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Abstract—To observe biodiversity, the variety of plant and animal life in the world or in a particular habitat,
human observers make the most common examinations, often assisted by technical equipment. Measuring
objectively the number of different species of animals, plants, fungi, and microbes that make up the ecosystem
can be difficult. In order to monitor changes in biodiversity, data have to be compared across space and time.
Cameras are an essential sensor to determine the species range, abundance, and behavior of animals. The
millions of recordings from camera traps set up in natural environments can no longer be analyzed by biolo-
gists. We started research on doing this analysis automatically without human interaction. The focus of our
present sensor is on image capture of wildlife and moths. Special hardware elements for the detection of dif-
ferent species are designed, implemented, tested, and improved, as well as the algorithms for classification
and counting of samples from images and image sequences, e.g., to calculate presence, absence, and abun-
dance values or the duration of characteristic activities related to the spatial mobilities. For this purpose, we
are developing stereo camera traps that allow spatial reconstruction of the observed animals. This allows
three-dimensional coordinates to be recorded and the shape to be characterized. With this additional feature
data, species identification and movement detection are facilitated. To classify and count moths, they are
attracted to an illuminated screen, which is then photographed at intervals by a high-resolution color camera.
To greatly reduce the volume of data, redundant elements and elements that are consistent from image to
image are eliminated. All design decisions take into account that at remote sites and in fully autonomous
operation, power supply on the one hand and possibilities for data exchange with central servers on the other
hand are limited. Installation at hard-to-reach locations requires a sophisticated and demanding system
design with an optimal balance between power requirements, bandwidth for data transmission, required ser-
vice and operation in all environmental conditions for at least ten years.
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INTRODUCTION

In order to obtain precise data on the development
of faunal biodiversity, systematic, reproducible, and
low error measurements must be carried out. To study
large representative regions over a longer period of
time, scientists are not sufficiently available. That is
why the German government has launched a project
called AMMOD (automated multisensor station for
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monitoring of biodiversity), which is developing pro-
totypes for automated, networked, and self-sufficient
measuring stations and testing them in the wild. These
unique stations, when installed as a network, will gen-
erate a robust data pool for analyzing global changes in
the faunal biosphere. The modules have the intrinsic
ability to detect any sensor-specific signal to monitor
birds, bats, mammals, and insects. Innovations
include combining different sensors whose standard-
ized signals complement each other and automating
the devices and workflows. Technologies adapted for
use in such an AMMOD station include automated
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odor analysis that responds to minute concentrations
of substances in the air, sampling robots for collecting
organic particles and trapping insects, DNA metabar-
coding for identifying species in bulk samples, bio-
acoustic monitoring primarily for detecting grasshop-
pers, bats, and birds, and, last but not least, camera
systems for visual observation of, for example, mam-
mals and insects. The plasticity and modular design of
the base station enables the addition of other sensor
types. Since AMMOD stations collect data from a
radius in the immediate surroundings, only species
occurring in this area will be detected. Especially for
detecting mammals and birds using cameras and audio
recorders, the positioning of recording devices (near
the soil, in the canopy, along wildlife crossings) is cru-
cial to increase the detection probability.

Species detection probability accounts for errors
stemming from false positive and false negative detec-
tions from the classification programs, but accounts
also for the incomplete information occurring inher-
ently in every species survey.

In the case of time and species site occupancy rates,
detection probability can be estimated by generating
“detection histories,” which are sequences of pres-
ence-absence records of a species per sampling loca-
tion [8]. This can be easily derived by defining survey
bouts of, e.g., one week intervals. In the case of species
abundance, detection probability can be estimated
either by establishing a sequential detection history
(i.e., inference of abundance by repeated presence-
absence surveys, [29]) or alternatively as a function of
the detector-species detection distance (i.e., distance
sampling methodology, [7, 17]). In the latter case, ani-
mal detection distances can be easily derived from ste-
reoscopic images.

Species site occupancy estimation can in principle
be applied to all AMMOD detectors and data output
(e.g., [10, 18]). Additional verification of system out-
put by humans to, e.g., remove false positive record-
ings can further improve the estimates [8]. As species
site occupancy can change temporally (e.g., as a func-
tion of temperature), site occupancy can be estimated
repeatedly over time to infer species activity and/or
abundance.

The estimation of species abundance from pres-
ence-absence data can in principle be applied to all
AMMOD detectors [11]. The estimation of species
abundance based on distance sampling methodology
is relatively straightforward when standard distance
sampling methods can be applied. A direct count of
insect individuals is possible, e.g., with the moth scan-
ner. Finally, data from different detectors and addi-
tional data sources may be combined by using spatially
integrated population models to infer abundance [9].
The synchrony of AMMOD signals is a unique basis
for ecological analyses (Fig. 1).

“Camera traps are very widely used to monitor the
presence of animals and record their behavior” [1]. In
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the Bavarian National Park alone, more than one mil-
lion images have been collected from camera traps to
date. A similar number was collected from cameras on
so-called green bridges over highways [12, 26]. Statis-
tics on the number of such images generated each year
in Germany alone do not exist. However, only very
few of them are evaluated. Common camera traps pro-
vide images for human observers rather than for auto-
matic analysis. To design a suitable camera system to
operate on AMMOD platforms in the wild, boundary
conditions must be met.

« The systems must be self-sufficient in energy,
e.g., from their own photovoltaic platforms (low
power supply).

« They are wirelessly connected to external servers
(high data volume vs. low bandwidth).

» There, the observed animals are classified. Abun-
dances and densities of the species are calculated,
combined with environmental information, and the
data are transmitted to the servers.

o Unattended, uninterrupted stable operation,
minor service requests, self-adaptation to all weather
conditions and seasons.

Observed and analyzed data need to be available in
or integrated into publicly accessible libraries for sci-
entific, political, and economic use.

Our current task is to test the technology rather
than developing large-scale biodiversity monitoring
programs. Hence, AMMOD prototypes are deployed
in fenced areas that are protected from vandalism, rich
in species, accessible and—at least for the first trials—
with electricity from the public grid. In future, when
the stations are fully developed, they will need little
maintenance and can be scattered over the country.

AMMOD CAMERA TRAPS

A high-end stereo imaging system will be devel-
oped for the AMMOD station to capture terrestrial
species with appropriate magnification, resolution,
and depth of field. The technical components of the
so-called SpeciesSiteCam consist of two cameras for
recording the stereo image pair, a detector of animal
movements, an infrared lamp for the nocturnal illumi-
nation of the animals passing the detector, a stereo
processor, a computer for preprocessing and cabling
with the base station for power supply and data trans-
mission (see Fig. 2).

Infrared illumination will be used where appropri-
ate to enable night and twilight image capture without
disturbing passing animals. The left and right cameras
are triggered simultaneously by motion detectors and
capture image sequences of adjustable length. The two
images are passed to a stereo processor that computes
a disparity image and a 3D image. The 3D image con-
tains the computed three coordinates in the real world
for each image point with a defined disparity value.
Features of the animals such as distance, walking path,
Vol. 31
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Fig. 1. Data integration over time and space on multi-sensor AMMOD stations.

body shape, and others can be determined from it.
This data stream is transmitted for preprocessing to a
powerful single-board computer on the base station.
There, the data stream is broken down into its individ-
ual components and analyzed. Recordings are sorted
out that do not contain animal images due to false
alarms from the motion detector (typically 40—70%).
A further reduction of the data volume is achieved by
masking out image areas where no animals can appear.

An essential but critical component is the PIR
(passive infrared) motion detector. It sends a trigger
signal to the cameras when a moving object with a
higher temperature than its surroundings moves
through the observed area. The chosen detector is
characterized by extensive programming options with
which it can be adapted to the desired observation sit-
uation. These include, for example, the range or the
angle of detection. Particularly important is the setting
of parameters that suppress signals that erroneously
report sudden temperature changes in the observed
environment. It is essential to set the signal triggering
for the time when animals are in the area of observa-
tion. Typical options are one-time triggering, video
recording, or triggering a series of images at selected
intervals. The observation area can be defined opti-
cally by placing Fresnel lenses, which are transparent
to infrared light, in front of the actual temperature
sensor. The motion detector selected so far is weather-
proof, extremely low-power, and provides standard-
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ized trigger signals for easy integration into a camera
system. The disadvantage is the time of about half a
second that the detector needs for the reaction of the
sensor element and the internal signal processing. In
this time, animals may have already left the observa-
tion area, leading to empty images without any animal
inside.

The first line of development being investigated is
how to model the environment to be observed in more
detail. In the meantime, PIR sensor components are
available that only observe narrower angles but have a
detection distance of up to 20 m. Several of these
devices could then be distributed and aligned to look
down paths or into areas where animals might
approach the camera system in the first place. The
preprocessing computer can then evaluate this set of
signals to decide if and when the cameras will start to
capture the images.

A second line of development is being pursued for
use in AMMOD platforms that can be adequately
powered. Here, the cameras can remain powered on
(see Fig. 3).

The continuous image sequence can then be ana-
lyzed for the presence of animals. Initial attempts have
been successful in using deep-learning techniques to
learn a background image of the observation area. The
appearance of an animal is then detected as an anom-
aly in that background. The latter works in tenths of a
second. The accompanying figures show, from top to
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Fig. 2. System architecture with PIR motion detector.

bottom, a learned background, a passing animal, the
image of the anomaly values (blue = low, red = high),
the classified anomaly area bordered in red.

The inclusion of stereo data of the animal fore-
ground and background will further advance the reli-
ability and informativeness of this approach. Essential,
however, is the ability, as long as lighting conditions or
strong infrared illuminators allow to trigger and cap-
ture animal images from more or less any distance. To
our knowledge, there are no suitable alternatives to
either variant of triggering in technical or scientific
publications to date.

AUTOMATIZED LONG-TERM
WILDLIFE CLASSIFICATION

Since the AMMOD stations should operate for a
longer period of time (several years), it is important to
use recognition systems that can improve their perfor-
mance over time by exploiting data that is recorded
during operation. Hence, we aim at applying and
improving lifelong learning algorithms for the identifi-
cation of wildlife animal species that occur in the
images from the camera traps. Lifelong learning, often
also called continuous learning, continual learning, or
incremental learning, denotes a process that enables
updates of the classification models once new data is
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available. An important aspect that is different to con-
ventional classification systems is the possibility to
handle new, previously unseen categories, in our case
new species unknown to the classifier. This is done by
first applying novelty detection mechanisms to iden-
tify unknown species and second including human
experts in the loop to obtain labels and valuable feed-
back that is integrated in an active learning fashion.

To start with an automatic recognition system, an
initial classifier is trained in an initial learning stage
using available training data from public databases that
contain the relevant species. Then, novelty detection
and active learning is applied to realize the lifelong
learning cycle. Furthermore, active learning plays an
important role for exploiting unlabeled sample sets. Of
course, it is beneficial to include methods from
domain adaptation, since the images from the initial
training set of existing databases may differ clearly
from images recorded by the AMMOD stations. Addi-
tionally, fine-grained recognition approaches are
required that allow for distinguishing visually very
similar species, like different bird species.

For the initial learning step, the collection of
appropriate sets of labeled images is required to train
an initial classifier from already digitized data. First,
images of relevant species from existing labeled image
datasets can be exploited, e.g., from ImageNet [23] or
Vol. 31
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Fig. 3. Animal detection as an anomaly in the stream of images.

iNaturalist [33]. In addition, we use collections of
annotated images from citizen scientists and natural
history museums. Especially when exploiting images
from collections of museums, methods from domain
adaptation [13, 27] are required to compensate for the
different image characteristics and camera setups. Fur-
thermore, domain adaptation allows for integrating
image data from different sensors (e.g., different camera
types and images from the Internet), and can support
the modeling of different environments with different
background structures and lighting conditions.

Detection rates in the laboratory or at test data sets
of more than 90% can generally not be achieved in the
field under real, constantly changing conditions. For
this reason, a feedback mechanism is provided, which
involves the user in the optimization of the system, but
at the same time minimizes the labeling effort to be
made manually. This is known as active learning. In
the actual application, the system will, at certain inter-
vals, forward images to humans, and after the annota-
tion these images will be used to train a classifier iter-
atively. Evaluation is carried out with a retained test set
of images annotated manually.

Monitoring devices will likely also detect species
that are unknown for the recognition system. There-
fore, novelty detection is relevant [2, 3] which allows
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for automatic detection of animals that do not belong
to the set of already known categories or species. In
case that a known object has been incorrectly marked
as “new” by the system, the corresponding feedback
from an expert can contribute to improve the system
performance. If a previously unknown species has
actually been observed, the expert provides the corre-
sponding label and this knowledge can be used to feed
the classifier with the new type (incremental learning).
Novelty detection can be evaluated by excluding
images from a certain subset of classes in the training
set, but including those classes in the test set.

When dealing with an increasing number of differ-
ent animal species, some species will be visually more
similar to each other, and some will be clearly differ-
ent. The high visual similarity of related species is a
particular challenge that is commonly addressed by
fine-grained recognition approaches, especially when
considering a particular domain like birds or moths
and differentiating between different bird species or
moth species. Furthermore, the visual appearance of
related species can differ only slightly while individuals
of the same species can look different, e.g., due to dif-
ferent viewing directions, poses, actions or back-
ground variation and occlusion. Fine-grained recog-
nition treats this problem often via so-called part-
based methods [20, 21]. Objects are modeled via com-
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Table 1. Comparison of the daytime and nighttime modes
of operation of our RGB-D camera trap [14]

Daytime mode  |Nighttime mode

PIR
Passive stereo

Motion detection | Image-based

Depth acquisition | Active stereo
Infrared camera

Image acquisition | Color camera

Illumination Ambient light, active | Infrared lamp

stereo pattern

ponents that are either explicitly extracted from anno-
tated training data or are determined completely unsu-
pervised by the system [31, 32]. Evaluation of the fine-
grained classification methods are carried out on an
annotated set of recorded data, that is split into train-
ing and test set, as well as on publicly available datasets
for fine-grained recognition in the computer vision
community.

Fig. 4. Typical background training images.
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STEREO FOR NEW
QUALITY OF MONITORING

We derive depth information by applying stereo
analysis. Depth is an important cue to discriminate
observed animals efficiently from the environment
(especially, for camouflaged or nontextured animals).
Additionally, depth data allow deriving species abun-
dance by estimating species detection probability as a
function of the detector-species detection distance
(i.e., distance sampling methodology [17]). We will
exploit depth data in three ways. (1) Segmentation to
separate animals from background and animals in dif-
ferent distances; (2) tracking of detected animals, to
utilize their spatial movements for species identifica-
tion; and (3) derivation of species abundances. Fur-
thermore, depth information allows discarding irrele-
vant background areas and provides cues for the
appropriate scale of object identification procedures.

We collect depth data using our RGB-D camera
trap. It consists of an Intel®RealSense™ D435 active
stereo camera [19], a NVIDIA® Jetson Nano™ devel-
oper kit for data processing, a passive infrared sensor
(PIR) for animal detection at nighttime and an infra-
red lamp for nighttime illumination. Table 1 summa-
rizes the two time-dependent modes of operation of
the RGB-D camera trap.

We combine the depth data with images taken in
the visible (daytime) or infrared (nighttime) spectrum.
We map infrared images into the same RGB (red,
green, blue) color-space as the color images. We refer
to the combined images as RGB-D images.

We placed the RGB-D camera trap in a zoo scenario
as this allows us to generate new images of animals at a
higher frequency than in a purely natural scenario. The
following figure shows a resulting RGB-D image.

We treat the problem of animal detection, fine-
grained localization and classification as an instance
segmentation problem. Most existing image under-
standing methods use solely color information. To
make use of the additional depth information, we
extend the Mask R-CNN [15] deep learning instance
segmentation architecture to D-Mask R-CNN [14].
In Mask R-CNN, color image feature descriptors are
determined by a backbone deep convolutional neural
network (CNN) such as ResNet-50 [16], often config-
ured as a feature pyramid network (FPN, [23]) to
operate at different scales. We keep the ResNet-50
FPN color backbone and extend Mask R-CNN by an
additional depth backbone. Both backbones have a
similar architecture and are both initialized with the
weights of ResNet-50 originally pretrained on the
ImageNet dataset [30]. Depth images exhibit features
similar to color images, such as strong gradients along
object boundaries. We therefore argue that weights
initially optimized for color images are also valuable
for detecting such features in depth images. As the
ResNet-50 architecture expects a three-channel RGB
input image as input, its first convolutional layer has to
Vol. 31
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Detected anomalies

Fig. 5. Illustration of anomaly processing sequence.

be modified to take a single-channel depth image as an
input. We achieve this by averaging the respective
weights over the red, green and blue channels, which

Table 2. Average precision (AP) scores of the animal detection
and instance segmentation on our camera trap dataset [ 14]

D-Mask R-CNN

Bounding boxes

AP 59.94%
AP50 94.50%
AP75 63.96%
Segmentation D-Mask R-CNN
AP 37.27%
AP50 94.50%
AP75 13.25%
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results in an unchanged expected activation in the fol-
lowing convolutional layers. Furthermore, we nor-
malize all input channels (red, green, blue, and depth)
by subtracting the respective mean and dividing by the
respective standard deviation over the whole dataset.
We also introduce a feature fusion module to combine
the extracted features from both backbones using one
3 x 3 convolution per FPN scale and reduce the num-
ber of channels from 2 X 256 to 256. This allows us to
use weights pre-trained on the Microsoft COCO data-
set [24] for the region proposal network (RPN) classi-
fier and mask head. Fig. 4 illustrates the general archi-
tecture of the resulting D-Mask R-CNN architecture.

We restrict our evaluation of D-Mask R-CNN to
instances of deers as it is the most common species in our
RGB-D dataset. We quantify the results of D-Mask R-
CNN using the average precision (AP), AP50, and AP75
metrics as defined by the Microsoft COCO dataset [24].
AP50 and AP75 denote the average precision at an inter-
section over union (loU) threshold of 50 and 75%,
respectively. AP denotes the average precision over JoU
thresholds from 50 to 95% in 5% increments. The out-
lined metrics are summarized for bounding box detec-
tion and segmentation in Table 2.

For 3D multiobject tracking (MOT) of individuals
we are using the RGB-D frames and intrinsic camera
parameters to calculate 3D point clouds of the scene.
With 2D mask projections and depth-expanded opti-
cal flow [34] we estimate instance-level scene-flow for
each frame. By combination of frame-level scene-flow
predictions and mask projections using the Hungarian
matching algorithm we create individual animal track-
lets (Fig. 8). In detail, large parts of this work dealt
with preprocessing steps taken to calculate robust and
usable point clouds. For temporal consistency of
depth maps we employed a conditional median filter
over the temporal component. We smooth out tempo-
ral inconsistency over a frame-window while con-
straining the peak-to-peak differences to preserve
edges of actual animal movements. We aligned the
point clouds to the world-coordinate system by esti-
mating the ground plane using a RANSAC fitted
plane, which is used to estimate the extrinsic camera
parameters. And as the last processing step, we remove
statistical outlier points of individual animals caused
by blurry depth-map edges and hence imprecise pro-
jection to world-coordinates.

MOTH SPECIES DETERMINATION

The AMMOD Moth Scanner will take high-resolu-
tion images of insects that rest on an illuminated screen.
For lighting, an LED lamp is used (Fig. 9), which can
emit white light, ultraviolet light or both mixed [5]. This
light is particularly attractive for moths [4].

A camera system images this screen at selected
intervals and provides high-resolution images that are
analyzed for the presence of identifiable insects

No.3 2021
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Fig. 6. Intensity images from zoo scenario mapped into an RGB image (left). Corresponding stereo depth estimations in the form
of a so-called heat map, in which blue indicates more distant and red closer scene components (right). Animal instance segmen-

tation (overlaid) with D-Mask R-CNN [14].
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Fig. 7. The D-Mask R-CNN architecture. Modifications to the standard Mask R-CNN architecture are highlighted in blue.

(Fig. 10). A camera with 20 megapixel resolution is
used. Images with LED flash are taken at regular, pro-
grammable intervals, typically several minutes. Subse-
quent analysis breaks down the image into dark areas
that are approximately the area of the moths to be clas-
sified. Areas that are too small are ignored, and areas
that are too large are examined to see if they remain for
only one period of time (possibly feeding birds),
remain unchanged (e.g., leafblown on), or continue to
be seen the next night (dirt on the screen). For such
images, a message is generated to trigger human action
if necessary (e.g., cleaning the screen).

Power consumption is a crucial aspect of the entire
system. First, we intend to shut down the system to
save power according to current weather data when
moth flight is not expected. Furthermore, the system
will be also turned off if the power consumption

PATTERN RECOGNITION AND IMAGE ANALYSIS

between the other sensors on the AMMOD platform is
not sufficient for overall operation and must be fairly
distributed. Finally, the station will turn off the camera
system between scheduled exposures to preserve
power, significantly reducing average power con-
sumption. We also plan to turn off the light source at
programmable intervals for a programmable time to
allow moths to leave the screen. In the mentioned sce-
narios, theoretically, the entire system does not con-
sume any power. Only corresponding areas are for-
warded for further evaluation if they were not already
contained unchanged in the previous image.

Early tests with mock samples of moth images have
shown that currently automated identification success
of species is about 80% (see also [28]). Accuracy is
increasing very rapidly with improved algorithms
every year. We will get valuable datasets for a large
Vol. 31
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Fig. 8. 3D multiobject tracking using scene-flow (left).
Instance clustering based on 2D mask projections (right).

Fig. 9. LED Lamp attracting moths, © Gunnar Brehm,
Phyletisches Museum Jena, 2017.

Fig. 10. Example of moth image, © Gunnar Brehm, Phyletisches Museum Jena, 2020.

number of species that can be identified because of
their characteristic shape and color.

The goal of monitoring is not to detect every spe-
cies, but to describe trends in local insect populations.
It is important to know, for example, if species num-
bers and/or abundances drop by, e.g., 20% for all iden-
tified species in five years. Additionally, seasonal
activity differences of single species, the correlation
with weather conditions, and with vegetation phenol-
ogy are crucial for ecological analyses.

In practice, some smaller species or species that do
not stop flying will not be identified. However, the

PATTERN RECOGNITION AND IMAGE ANALYSIS
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number of species considered is much higher than in
current insect monitoring schemes (mainly diurnal
butterflies, mostly presence-absence data) and the
data will be comparable for all those species that can
be detected. The year-round species monitoring is a
novelty that allows for a much more detailed correla-
tion with weather, plant phenology and the activity of
other animals.

The functionality of the moth scanner consists of
two parts. First, individual insects need to be detected
(Fig. 11), i.e., a localization of single individuals in the
image and description of their position and extent by
circumscribing rectangles (bounding boxes). Then, for

No.3 2021
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Fig. 11. Example images comparing automatically determined bounding boxes (black) with manual annotations (blue) for indi-

vidual moths.

each detection, a prediction is made using a classifica-
tion model to infer to which species the detected insect
belongs to.

For the localization of moths in an image, we have
trained a detector using the single-shot multibox
detector (SSD) approach of [25] and annotated
images of 200 different species. We achieved detection
rates of 93.71 and 99.35% average precision (AP) at 75
and 50% loU, respectively.

We then trained a standard deep learning classifier
(ResNet-50 [16] pre-trained on ImageNet [30]) on the
cropped bounding box images of the detected moths
and achieved an average accuracy of 89.00% on an
held-out test set. We also make use of additional images
obtained from Internet image search engines to aug-
ment the training dataset. However, since this leads to
noisy annotated images, filtering different types of label
noise is required as proposed by [6]. This can further
improve the recognition performance of the system,
especially when the initial training set has been rather
small with less than ten sample images per species.

CONCLUSIONS

In this paper, we have shown our current develop-
ments of visual monitoring systems for AMMOD sta-
tions that aim at recording animals in their surround-
ings using different sensors with the goal of observing
trends and changes in species biodiversity. On the one
hand, we explained the hardware setup for continuously
recording images that has been chosen due to the vari-
ous constraints and limitations for self-sustaining mon-
itoring stations. On the other hand, we have detailed the
individual software components that are required for an
automatized monitoring of animal species.

For long term wildlife classification, we described
our lifelong learning approach. In this approach, the
species classifier should be updated in an incremental
learning manner with new data recorded at the stations
and labeled by experts in an active learning setup. Fur-
ther components of the system denote novelty detec-
tion to handle species that are unknown for the initial
classifier, since they were not present in the training
set and domain adaptation to account for different
imaging sensors and varying data sources.

With D-Mask R-CNN, we presented a novel
approach to instance segmentation in RGB-D imag-
ery which we evaluated using a proof-of-concept

PATTERN RECOGNITION AND IMAGE ANALYSIS

RGB-D camera trap setup in a zoo scenario. D-Mask
R-CNN shows AP scores 0f 59.94 and 37.27% for ani-
mal detection by bounding boxes and segmentation
masks, respectively. We plan to deploy stereo camera
traps with larger baselines to improve depth estimation
for more distant animals. Additionally we proposed
RGB-D video processing to point clouds, enabling 3D
multiobject tracking with improved characteristics
over conventional 2D tracking.

Finally, we explained a specific part of the monitor-
ing system called the moth scanner that is designed to
record images of moths during the night. The moth
scanner uses a light trap in the form of an illuminated
screen. We also presented initial results for automatized
moth localization (AP75 of 93.71%) and moth species
identification (accuracy of 89.00%) in the resulting
images with a deep learning detector and classifier.
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