ1)2(µ2 − µ1)

(µ1 − µ2)(µ1 − µ2 −N + µ1)

cancel µ1 − µ2 = log

(
µ1 − µ2

N − µ1

)
(N − µ1)2

N − 2µ1 + µ2
. (42)

Let µ̃2 with 0 < µ̃2 ≤ µ2 be a lower bound of the squared
Frobenius norm. If we replace µ2 with µ̃2 in Eq. (42), we
notice that the log-term increases and the denominator of the
second part decreases. This directly leads us to the validity
of the lemma.

Proof of Lemma 2

ub(γβ, γµ1, γ
2µ2) =

[
log γβ, log γt̄

]
·([

γ 0
0 γ2

][
β t̄

β2 t2

])−1 [
γ 0
0 γ2

][
µ1

µ2

]
=
([

log β, log t̄
]

+
[
log γ, log γ

])
·[

β t̄
β2 t̄2

]−1 [
µ1

µ2

]
definition of ub = ub(β, µ1, µ2)+

[
log γ, log γ

]
·[

β t̄
β2 t̄2

]−1 [
µ1

µ2

]
= ub(β, µ1, µ2) + ũbγ(β, µ1, µ2) . (43)

Now, we show that the second term equals to N · log γ by
using the definition of t̄ and the calculation of the weights for
µ1 and µ2 as done in the beginning of the proof of Lemma 1:

ũbγ(β, µ1, µ2) = (log γ)
[
1, 1

]
·
[
β t̄
β2 t̄2

]−1 [
µ1

µ2

]
see proof of L1 =

log γ

t̄− β

[
t̄

β
−
β

t̄
,

1

t̄
−

1

β

] [
µ1

µ2

]
=

log γ

(t̄− β) t̄β

[
t̄2 − β2, β − t̄

] [µ1

µ2

]
=

log γ

t̄β

[
t̄+ β, −1

] [µ1

µ2

]
=

log γ

t̄β
((t̄+ β)µ1 − µ2)

definition of t̄ = (log γ)
βN − µ1

β2µ1 − βµ2
·((

βµ1 − µ2 + β2N − βµ1

βN − µ1

)
µ1 − µ2

)
= (log γ)

−µ1µ2 + β2Nµ1 − βNµ2 + µ1µ2

β2µ1 − βµ2

= (log γ)
β2Nµ1 − βNµ2

β2µ1 − βµ2

= N · log γ . (44)

Proof of Theorem 2 The first part of the inequality was
proved by Bai and Golub (1997) and the proof for the second
part is straightforward by applying Lemma 2 with γ = 1

β

followed by using Lemma 1:

ub(β, µ1, µ2) = ub

(
1,
µ1

β
,
µ2

β2

)
−N · log

(
1

β

)
L2

≤ ub

(
1,
µ1

β
,
µ̃2

β2

)
−N · log

(
1

β

)
L1

= ub(β, µ1, µ̃2) . L2 (45)

C Bounds on Quadratic Forms

From linear algebra we know that any real-valued, symmetric
matrix M ∈ RN×N can be transformed into M = UDUT

where D is a positive definite diagonal matrix containing the
eigenvalues of M and U is an orthogonal matrix of the same
size as M . Therefore, we notice that for any vector x ∈ RN
the following holds:

xTMx = xTUDUTx = x̃TDx̃ =

N∑
i=1

λix̃(i)2 . (46)

We denoted with λi the decreasingly ordered eigenvalues of
M , i.e., λ1 ≥ . . . ≥ λN , and x̃i contains the projection of x
onto the ith column of U , which is the ith eigenvector of M .
As a result, we can bound the quadratic form in Eq. (46) as
follows:

xTMx =

k∑
i=1

λix̃(i)2 +

N∑
j=k+1

λj x̃(j)2 (47)

≤
k∑
i=1

λix̃(i)2 + λk+1

N∑
j=k+1

x̃(j)2 . (48)

Since U is an orthonormal basis, it does not influence the
length of vectors, i.e., ||Ux|| = ||x||. Therefore, we can obtain
the following upper bound:

xTMx ≤
k∑
i=1

λix̃(i)2 + λk+1

(
||x||2 −

k∑
i=1

x̃(i)2
)
. (49)

Equivalently, we get the following lower bound considering
the k smallest eigenvalues of M and bounding the remaining
eigenvalues with the (k + 1)th smallest:

xTMx ≥
N∑

j=N−k+1

λj x̃(j)2

+ λN−k
(
||x||2 −

N∑
j=N−k+1

x̃(j)2
)
.

(50)

For the special cases of k = 0 in Eq. (49) and Eq. (50), we
obtain the well known bounds for any positive definite matrix
M and any vector x of corresponding size:

λN (M) ||x||2 ≤ xTMx ≤ λ1(M) ||x||2 . (51)
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