
On the Suitability of Different Features for
Anomaly Detection in Wire Ropes
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Abstract. Automatic visual inspection of wire ropes is an important
but challenging task, as anomalies in the rope are usually unobtrusive.
Certainly, a reliable anomaly detection is essential to assure the safety of
the ropes. A one-class classification approach for the automatic detection
of anomalies in wire ropes is presented. Furthermore, the performance
of different well-established features from the field of textural defect de-
tection are compared with respect to this task. The faultless rope struc-
ture is thereby modeled by a Gaussian mixture model and outliers are
regarded as anomaly. To prove the practical applicability, a careful eval-
uation of the presented approach is performed on real-life rope data. In
doing so, a special interest was put on the robustness of the model with
respect to unintentional outliers in the training and on its generalization
ability given further data from an identically constructed rope. The re-
sults prove good recognition rates accompanied by a high generalization
ability and robustness to outliers in the training set.

1 INTRODUCTION

Wire ropes are used in many fields of logistics. They are deployed as load cable
for bridges, elevators and ropeways. This implies a high strain by external powers
every day. Unfortunately, this can lead to structural anomalies or even defects
in the rope formation. A defective rope bears a high risk for human life. This
motivates the strict rules summarized in the European norm [1], which instruct
a regular inspection of wire ropes.
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Fig. 1. Rope defects: in the left image you can see a wire fraction and in the right
image a wire is missing.

Risky defects, prominent in wire ropes, are small wire fractions, missing wires,
and damaged rope material due to lightening strokes. Furthermore, structural
anomalies caused by interweavement of the rope ends or a reduced stress are
also in the focus of interest. In Fig. 1, two exemplary defects are marked in the
rope. Visual inspection of wire ropes is a difficult and dangerous task. Besides,
the inspection speed is quite high (on average 0.5 meters/second) which makes it
a hard effort, to concentrate on the passing rope without missing small defective
rope regions.

A prototypic acquisition system was developed to overcome these limitations
[2]. Four line cameras record the passing rope and yield four different views. By
this, the rope can be inspected in the office without time pressure. The images
in Fig. 1 were acquired with this system.

Defects and anomalies in wire ropes are unimposing and small. The image quality
is deranged by mud, powder, grease or water and the lighting conditions change
frequently. Therefore, the choice of features for the detection task is important.
Recent approaches for defect or anomaly identification focus on fault detection
in material-surfaces. In [3] we introduced a one-class classification approach for
anomaly detection in wire ropes using linear prediction (LP) coefficients as fea-
tures and a Gaussian mixture for model learning. This former work is extended
now by two main aspects. First of all, we compare the performance of LP features
to that of well-established features from the field of textural defect detection as
well as to that of features based on histograms of oriented gradients (HOG).
Secondly, the robustness to outliers in the training set as well as the generaliza-
tion ability of the presented approach are carefully evaluated. The last point is
of particular interest for the practical relevance of the method.

Features based on local binary patterns (LBP) were first introduced by Ojala
[4] for texture classification. Recently, they were used for defect detection in fab-
rics [5] and for real-time surface inspection [6]. Textural features, extracted from
co-occurrence matrices, were proposed by Harlick in the early 70’s [7] and are
frequently used for texture description [8]. Iivarinen [9] compares two histogram-
based methods for surface defect detection using LBP and co-occurrence matri-
ces. Rautkorpi et al. [10] used shaped-based co-occurrence matrices for the clas-
sification of metal surface defects. Vartiainen et al. [11] focus on the detection
of irregularities in regular, periodic patterns. They separate the image data in a
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regular and an irregular part. Based on the resulting irregularities, we compute
local histograms, which serve as features. In addition to our previously published
work [12] on this topic, also features based on histograms of oriented gradients
(HOG) are considered. They were originally introduced for human detection by
Dalal and Triggs [13] and have gained in importance in the last years. As it is
obvious, the regular rope structure results in some eminent gradient orientations.
For this reason, HOG features seem to be a suitable choice for the problem of
rope anomaly detection.

Another important category of features for texture analysis and textural de-
fect detection are wavelet-based features. Kumar and Pang [14] for example use
Gabor features for the detection of defects in textured material. However, the
computation of these features requires large filter banks and high computational
costs. Due to the huge size of rope data sets (20-30 GB) the time-consuming com-
putation of Gabor features seems to be not the best choice. In [15] the authors
state, that similar results to that obtained by the usage of wavelet features can
be resolved with help of joint neighborhood distributions and less computational
effort.

The one-class classification strategy proposed in [3] was chosen due to a lack
of defective training samples for a supervised classification. In contrast, it is no
problem to design a huge sample set of faultless training samples. With this
faultfree training set a model of the intact rope structure can be learned. In the
detection step outliers with regard to this model are classified as defect. How-
ever, the only available ground truth information about this training data is the
labeling of the human expert. In the following, there remains a small uncertainty
of underdiagnosed defects in the training set. For this reason, the robustness of
the proposed method to outliers in the training set is evaluated. Results ob-
tained by learning from a faultless training set are compared to those, obtained
by learning from a training set with intentionally added, faulty samples. The
generalization ability of a learned model is a further important point, especially
for the practical relevance of the presented method. There exist only a limited
number of different construction types for wire ropes. The differences between
them are mainly a different number of wires and strands, different thickness
of single wires, the length of twist and the diameter. If just one model for ev-
ery possible rope type would have to be learned in advance, this would save a
lot of computational effort. However, the rope data from different ropes differs
significantly due to the changing acquisition conditions and a different mount-
ing of the ropes. Nevertheless, it is desirable to have just one model for every
construction type and to overcome the challenges of a changing acquisition envi-
ronment. Therefore, the generalization ability of the learned models is evaluated
by learning and testing on different rope data from nearly identical constructed
ropes.

The paper is structured as follows: in Sect. 2 we briefly review the feature
extraction using linear prediction. A short description of the used textural and
HOG features and their extraction is given. The one-class classification of wire
rope data is shortly summarized in Sect. 3. Experiments, revealing the usability
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and robustness of our approach, have been performed on real-life rope data and
results are presented in Sect. 4. A conclusion and a discussion about future work
is given in Sect. 5.

2 FEATURE EXTRACTION

In this section, the different features are briefly reviewed. Their extraction from
the underlying rope data is described, as it differs for the LP features in contrast
to the remaining ones. Furthermore, we will shortly motivate the choice of every
feature with respect to the rope analysis task.

Local binary patterns (LBP) code the local graylevel-structure of a pixel
neighborhood. Histograms based on the resulting codes lead to a local feature
distribution. Since local binary patterns incorporate contextual information from
a local neighborhood, a comparison of their performance with that of the LP
features is of particular interest.

Harlick [7] introduced a set of 14 different textural features computed from
co-occurrence matrices. They reveal the spatial distribution of gray-levels and
though seem to be an interesting choice for structures with a certain regularity.

The detection of irregularities, proposed in [11] focuses on anomalies in regu-
lar, periodic patterns. Since the structure of wire ropes is not perfectly periodic,
but offers some regular periodicities, we used the detected irregularities for the
computation of local, histogram-based features.

Finally, HOG features [13] were used as they are based on gradient orienta-
tions. The regular structure of the rope features articulated gradients within a
certain orientation range, related to the twist direction. Gradients with a per-
pendicular orientation can be considered as noise or anomaly.

2.1 Linear Prediction Based Features

Linear prediction can be seen as one key technique in speech recognition [16].
It is used to compute parameters determining the spectral characteristics of the
underlying speech signal.

The behavior of the underlying signal is modelled by forecasting the value x(t)
of the signal x at time t by a linear combination of the p past values x(t−k) with
k = 1, . . . , p, where p is the order of the autoregressive process. The prediction
x̂(t) of a 1-D signal can be written as

x̂(t) = −
p∑

k=1

αkx(t− k) (1)

with the following prediction error

e(t) = x(t)− x̂(t) = x(t) +

p∑
k=1

αkx(t− k) . (2)
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Fig. 2. Multichannel version of the classification model. For every channel (horizontal
white boxes) a feature is extracted and examined in a separate feature space. The
vertical white box marks the signal values, which are actually predicted.

This motivates the choice of linear prediction for feature extraction. For the
prediction of the actual value the contextual information of the past values is
used and is implicitly incorporated in the resulting feature.

Based on a least-squares formulation, the optimal parametersα = (1, α1 . . . αp)
can be obtained by solving the normal equations [17]. The optimal coefficients
are derived by use of the auto-correlation method and the Levinson-Durbin re-
cursion [17, 16]. Free parameters of this method are framesize and the order of
the process. In experiments the optimal framesize was found to be 20 camera
lines with an incremental overlap of 10 lines. Best results were achieved for order
p = 8.

Rope data, obtained from the acquisition system, can be seen as a sequence
of 2-d images. Thus, with 1-d linear prediction it is not possible to analyze the
2-d signal. To overcome this, the rope data is considered as a multichannel time
series. The signal x consists of c channels x = (x1 x2 . . .xc)

T and every chan-
nel represents a 1-dimensional time series xi(t) = (xi(1), . . . , xi(t)). For every
channel i of this signal an individual 1-d linear prediction is performed, leading
to the estimate x̂i(t), the squared prediction error for the whole frame, and the
coefficient vector αi. These components are used as corresponding feature for
the actual frame and the channel i. Best results were obtained with a combined
feature vector, including prediction coefficients and the squared error. In the
training step, a separate model for every channel is learned. This is schemati-
cally depicted in Fig. 2. By this, the different appearance of the rope at different
positions in the images is taken into consideration.

2.2 Local Binary Pattern

For the local binary pattern (LBP) a texture region is seen as a joint distri-
bution of P + 1 pixel-graylevels in a predefined neighborhood. Often a circular
neighborhood with radius R and P equally spaced samples is chosen. The center
pixel grayvalue gc serves as threshold for the binarization of the neighborhood
pixels gp, p = 1, . . . , P . The local binary pattern operator can be summarized as
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follows:

LBPP,R(gc) =

P∑
p=1

s(gp − gc)2p−1 with s(x) =

{
1, x ≥ 0

0, x < 0 .
(3)

Transforming the binary vector into a decimal number (3) results in a pixel label,
based on the neighborhood information. Ojala et al. [18] developed a rotational
invariant and uniform extension of the local binary pattern. For the anomaly
detection task there is no need for rotational invariance due to the constant rope
orientation. The uniformity of the pattern is defined based on the number of
0/1 transitions U in the binary vector. The resulting LBP code is computed as
follows:

LBPu
P,R(gc) =

{∑P
p=1 s(gp − gc), U ≤ 2

P + 1, otherwise .
(4)

A histogram with a predefined number of bins is built from the underlying
code distribution and serves as feature. The optimal parameters P and R and
the number of quantization levels for the local histograms were determined in
extensive experiments. We found the optimal parameter setting to be R = 1,
P = 8 with 16 quantization levels for the histogram. As already mentioned,
defects usually have just a small elongation. Hence, the histogram computation
resulting in the feature vector is done for a small detection window (20 × 20
pixels), which moves over the underlying frame of rope data. By this, more than
one feature is obtained for every frame.

2.3 Co-occurrence Features

Features for texture classification based on co-occurrence matrices were first
introduced by [7]. A co-occurrence matrix is defined with respect to a certain
displacement vector d = (dx, dy) and results in the joint distribution of co-
occurring grayvalues. The relative frequency pij , which defines the co-occurrence
of two neighboring grayvalues (with respect to d) i and j, is defined as

pij(d) = λ| {(x, y) : I(x, y) = i, I(x+ dx, y + dy) = j} | (5)

with i, j ∈ {0 . . . G− 1} and G the number of gray levels. I represents an image
of size M ×N and λ is a normalization factor such that

∑
ij pij(d) = 1.

Harlick introduced 14 different textural features [7]. Experiments for the de-
termination of the most discriminative ones were performed. As the information
theoretic texture features named difference entropy, information measure one,
information measure two and the maximum correlation coefficient lead to the
best results, a combination of these four features is used. Furthermore, a pa-
rameter evaluation resulted in an optimal displacement vector of 2 pixels length
with an angle of 90 degrees. As co-occurrence matrices lead to a global represen-
tation of the underlying texture, they are usually computed for a local region of
interest. For the detection of small, regional anomalies in the rope structure this
is important, as small defects will not be recognized with global features. Again,
a detection window of 20× 20 pixels was used for the feature computation.
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2.4 Features Based on Pattern Irregularity

Vartianinen et al. [11] describe an approach for irregularity detection in regular
patterns based on the Fourier transform. By filtering out the distinct frequency
peaks of a regular pattern in the Fourier domain, followed by an inverse trans-
formation a perfectly regular pattern can be obtained. On the other hand, it
is possible to substract this regular part from a unit function in the frequency
domain, which results in the irregular part of the pattern:

I(x, y) = F−1(I(u, v)) (6)

= F−1((1−M(u, v) +M(u, v))I(u, v)) (7)

= F−1(M(u, v)I(u, v))︸ ︷︷ ︸
regular part

+F−1((1−M(u, v))I(u, v))︸ ︷︷ ︸
irregular part

.

I(x, y) is the input image, I(u, v) is the Fourier transformed image, F is the
Fourier transform and M(u, v) is the filter function in the frequency domain. 1
represents the unit function. Without prior knowledge about the pattern struc-
ture a reasonable filter function is self-filtering [19]. Filtering is performed with
the magnitude of the Fourier spectrumM(u, v) = |I(u, v)|. As the rope consists
of regular structures, filtering is done with regard to the irregular part of the
data. For the computation of the local histograms again a detection window
of size 20 × 20 is used. Experimental evaluation has led to an optimum of 16
quantization levels for histogram computation.

2.5 HOG features

Descriptors based on histograms of oriented gradients can be computed from
gradient images. For predefined portions of the input image, the cells, an evenly
spread gradient orientation histogram is computed given a predefined number N
of histogram bins. Thereby, the histogram entries are weighted by the gradient
magnitude. In a last step a descriptor or feature vector is formed, by concatenat-
ing and normalizing the cell histograms given a larger block consisting of m× n
cells. In our experiments in analogy to the detection windows cell sizes of 20×20
pixels are used, with a block dimension of m×h. h is the height (in pixels) of the
segmented rope and m was chosen to be of 20 pixels width. We found out, that
histograms with just 4 bins performed best in our application, as the distinct
number of gradient orientations in the rope data is limited. As it is important
for rope analysis, to discriminate between noise (caused by dirt or reflections)
and actual defects, we further add the entropy given the gradient orientations of
each HOG cell to the feature vector, which results in a dimension d = h

n (N + 1).
In our case d is 35.

3 ONE-CLASS CLASSIFICATION

In order to exclude as many rope meters as possible from a further inspection,
the theory of one-class classification seems to be a good choice. A separation be-
tween faultless and faulty samples is required. In this case, the faultless samples
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represent the target class ωT and the defects are considered as outliers ωO. As
it is no problem to construct a large training set of defect-free feature samples,
a representation for this target density p(x | ωT ) has to be found without any
knowledge about the outlier density p(x | ωO) [20]. Here, x is the feature vector.

For one-class classification problems the false negative rate (FNR) is the only
rate which can be measured directly from the training data. The false positive
rate (FPR) is the most important measure for defect detection, but cannot
be obtained without a sample set containing a sufficient number of defective
samples. In case of a uniform distributed outlier density, however, a minimization
of the FNR in combination with a minimization of the descriptive volume of the
target density p(x | ωT ) results in a minimization of the FNR and FPR [20].

There exist many different methods for one-class classification (also called
novelty detection) [21, 22]. In [3] two approaches, namely the K-means cluster-
ing and a Gaussian mixture model (GMM), were compared. In contrast to our
former work, where the training sample set contained only faultless samples, the
learning step is now modified. Model learning is performed on a sample set with
intentionally included samples from defective rope regions. The aim is to evalu-
ate the robustness of the method against outliers in the training set. This would
reduce the need of a human inspector, who determines an optimal, faultfree rope
region for model learning.

3.1 Decision Making

For a classification into target class and outliers, a threshold is defined on the
density. This threshold is based on the mean and the minimal probability reached
in the training. It is stated, that an optimal threshold should be within the range
of mean and minimum probability. As the training samples are all considered as
defect-free, the minimum probability gives the lower bound for the likelihood of
faultless samples. To account for possible outliers, the threshold is varied in this
range and the evaluation is done by means of receiver operating characteristics
(ROC). Since anomaly detection is a security relevant application, it is important
not to miss any defect. As a consequence, the optimal threshold maximizes the
TPR (number of samples correctly classified to the target class) while keeping
the FPR zero.

Due to feature extraction with a detection window (or in case of the LP
features based on one single channel), a rope frame consists of more than one
feature. Accordingly, the decision for the overall frame is based on the decisions
for the single windows/channels. In case of feature extraction by a detection
window, the frame is classified as outlier, if one of the corresponding window-
sor blocks (for HOG features) is rejected as outlier. For the channel-based LP
features a further pre-processing is necessary. As the channels have no spatial ex-
tension like the detection window, one single channel is prone to noise. Therefore,
a local channel-neighborhood consisting of 15 channels is scanned for potential
outliers and only if the number of channel-votes exceeds five channels, the whole
frame is rejected as defect.
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Fig. 3. In this rope region a wire is missing. The window marks the frame, which was
detected as an outlier by the described system.

Since a defect usually lasts over several frames, the whole defect is regarded as
detected, if one frame in this range is rejected as outlier. Consequently, defects
are detected but not localized at the moment. Figure 3 displays one defect,
detected by the described system. The borders of the frame, detected as outlier
are depicted by the window.

4 EXPERIMENTS AND RESULTS

In the following section, experiments and their outcomes are presented. All ex-
periments were performed on authentic rope data, acquired from real ropeways.
In the generalization experiment (Subsect. 4.3) the data used for model learn-
ing was acquired in a controlled environment, but testing was again performed
on data from a real ropeway. Model learning was done with a Gaussian mixture
composed of five mixture components and rope data belonging to one of the four
views. Testing was performed on all four views and the resulting ROC curves
were averaged over the different views. Interference between the views was not
yet considered. The length of the used rope regions in all experiments is given
by the number of camera lines, followed by the corresponding length in meters
put into brackets. Learning on 20.000 camera lines (2m rope) of one view takes
between 25 seconds and one minute on a Intel Pentium 4 with 3,4GHz, according
to the choice of features. Surely, the LP model learning needs the most time due
to the separate computation of one model for every channel. In testing, we reach
an average detection speed of 10-25 seconds per meter of rope (10.000 camera
lines).

4.1 Comparison of Features

To compare the performance of the different features, model learning was done
for every feature on the same training set, consisting of 20.000 lines (2m rope)
of defect-free rope data from a real ropeway. Experiments were performed on a
connected region of rope data, containing 600.000 camera lines (60m rope) and
covering all known defects in the rope. The receiver operating characteristics
in Fig. 4 point out, that the HOG features outperform all other features, since
the goal is to maximize the TPR for an FPR= 0. However, for all used features
respectable results were obtained, whereas the context-sensitive features seem
to be the best choice. Their overall characteristics show a more robust behavior.
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Fig. 4. Comparison of the ROC curves for the different choice of features.

Features based on detected irregularities perform the worst. A lot of noise is
contained in the rope raw data and the structure is not perfectly regular, so
that a certain amount of irregularities are detected in every frame. This results
in a less discriminative behavior. Table 1 summarizes the maximum TPR for
every view and feature, which was reached for a FPR of zero. For the HOG
features sometimes a threshold equal to the minimum probability obtained in
training was not enough to result in an FPR greater zero. This emphasizes the
discriminative ability of these features. The reason for the decreased TPR of
the LP features in view 4 is just one underdiagnosed error. A manual inspection
depicted that this defect is spread over more than one view and was discovered
correctly in the remaining views. Accordingly, results could be improved by
incorporating interference between the different views. In summary, these results
reveal the importance of context-sensitive features for the challenging task of
defect detection in wire ropes.

Table 1. Comparison of the maximum TPR for a FPR of zero for all features and all
views.

view# LP CoOccurrence LBP Irregularity HOG

view1 0.96 0.78 0.96 0.62 0.95

view2 0.93 0.77 0.82 0.89 > 0.97

view3 0.94 0.77 0.88 0.71 > 0.95

view4 0.62 0.88 0.93 0.78 0.90
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Fig. 5. Comparison of ROC curves for learning with a defect-free training set (a) and
a training set including defects (b).

4.2 Robustness to Outliers

To evaluate the robustness to outliers in the training set, model learning was
performed on a training set containing 200.000 (20m rope) lines of rope data.
For learning, the view containing the most defects (9 defects) was chosen. Test-
ing was performed on the remaining three views, also containing each at least
seven defects. For comparison, the same experiment was performed with a model,
learned from 200.000 defect-free camera lines (20m rope). The resulting ROC
curves are compared in Fig. 5. The ROC curve in Fig. 5(a) gives the averaged
ROC for the model, learned on defect-free training data. Figure 5(b) visualizes
the results obtained with a model, learned from a training set including outliers.
Obviously, the method is robust to few outliers in the training set, as the results
differ not significantly from each other. Where especially the HOG and LP fea-
tures show the most robust behavior, the LBP features seem to be error-prone
if outliers are contained in the training set. The size of the training set was
increased in the experiment, to incorporate as many defects as possible.

4.3 Generalization Ability

For the evaluation of the generalization ability, learning was performed on a real,
faultless rope, acquired in a controlled environment. Testing on the other hand
was performed on different rope data from a real ropeway containing defective
regions. Both ropes belong to the same construction type and they only differ in
their diameter by 10 pixels. In Fig. 6 the results are depicted by the correspond-
ing ROC curves, averaged over all views. Figure 6(a) is generated by learning
and testing on the same rope from the ropeway and Fig. 6(b) shows the result
for learning in the controlled setup and testing on real-life rope data. In both
cases the size of the learning set was 20.000 camera lines (2m rope). The HOG
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Fig. 6. Comparison of the ROC curves for learning and testing on the same data set
(a) and learning and testing on two different, identically constructed rope data sets
(b).

features still outperform all other features, but their performance reduces dis-
tinctly. The same can be stated for the LP features, whereas the global features
like the co-occurrence features and the features based on irregularities seem not
to suffer from a big loss of performance. Especially, for context-sensitive features
this performance loss can be explained by the modified context, which is the
fact in case of learning and testing on different datasets. But nevertheless, these
results indicate a quite good generalization ability of the overall approach.

5 DISCUSSION AND OUTLOOK

As an important and meaningful extension of our former work [3, 12] we extended
the one-class classification approach for anomaly detection in wire ropes by a
performance comparison of five well-established and interesting features. The
results emphasize the necessity of context-sensitive features for this challenging
task and especially reveal the suitability of HOG features for this application
domain. With the presented approach about 90 percent of the defect-free rope
can be excluded from a reinspection by a human expert and only a region of
10 cm around a detected defect has to be re-examined again. Furthermore, ex-
periments emphasizing the robustness and generalization ability of the approach
were presented. They pointed out that a perfect, faultless training set is not es-
sential for model learning. Especially from the practical point of view, this is an
important insight, precisely because one cannot assure a completely defect-free
training set. With regard to the generalization ability it was shown, that learn-
ing and testing on different datasets of identical constructed ropes still results
in good recognition rates and therefore implies a good generalization ability of
the learned models. Concerning the practical applicability, this is a remarkable
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finding, as it is a difficult and time consuming task to learn an individual model
of the respective rope previous to every detection run.

In the meantime our research already revealed a significant improvement of
defect detection by the usage of context-based classification methods like Hidden
Markov Models (HMM). The permit defect localization instead of pure detection
[23]. Hence, future work will be focused on a fusion of all available rope views
to make a robust decision for a whole rope section.
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