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Abstract. We present how to perform exact large-scale multi-class Gaus-
sian process classification with parameterized histogram intersection ker-
nels. In contrast to previous approaches, we use a full Bayesian model
without any sparse approximation techniques, which allows for learning
in sub-quadratic and classification in constant time. To handle the addi-
tional model flexibility induced by parameterized kernels, our approach
is able to optimize the parameters with large-scale training data. A key
ingredient of this optimization is a new efficient upper bound of the
negative Gaussian process log-likelihood. Experiments with image cate-
gorization tasks exhibit high performance gains with flexible kernels as
well as learning within a few minutes and classification in microseconds
for databases, where exact Gaussian process inference was not possible
before.

Key words: Large-scale Gaussian Processes, Histogram Intersection
Kernels, Hyperparameter Optimization, Bayesian Modeling

1 Introduction

Non-linear learning with histogram kernels is currently one of the main tech-
niques for solving complex visual recognition tasks [1–3]. This is mainly because
histogram kernels, such as the histogram intersection kernel (HIK), exploit the
property that histograms are normalized and lie in a very specific subspace [4],
which allows providing a more suitable measure of similarity compared to stan-
dard kernels. For learning, SVM classifiers are the most prominent technique.
However, it has been shown that full Bayesian techniques, e.g., Gaussian process
(GP) methods, do offer two important advantages: (1) they allow hyperparam-
eter optimization by maximizing the marginal likelihood of the model, and (2)
the uncertainty of the estimate can be predicted. Their main disadvantage is
the cubic runtime of the learning step, which prevents them from being used in
large-scale scenarios. Nevertheless, due to the large number of available image
data, current tasks and research is shifting more and more towards large-scale
learning scenarios, where the final goal is to efficiently handle several thousands
to millions of training examples [5].
We present how to perform multi-class GP classification and hyperparameter
optimization with large-scale datasets without any sparse approximation. The
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memory and runtime requirements of our methods are sub-quadratic allowing
for scalability. The approach is based on fast multiplications of the histogram
intersection kernel matrix with an arbitrary vector. This allows for solving the
GP inference equations by utilizing iterative solvers. Furthermore, we demon-
strate that hyperparameter optimization with the complete GP model can also
be performed in an efficient manner by exploiting an upper bound of the deter-
minant of the kernel matrix. The upper bound depends on terms, which can be
efficiently calculated. The main contributions of this paper are as follows:

1. We show how to perform training and classification in a Bayesian manner
with Gaussian processes and histogram intersection kernels in sub-quadratic
and constant time, respectively.

2. Hyperparameter optimization for large-scale datasets with efficient GP mar-
ginal likelihood optimization is presented, which allows for linear kernel com-
bination and feature relevance determination.

3. We demonstrate the advantages of parameterized histogram intersection ker-
nels.

Additionally, Gaussian process classification with label regression [6] is extended
towards handling imbalanced learning data. The remainder of our paper is orga-
nized as follows. In Sect. 2, we give a short overview of related work on efficient
GP classification and exploiting the efficiency of the histogram intersection ker-
nel. Gaussian processes for classification and the key concepts of the efficiency
of the histogram intersection kernel are reviewed in Sect. 3 and 4. In Sect. 5,
we demonstrate how GP classifiers can be trained, optimized, and evaluated in
a fast manner by making use of the HIK properties. Experimental results for
medium as well as large-scale classification tasks are shown in Sect. 6 highlight-
ing the suitability of our efficient computations for various scenarios. A summary
of our findings and a discussion of future research directions conclude the paper.

2 Related Work

Fast Learning and Classification with HIK To overcome the drawback of
time-consuming classification with kernel methods, Vedaldi and Zisserman [7]
presented how to approximate the values of the histogram intersection kernel
with explicit feature transformations. In contrast, Maji et al. [8] exploited the
properties of HIK directly for calculating SVM decision scores in O(D log(m))
time compared to O(Dm) for standard SVM inference with m being the number
of support vectors and D being the number of feature dimensions. Going one
step further, Wu [9] presented fast SVM training by using the HIK properties to
reformulate the SVM dual problem. The current paper, which was inspired by
both works, shows that the special properties of the HIK can also be exploited
for GP classification and even for hyperparameter optimization.

Generalized HIK and Hyperparameter Optimization Barla et al. [10]
applied the HIK for image classification and proved it to be a Mercer kernel
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for images having the same size. Since that time, a lot of improvements on this
kernel have been proposed, e.g., HIK with polynomial transformations [1] or the
weighted multi-level extension known as pyramid match kernel (PMK) [2]. We
show how to further generalize the HIK with arbitrary feature transformations
and weights for each dimension. Therefore, our work is similar to [4], where a
cross-validation procedure is proposed to estimate multiple weights of histogram
kernels. In contrast, our hyperparameter optimization is based on a Bayesian
model and can be utilized for large-scale scenarios, which is especially necessary
when trying to estimate a large number of hyperparameters.

Fast GP Classification and Regression GP classifiers require a computa-
tion time and memory cubically and quadratically in the number of training
examples. Therefore, their direct application to large-scale problems is limited.
A growing number of publications deal with tackling this problem by introducing
sparse approximations assuming conditional independence between sets of cer-
tain variables. These variables could be specified examples of the training set or
can be learned during training [11]. Although these techniques lead to impressive
results, the necessary independence assumptions neglect information provided in
training and test data. The only work we are aware of tackling full large-scale
GP inference is the greedy block technique of Bo and Sminchisescu [12], which
does not require storing the full kernel matrix in memory. However, kernel values
have to be calculated explicitly, which is not necessary in our case. In experi-
ments, we show that their method can be improved by orders of magnitude in
computation time by exploiting HIK properties.

3 GP regression and Hyperparameter Optimization

Let X be the space of all possible input data, e.g., D-dimensional feature vectors.
Given n training examples x(i) ∈ X ⊂ X as well as corresponding binary labels
yi ∈ {−1, 1}, we would like to predict the label y∗ of an unseen example x∗ ∈ X .
We now assume that f is a sample of a GP prior, i.e., f ∼ GP(0,K) with
covariance function K, and that labels yi are conditionally independent given
f(x(i)). Furthermore, a simple additive Gaussian noise model with variance σ2

is used:
p(yi | fi) = N (yi | fi, σ2) . (1)

We follow [6] and solve a given binary classification problem as a regression prob-
lem, which regards yi as real-valued function values instead of discrete labels.
This is advantageous, because in this case the GP model assumptions lead to
analytical solutions of the involved marginalizations and allow for directly pre-
dicting the expectation µ∗ of the posterior of the label y∗ given a new example
x∗ [13]:

µ∗ = kT∗ (K + σ2 · I)−1y = kT∗α . (2)

The vector k∗ contains the kernel values (k∗)i = K(x(i),x∗) corresponding to a
test example x∗, K is the kernel matrix of the training data, and y is the vector
containing all training labels.
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Fig. 1. Piecewise linearity of the regression function when using Gaussian process re-
gression applied to the histogram intersection kernel: 2-dimensional input vectors x are
used but due to the normalization ‖x‖1 = 1, we only display the predictive mean (red
graph) and confidence areas (shaded area) derived from the predictive variance with
respect to the first dimension of the input vectors. Training points are shown as blue
dots and the noise variance is set to 0.1

Hyperparameter Optimization In this paper, we use kernel functions that
depend on hyperparameters η, which have an important impact on the resulting
classification model. In contrast to SVM techniques, the GP framework allows
for finding their optimal values by likelihood maximization instead of expensive
cross-validation. For GP regression, the negative log-likelihood is given by [13]

− log p(y | X,η) =
1

2
yT
(
K̃η

)−1
y +

1

2
log det

(
K̃η

)
+
n

2
log 2π (3)

with K̃η being the parameterized kernel matrix having the noise variance σ2

added to the main diagonal.

Multi-class Classification Multi-class classification can be done by utilizing
the one-vs-all technique [6], which also offers to perform model selection by
joint optimization of hyperparameters with all involved binary problems [6].
The objective function is simply the sum of all binary negative log-likelihoods.

Imbalanced Datasets If the number of positive and negative samples dur-
ing training differs, the resulting decision function becomes biased towards the
class more prominent in the training data. Especially for large-scale datasets
with some hundred positive examples but several thousand negatives, this bias
becomes crucial for the overall accuracy. To overcome this behavior, we propose
using different noise levels for positive and negative examples, i.e., the diago-

nal matrix N is added to the kernel matrix with Nii = 2σ2 ·
( |{j | yi=yj}|

n

)
. By

rewriting GP regression into a regularized least-squares problem [13, p. 144],
this balancing strategy leads to an equal sum of positive and negative weights.
Due to the lack of space, we refer to the supplementary material1 for detailed
derivations.
1 Supplementary material: http://www.inf-cv.uni-jena.de/gp hik.html
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4 Efficient Kernel Calculations with Histogram Kernels

Kernel methods are one of the fundamental tools used to handle the complexity
of visual recognition. It has been shown that the histogram intersection kernel

Khik(x,x′) =
D∑

d=1

min(xd, x
′
d) , (4)

which is often used to compare histogram feature vectors x,x′ ∈ RD, allows for
efficient classification and learning with support vector machines (SVM) [8, 9]. In
our approach, we use the HIK directly in the previously presented GP framework
as a covariance function. Figure 1 shows two examples of GP regression and
classification with this model. The interesting observation is that the regression
function estimated by the predictive mean given in Eq. (2) is piecewise linear.
We exploit this property for speeding up GP regression and hyperparameter
optimization in Sect. 5.
In the following, we briefly review the techniques of [8, 9] for speeding up the
computation of kernel terms and extend them towards using parameterized gen-
eralizations of the HIK.

Fast Kernel Calculation As we have seen in Eq. (2), similar to SVM and
many other kernel methods, the predictive mean is a weighted sum of kernel
values. The HIK allows for decomposing it in two parts [8]:

kT∗α =
n∑

i=1

αi

D∑

d=1

min(x
(i)
d , x∗d) =

D∑

d=1

( ∑

{i:x(i)
d <x∗

d}

αix
(i)
d + x∗d

∑

{j:x(j)
d ≥x∗

d}

αj

)
. (5)

We can now significantly reduce the computational costs using the following
trick. Let us assume that permutations πd are given which rearrange the training
examples such that they are sorted in an ascending order in each dimension d.
Then, we can rewrite Eq. (5) as

kT∗α =
D∑

d=1

( r∑

i=1

απ−1
d (i)x

(π−1
d (i))

k

︸ ︷︷ ︸
·
= A(d,r)

+ x∗d

n∑

i=r+1

απ−1
d (i)

︸ ︷︷ ︸
·
= B(d,r)

)
, (6)

with r being the number of examples that are smaller than x∗d in dimension d.
Thus, Eq. (6) proves the piecewise linearity of the predictive mean of Gaussian
process regression with HIK. If we precompute the two terms of the linear func-
tion during learning, evaluating the scores for test examples can be done with a
few evaluations of A and B for each dimension. Given the vector α, the resulting
computation time for building A and B is dominated by sorting in O(Dn log n)
operations. In terms of memory usage, we only have to store O(Dn) elements
in contrast to the kernel matrix of size O(n2). For calculating the score of a new
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example, we need O(D log n) operations to find the correct position r in each
dimension and compute the linear function in Eq. (6) by evaluating A and B.
Similar considerations hold for multiplications of an arbitrary vector v ∈ Rn
with the kernel matrix K, which can be done in O(D · n). Furthermore, we can
exploit sparsity of feature vectors with a careful implementation.

Quantization of the Feature Space If we assume that feature values in
dimension d are bounded by x∗d ∈ [ld, ud], the evaluation can be further speeded
up by quantizing the feature space [8]. Using a quantization for each dimension
with q bins, only q different outputs are possible for Eq. (6). With already
computed matrices A and B, we can proceed with building a final lookup table
T of dimension D×q. Due to the already given permutations πd, we can perform
this within O (Dmax (q, n)) operations. As a result, the time spent for evaluating
the score of a new test example decreases to O(D). Consequently, for a given
number of dimensions the score of a new test example can be computed in
constant time independent of n.

Very General Histogram Intersection Kernels Boughorbel et al. [1] show
that the HIK equipped with any positive valued function g :

Kghik(x,x′) =
D∑

d=1

min (g (xd) , g (x′d)) , (7)

still remains a positive-definite kernel. If g is an automorphism, the relative order
of the training elements stays valid after evaluating g. Therefore, the proposed
techniques can also be applied to these generalized variants of the HIK and we
can even use the same quantization by storing the original feature values. Two
common examples of such functions are the powered absolute value g|.|,η(x) =

|x|η and the exponential ge,η(x) = exp(η|x|)−1
exp(η)−1 . In the remaining sections, we refer

to them as generalized HIK (G-HIK) and exponential HIK (EXP-HIK). The
kernel function given in Eq. (7) can be generalized even further by considering
functions g(d) for each dimension. For example, g(d)(xd) = ηd · xd with ηd ≥ 0
allows for individually weighting input dimensions:

Kweights(x,x′) =
D∑

d=1

ηd ·min (xd, x
′
d) . (8)

In subsequent sections, we present how to optimize the parameters η even for
large-scale training data. Together with the kernel function in Eq. (8), this allows
for linear kernel combination [6] and automatic relevance determination [13].

5 Efficient GP Multi-class Classification

In this section, we demonstrate that GP regression and hyperparameter opti-
mization can be performed efficiently when using histogram intersection kernels.
An overview is shown in Fig. 2, whereas Table 1 summarizes the asymptotic
computation times necessary for each step.
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Fig. 2. Main outline of GP classification and hyperparameter optimization using fast
multiplications with the kernel matrix

Table 1. Overview of asymptotic runtimes for training, testing, and optimization of
hyperparameters for baseline GP compared to our approach. D denotes the number of
dimensions, n the number of training examples, M the number of classes, and T1 and
T2 the number of iterations used for the linear solver and the optimizer, respectively

Asymptotic runtime
Evaluation step GP baseline GP+HIK+Quantization

Training (Sect. 5.1) O(n3 + n2D) O(nD(T1M + logn))
Hyperparameter opt. (Sect. 5.2) O((n3 + n2D)T2) O(nMDT1T2)
Testing (Sect. 5.1) O(nMD) O(MD)

5.1 Learning and Classification

Inference with a GP model requires two steps: (1) solving the linear equation
system K̃η · α = y and (2) calculating the scalar product kT∗α. For large-scale
datasets, storing the full kernel matrix is impossible and applying a Cholesky
decomposition with a runtime of O(n3) far from being practical. As we have
seen in Sect. 4, multiplications with the kernel matrix can be done in linear time
with histogram intersection kernels. Therefore, we use an iterative linear solver
to tackle step 1. Wu [9] used a coordinate descent method to solve the quadratic
program related to SVM learning. In contrast, our experiments show that a
linear conjugate gradients (CG) method converges faster. The total asymptotic
runtime for learning is O(nD(T1M+log n)) including sorting. The total number
of iterations T1 of the CG method depends on the condition number of the kernel
matrix and we also see that the runtime performance of our method is linear in
the number of classes M . We stop the CG method when the maximum norm of
the residual drops below 10−2.
After estimation of the coefficients α, we use the quantization algorithm of [8]
reviewed in Sect. 4 allowing for computing kT∗α in constant time (step 2). In
our experiments, we choose an equidistant quantization with q = 100.

5.2 Large-Scale Hyperparameter Optimization

To optimize kernel hyperparameters with a large-scale dataset, we have to mini-
mize the negative GP log-likelihood as given in Eq. (3). Due to the computational
demand of evaluating Eq. (3) for large-scale datasets, we bound the negative log-
likelihood with an efficiently computable function from above. Finding suitable
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hyperparameters is then done by minimizing this upper bound instead of the
real negative log-likelihood. Optimization is carried out with a method that
does not require any gradient information, because calculating the gradient of
the log-likelihood or the gradient of our upper bound is a costly operation.

Evaluating the log-likelihood requires the calculation of two different terms, the
logarithm of the kernel matrix determinant and the data term involving the
labels y. The latter one is easy to compute, because it simply involves solving
the same linear system as required for learning. However, the determinant of the
kernel matrix is difficult to handle and we require some upper bound on it.

Efficient Upper Bound of the Log-Determinant Computing the determi-
nant of a matrix is a costly algebraic operation, even with fast matrix multipli-
cations [14]. Due to this reason, we use the upper bound provided by Bai and
Golub [15], which turns out to be efficiently computable for histogram intersec-
tion kernel matrices. If the eigenvalues λi of D can be bounded by 0 < λi ≤ β,
an upper bound of the log-determinant is given by:

log det(D) ≤
[
log β log t

] [ β t

β2 t
2

]−1 [
µ1

µ2

]
·
= ub(β, µ1, µ2) (9)

where µ1 = tr (D), µ2 = ‖D‖2F , and t = βµ1−µ2

βn−µ1
[15]. It is interesting to note

that this bound is tight for regularized rank-1 matrices D = uuT + τI [15].
For very complex classification tasks, we often observe a similar structure of the
kernel matrix, which suggests that the bound is suitable in those scenarios.

To calculate the bound for the regularized kernel matrix K̃η, we need the largest
eigenvalue λ1, the trace, and the squared Frobenius norm. We first compute the
largest eigenvalue λ1 with the Arnoldi iteration, which only requires matrix
vector products. In our experiments, the algorithm needed approximately 10
steps to converge for various settings. Furthermore, it is easy to verify that the
trace of the histogram intersection kernel matrix is the sum of all features values.
The squared Frobenius norm is not directly available, but we can approximate
it by µ̃2 =

∑M
i=1 λ

2
i ≈

∑n
i=1 λ

2
i = µ2 with M being the number of classes of the

classification task and λi being the eigenvalues of the kernel matrix in decreasing
order, i.e., λ1 ≥ . . . ≥ λn. The motivation for this approximation is as follows:
if we have M classes with very compact clusters and large distances between
each other, the kernel matrix should obey a simple block structure of rank M
leading to M non-zero eigenvalues. Due to the fact that our approximation of µ2

is also a lower bound of ‖D‖2F , the necessary computations in Eq. (9) are still
well-defined and it can be proved that we still have a proper upper bound of the
log-determinant (see supplementary material for a detailed proof):

Theorem 1 (Upper bound with µ̃2). For a given positive definite matrix
D ∈ Rn×n with trace µ1 and squared Frobenius norm µ2 the following holds:

log det(D) ≤ ub(β, µ1, µ2) ≤ ub(β, µ1, µ̃2) if µ̃2 ≤ µ2 . (10)
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To summarize, we need to perform the following steps to efficiently bound the
negative GP log-likelihood in each iteration of the hyperparameter optimization
method:

1. Compute the data term by utilizing the CG method.
2. Compute the trace µ1 as the sum of all feature values.
3. Calculate the first M eigenvalues with the Arnoldi iteration.
4. Approximate the Frobenius norm with the sum of squared eigenvalues.
5. Compute the bound given in Eq. (9) with the approximated Frobenius norm.

In our experiments, the resulting upper bound of the negative GP log-likelihood
was successfully used for hyperparameter optimization, which we show in the
next section.

6 Experiments

We conducted experiments with several image categorization datasets. The re-
sults can be summarized as follows:

1. Using our approach, training, classification, and optimization of hyperparam-
eters is significantly faster and has only linear memory requirement compared
to baseline GP, allowing for learning on large-scale datasets.

2. Conjugate gradients with fast HIK matrix multiplications outperforms the
methods of [9] and [12] in terms of convergence speed.

3. The log-determinant approximation given in Eq. (9) allows for hyperparam-
eter optimization leading to significant performance gains.

4. Generalized histogram intersection kernels improve the classification perfor-
mance significantly compared to standard HIK.

5. Determining feature relevance can be done efficiently with GP likelihood
optimization and a weighted HIK.

6.1 Experimental Setup

The histogram intersection kernel is well suited for comparing histograms [4].
Therefore, all of our image categorization experiments use bag of visual words
(BoV) features computed using the toolkit provided with the ILSVRC’10 data-
base [5]. Although all types of histogram features can be utilized, we choose
this basic representation without any incorporation of spatial information to
focus the experiments on the machine learning part. We use the visual codebook
provided with 1,000 elements. Note that the dimension of the feature vectors
is an important factor for the computation time of GP large-scale inference,
and the speed-up of our techniques is higher for low-dimensional features (see
Table 1). As an optimization method we use the Nelder-Mead technique [16].
For multi-class classification, we use the average recognition rate (ARR) as a
performance measure. Binary classification tasks are evaluated using the area
under the ROC curve (AUC). To provide a fair comparison, computation times
for all methods were measured on a single-core Intel 2.6GHz machine with a
careful C++ implementation allowing for flexible data sizes.
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Fig. 3. Experiments with the normalized 15Scenes database: (left) comparison between
upper bounded negative GP log-likelihood and real negative log-likelihood, (right)
results of GP with adaptive kernels

6.2 Experiments with the Normalized 15Scenes Database

We use the 15Scenes database [17] for preliminary results on a medium-scale
database. We follow the suggestion of [18] and scale all images to a size of
256 × 256 pixels to get results, which are not biased on different characteristic
image sizes for specific categories. Training is done with 100 examples for each
category resulting in 1,500 examples in total.

Verifying the Bound of the Negative Log-Likelihood A first experi-
ment evaluates the upper bound of the negative GP log-likelihood presented
in Sect. 5.2. The left plot in Fig. 3 shows the correct negative log-likelihood, our
upper bound with respect to the hyperparameter η of a generalized HIK, and the
average recognition rate when using the hyperparameter value for classification
of the test set. It can be seen that our bound is sufficient for hyperparameter
optimization in this setup, because the minima and the corresponding average
recognition rates displayed only differ slightly. For higher values of η, our bound
converges to the exact value because the influence of the log-determinant term
compared to the data term of the log-likelihood decreases. Consequently, possible
approximation errors become less important and the data term can be computed
without any approximation even for large-scale datasets.

Different Generalized HIK The table on the right hand side of Fig. 3 gives
an overview of the recognition performance we achieved on this dataset with
standard HIK, G-HIK, and EXP-HIK. The hyperparameters of G-HIK and EXP-
HIK have been optimized with our GP likelihood optimization technique. The
latter approach resulted in the best performance and is even comparable to
the result of the spatial pyramid matching kernel (SPMK) given by [18]. This
highlights the power of generalized HIK and our hyperparameter optimization,
because we do not incorporate any position information in our features as done
in the SPMK framework.
Using the standard biased 15Scenes database with the splits and features pro-
vided by [9], we achieve an average performance of 80.0% and 79.9% with and
without optimization, respectively. In contrast, the SVM solver of [9], which
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Table 2. Evaluation on 200 binary classification tasks derived from the ImageNet
database. Computation times are given as median values of measurements for each
task (learning) and each test example (classification)

10,090 examples (` = 10) 50,050 examples (` = 50)
learning classif. learning classif.

Method AUC time time AUC time time
GP with HIK (Cholesky) 0.836 > 3.5h 1.1s - - -
GP with HIK 0.836 64s 44µs 0.856 321s 44µs
GP with optimized G-HIK 0.865 435s 44µs 0.883 2815s 44µs
GP with optimized EXP-HIK 0.889 579s 44µs 0.893 2578s 44µs

also exploits HIK properties, achieved a recognition rate of 81.3%. Nonethe-
less, it should be noted that our approach focuses on Bayesian inference and
Bayesian hyperparameter optimization, which offers a probabilistic formulation
with a wide range of further applications and extensions, e.g., active and transfer
learning [6, 19] as well as incorporating other noise models [13].

6.3 Large-Scale Experiments with the ImageNet Database

We also test our approach on the part of the ImageNet dataset that was used
for the ILSVRC’10 competition. This dataset contains in total 150,000 images
from 1,000 different categories. We apply our method to binary classification
tasks of this dataset, because learning with all categories turns out to be still
impractical even with our fast kernel calculations. Binary tasks are derived in a
one-vs-all manner, i.e., we use all images of a single class as positive examples
and ` examples from each of the other 999 categories as negative examples. In
this manner, we derive 200 tasks from the first 200 categories and use the average
AUC value achieved on the ILSVRC’10 validation dataset with 50,000 examples
as the resulting performance value.
The results are shown in Table 2 for ` = 10 and ` = 50 with 10,090 and 50,050
examples in total. First it should be noted that standard GP regression for ` = 50
is not directly applicable because of limiting memory capacity (` = 50 results in
a 9GB kernel matrix). In contrast, it can be seen that we are able to learn GP
classifiers within a few minutes. Furthermore, our GP likelihood optimization
method is able to handle large datasets and provides significant performance
gains with hyperparameter optimization (paired t-test, p < 10−7).

6.4 Evaluation of Linear Solvers with Fast HIK Multiplications

In the following, we compare the performance of conjugate gradients with fast
HIK matrix multiplications as presented in Sect. 4 and two other coordinate
descent approaches [9, 12]: (1) the coordinate descent method of [9] applied to
GP and (2) the greedy block coordinate descent (GBCD) approach of [12]. The
first one was originally presented for fast SVM learning with HIK and directly
operates on the lookup table T (Sect. 4). GBCD calculates parts of the kernel
matrix on the fly to solve sub-problems. For our experiments, the size of the
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Fig. 4. Evaluation of the runtime and convergence of linear solvers: (1) our conju-
gate gradients method, (2) the coordinate descent method of [9], and (3) greedy block
coordinate descent [12]. Note that our approach and [9] exploit fast HIK matrix mul-
tiplications, while [12] can be applied for every kernel function

sub-problems is set to 10 and the number of components κ for greedy selection
is 20. We also tested other values, but did not achieve a significant speed-up.

We use a binary classification task from the ILSVRC’10 database with ` = 1
(see previous paragraph) and solved the linear system K̃η ·α = y with all three
methods. Figure 4 shows the residual of the linear system with respect to the
computation time needed. Termination is done when the maximum norm of the
residual drops below 10−6.

As can be seen in Fig. 4 there are orders of magnitude between all three meth-
ods. Conjugate gradients reaches a solution in 3.7 seconds, which is superior to
the coordinate descent method of [9] applied to GP, which converges after 32s.
GBCD is slow (convergence after 16 minutes) due to the long time needed for
explicit calculation of kernel values for 1,000-dimensional features. In the exper-
iments of [12], only low-dimensional features (D ≤ 37) were utilized. However,
GBCD can be applied for large-scale GP regression with arbitrary kernel func-
tions. It should also be noted that solving the linear system of GP regression
needs more time than solving the optimization problem related to SVM. This is
due to the additional sparsity constraints of SVM. However, the GP framework
offers a proper Bayesian model with the previously mentioned advantages.

6.5 Feature Relevance Estimation

We have already seen that Gaussian Processes allow for hyperparameter opti-
mization in a Bayesian manner. In this experiment, we show the suitability of
GP equipped with optimized weighted HIK for efficient feature relevance deter-
mination leading to superior results to those of SVM-based estimations.

Since there is no exact gradient information during the optimization available,
the Nelder-Mead method converges poorly for huge numbers of parameters to
be optimized. Consequently, computing feature relevance for features with thou-
sands of dimensions, as in our previous experiments, is almost impossible right
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Fig. 5. Relevance determination with very generalized histogram intersection kernels
and GP hyperparameter optimization. The first two features contain most of the dis-
criminative information: (left) feature weights estimated with 5 examples per class,
(right) performance compared to non-weighted histogram intersection kernels. Results
are averaged over 500 runs

now. Nevertheless, as a proof of concept we follow the same synthetic experi-
mental setup as in [4]: for different numbers of training examples, we randomly
sample eight-dimensional feature vectors with relevant information only avail-
able in the first two dimensions. The performance is estimated with 500 tests.
For the specific random distributions, we refer the reader to [4] and references
therein. The results of our experiments can be seen in Fig. 5.

The information included in each dimension is well reflected by the estimated
relative weights ηi, which can be seen in the plot on the left hand side. Further-
more, the plot on the right hand side shows the recognition accuracy for standard
and weighted HIK with respect to the training size. The improvement is highly
significant with p < 10−7 using the paired t-test. In comparison with [4], our
approach additionally leads to more consistent weights and higher accuracies.

7 Conclusions and Future Work

This paper presented how Gaussian Processes equipped with the histogram inter-
section kernel can be speeded up significantly. The involved strategies allow for
training and classification in sub-quadratic and constant time with few mem-
ory requirements. This significantly overcomes the main drawbacks of GP for
large-scale scenarios (cubic and quadratic runtime for training and classifica-
tion, quadratic demand of memory). We further developed an efficient method
for optimizing hyperparameters in a Bayesian manner by exploiting the benefits
of HIK and GP as well as by providing an efficient bound of the GP marginal log-
likelihood. We demonstrated the suitability of our approach on several datasets.
It turned out that we are able to find suitable parameters for different param-
eterized histogram intersection kernels even for large-scale datasets resulting
in a significant improvement of the recognition performance. Furthermore, we
successfully applied our framework to feature relevance determination showing
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superior results compared to state-of-the-art [4]. Our approach allows for large-
scale classification with GP, which was proved in our ImageNet experiments.
Future work will focus on calculating approximate gradient information of the
likelihood to allow optimization with respect to a large number of parame-
ters. Furthermore, multi-class classification could be speeded up by using label
trees [20] or similar techniques. Finally, we want to extend our approach to fast
computation of the predictive variance for estimating classification uncertainties.
This would allow for active learning applications.

Acknowledgments. We thank Esther and Matthias Wacker for their optimiza-
tion toolbox as well as the reviewers for very useful suggestions.
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