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Abstract

Automatic visual inspection has gathered a high im-
portance in many fields of industrial applications.
Especially in security relevant applications visual
inspection is obligatory. Unfortunately, this task
currently bears also a risk for the human inspec-
tor, as in the case of visual rope inspection. The
huge and heavy rope is mounted in great height,
or it is directly connected with running machines.
Furthermore, the defects and anomalies are so in-
conspicuous, that even for a human expert this is a
very demanding task. For this reason, we present
an approach for the automatic detection of defects
or anomalies in wire ropes. Features, which incor-
porate context-information from the preceding rope
region, are extracted with help of linear prediction.
These features are then used to learn the faultless
and normal structure of the rope with help of a one-
class classification approach. Two different learn-
ing strategies, the K-means clustering and a Gaus-
sian mixture model, are used and compared. The
evaluation is done on real rope data from a rope-
way. Our first results considering this demanding
task show that it is possible to exclude more than 90
percent of the rope as faultless.

1 Introduction and Motivation

Wire ropes are used in many fields of daily life:
they bear the weight of bridges and can be found as
load cable in every elevator. Moreover, they are the
foundation of every ropeway. All mentioned appli-
cations of wire ropes indicate a high risk for human
life if such a wire rope is damaged and therefore not
safe any more. It is thus not astonishing that there
exist strict rules for a regular inspection [14].

Typical defects in wire ropes are small wire

Figure 1: Rope defects: in the upper image you can
see a wire fraction and in the image below a wire is
missing.

fractions, damaged rope material due to lightening
strokes or missing wires. Figure 1 displays two of
the mentioned defects, marked in the rope. Fur-
thermore, a reduced stress of the rope or untwisting
can be the origin for evolving defects and structural
anomalies. For many applications, the ends of the
rope have to be connected by interweaving individ-
ual wires of the one end with lacings of the other
end. Every time such an interleaving is done, there
is a special structural modification, called knot. The
area which covers all knots is called splice and is
known as a region of higher liability to defects.
Therefore, it is also important to detect these knots
as a structural anomaly.

Visual inspection of wire ropes is a difficult and
dangerous task [14]. The inspectors are exposed
to many risks like crashing or injuries caused by
the closeness to the running rope. Besides, the in-
spection speed is quite high (on average 0.5 me-
ters/second) which makes it a hard effort, to concen-
trate on the passing rope without missing small de-
fective rope regions. For this reason, an automatic
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Figure 2: A prototype version of the device which
acquires the rope data

visual inspection would be an important improve-
ment. This was the motivation for the development
of a prototypic acquisition system based on four line
cameras and yielding rope data in a digital manner
[14]. This prototype system can be seen in figure 2.
Using this new technique, it became possible to in-
spect the acquired data in a safe and comfortable
way and without time pressure.

A solution to the problem of automatic visual in-
spection of wire ropes, based on the digitally ac-
quired data, is introduced in this paper. Considering
visual inspection of wire ropes as an computer vi-
sion task bears some further problems. First the
defective regions mostly are limited to small areas
and the image quality is deranged by mud, powder,
grease or water as well as reflections caused by the
lighting conditions. So even for a human it is hard to
locate small defects like a missing or broken wire or
small structural anomalies in the image data. There-
fore, contextual information from neighbouring re-
gions is an important information for the detection
of abnormal regions.

Regarding machine learning strategies, restric-
tions are made due to the small sample set of de-
fects, which is available in advance. Because safety
is the key aspect, inspection instructions are rigor-
ous. This makes it hard to collect enough sample
defects of the different defect classes for supervised
learning methods. In contrast, it is no problem to
design a huge sample set of defect-free rope data.

The only obtainable ground truth data is delivered
from the human inspector by manually labeling the
defects in a rope data sample set. Hence, statistical
learning approaches are limited to one-class clas-
sification. Given just a sample set of defect-free,
structural consistent rope data, the task is to deter-
mine a boundary around this data in order to op-
timize the separation between target class and out-
liers [19].

1.1 Related Work

Comparable state-of-the-art work can be found in
the field of visual inspection of textile fabrics [18],
fault detection in material-surfaces [9] or other
comparable anomaly detection tasks.

Most of the approaches for anomaly and defect
detection in this context are based on textural fea-
tures, like local binary patterns (LBP) [18] or ga-
bor filter outputs [9, 8]. Chan and Pang [2] make
use of Fourier analysis to detect defects in fabrics.
The approaches of Chetverikov [3] and Vartianinen
et al. [20] both are engaged with the problem of
irregularity detection in regular patterns or struc-
tures. Whereas Chetverikov [3] uses regularity fea-
tures based on the auto-correlation function for the
detection of non-regular structures, Vartianinen et
al. [20] separate regular and irregular image infor-
mation with help of the Fourier transform.

Mostly, defect detection based on thresholding
the filtered or transformed image data [8] is per-
formed. Chetverikov [3] uses a clustering approach
and defines a threshold on the maximum distance
to the cluster center for the detection of defects.
Threshold determination is performed by training
on defect-free samples. More sophisticated learn-
ing strategies use unsupervised classification meth-
ods like Gaussian mixture models [21] or self orga-
nizing maps (SOM) [10]. These approaches can be
arranged in the context of novelty detection. An ex-
tensive overview over the field of novelty detection,
also known as one-class classification or outlier de-
tection, is presented in [12, 13, 6]. More detailed
work can be found in [19].

However, most of these approaches for defect de-
tection do not take into consideration the aspect of
contextual information over time. For the detection
of small structural anomalies and defects in rope
data this contextual information is highly important.
In this paper, rope data is regarded as a time series.
A model which can explain the appearance of the



data is sought. As one key technique in the field
of time series analysis linear prediction (LP) should
be mentioned. Linear prediction aims to predict the
next value of a time series based on thep last val-
ues and so incorporates a certain temporal context.
In speech processing it is used to model the hu-
man vocal tract [15]. Although linear prediction is
known for decades, it was recently used in the field
of defect detection. Hajimowlana et al. [5] use lin-
ear prediction for defect detection in web inspection
systems. Based on the prediction error they are able
to localize defects in textures, containing a constant
background. In [17] 2-dimensional linear predic-
tion is used for the automatic determination of seed
points for a region growing algorithm in order to
detect microcalcifications in mammograms.

In this paper, a new approach combining features
extracted by linear prediction with a one-class clas-
sification approach for defect detection in wire rope
data is presented. Section 2 introduces how LP
features are extracted from multichannel rope data.
These features are used in section 3 to form an indi-
vidual feature space for every channel, which serves
for the separation into target class (non-defective
rope regions) and outliers (possible defects). Ex-
periments and results using real rope data from a
ropeway are presented in section 4. They reveal the
usability of the presented approach for automatic
defect detection in wire ropes. A discussion about
the contribution of this paper and the future work
can be found in section 5.

2 Linear Prediction of Rope Data

Linear prediction can be seen as one of the key tech-
niques in speech recognition. It is used to compute
parameters that determine the spectral characteris-
tics of the underlying speech signal. Related ap-
plications are furthermore the recognition of EEG
signals or the analysis of seismic signals [11].

The general idea is to develop a parametric repre-
sentation that models the behaviour of the underly-
ing signal. In case of linear prediction, this is done
by forecasting the valuex(t) of the signalx at timet

by a linear combination of thep past valuesx(t−k)
with k = 1, . . . , p. p is the order of the autoregres-
sive process. The prediction̂x(t) of a 1-D signal
can be written as:

x̂(t) = −

p
X

k=1

αkx(t − k) (1)

and the prediction error can be derived as:

e(t) = x(t)− x̂(t) = x(t)+

p
X

k=1

αkx(t−k). (2)

This motivates the choice of linear prediction for
feature extraction, because for the prediction of the
actual value the contextual information of the past
values is used. By this, context information is im-
plicitly incorporated in the resulting feature.

A general assumption made in linear prediction is
the stationarity of the signal. For this reason a non-
stationary signal should be segmented in relatively
small, overlapping frames [15]. Hence, the signal
is multiplied with a window functionw(t), which
is chosen to be a rectangular window. The window
sizeN is dependent on the application and here was
chosen to be of 40 pixels width due to a strong re-
sponse of the auto-correlation function for a transla-
tion of 40 pixels. This peak corresponds to a period
of the regular wire structure. The quadratic error
function for the whole window witht ∈ [t0, t1] is

E =

t1
X

t=t0

(e(t))2 =

t1
X

t=t0

(x(t) − x̂(t))2 (3)

=

t1
X

t=t0

(

p
X

k=0

αkx(t − k))2 (4)

with α0 = 1. Based on this least-squares formula-
tion, the optimal parameters~α = (1, α1 . . . αp) can
be derived by solving the following system

δE

δαi

= 2

p
X

k=0

αk

t1
X

t=t0

x(t − k)x(t − i) = 0 (5)

with i = 1, . . . , p. Considering thatα0 = 1 one
can rewrite (5) as the following set of equations

p
X

k=1

αkφki = −φ0i for i = 1, . . . , p (6)

with φki =
Pt1

t=t0
x(t − k)x(t − i). These equa-

tions are known as the normal equations [11] and
can be solved for the prediction coefficientsαk, 1 ≤
k ≤ p. The optimal parameter set is derived by the
use of the auto-correlation method [11, 15]. Due to
the assumption of a stationary signal covered by the
window, the short-time auto-correlation function

R(i) =

t1−i
X

t=t0

x(t)x(t + i) (7)



can be used to replaceφki by R(k− i). This results
in

p
X

k=1

αkR(k − i) = −R(i) (8)

whereR(k − i) forms the auto-correlation matrix,
which is known to be a Toeplitz matrix [15]. Such
Toeplitz matrix systems can be solved efficiently by
use of the Levinson-Durbin recursion [11].

2.1 1-D Feature Extraction

As result of the Levinson-Durbin recursion one gets
the parameter vector~α = (1, α1 . . . αp), contain-
ing the LP coefficients and the minimum total er-
ror Ep of order p [11]. Because of windowing
the signal into sufficient small frames, a possible
defect will probably cover large parts of the win-
dow. Hence, linear prediction in this window would
cause an optimal fitting of the model to the defect
and does not compulsory result in a high total er-
ror. For this reason, the overall total prediction error
seems not to be a distinctive indicator of a defect.

Furthermore, the rope data is a 2-dimensional
signal. Thus 1-D linear prediction is not effec-
tual to analyse the whole signal. To overcome
this, the rope data is considered as a multichannel
time series. The signal~x consists ofc channels
~x = (~x1 ~x2 . . . ~xc)

T and every channel represents
a 1-dimensional time series~xi = (xi(1) . . . xi(t))
with i ∈ {1, . . . , c}. For every channeli of this sig-
nal an individual 1-D linear prediction is performed,
leading to the estimatêxi(t) and a representative
coefficient vector~αi. This resulting coefficient vec-
tor ~αi is used directly as corresponding feature for
the actual frame and the channeli.

3 One-class Classification of Rope
Data

After feature extraction, separation between fault-
less and faulty samples is desired. The faultless
samples represent the target classωt and the de-
fects are considered as outliersωO. In other words,
a representation for the target densityp(~α | ωT )
is searched without any knowledge about the out-
lier densityp(~α | ωO) [19]. This way of looking at
the one-class classification problem fits very well all
present problems. So it is no problem to construct a

large training sample set of defect-free feature sam-
ples for finding an optimal description of the target
density. Furthermore, the small number of avail-
able, defective samples is no problem any longer, as
well as the fact that not all possible defects can be
covered by such a sample set. Considering the goal
to exclude as many rope meters as possible from a
further inspection, the theory of one-class classifi-
cation seems to be a good choice.

A comparison of the problem of one-class clas-
sification with the normal binary classification is
given in [19] and is shortly summarized in the fol-
lowing. In binary classification problems an opti-
mal parameter vector~w∗ is searched for in the train-
ing, which minimizes the total errorε of the classi-
fication functionf(~α; ~w) with respect to the class-
labely.

εtrue(f, ~w, A) =

Z

ε(f(~α; ~w), y)p(~α, y) d~α dy

(9)

Here f is the classification function which is de-
pendent on the parameters~w. The error functionε
can be an arbitrary function for defining the classi-
fication error, like the mean squared error for real-
valued classification functions or the 0-1-loss for a
discrete valued functionf . A is the feature space.

In contrast, for one-class classification problems
the only obtainable information is that of the tar-
get density. This solely allows a minimization of
the rejection of defect-free samples. Hence, the to-
tal error (9) cannot be minimized due to the lack of
knowledge about the outlier density. The total error
is therefore replaced by two other error functions:
the false negative rate (FNR) and the false positive
rate (FPR). The false negative rate measures how
many faultless samples are regarded as outlier with
respect to all positive samples, and the false positive
rate gives the amount of defects wrongly classified
as fault-free. The FNR can be measured directly
from the training set. By treating the whole feature
space as target density, the FNR would be maxi-
mized in a trivial manner. Instead, the false positive
rate (FPR) cannot be measured in training without
a sample set containing a sufficient number of de-
fective samples. However, assuming a uniform dis-
tribution of outliers, a minimization of the FNR in
combination with a minimization of the descriptive
volume of the target densityp(~α | ωT ) results in
a minimization of the FNR together with the FPR
[19].



There exist many different methods for nov-
elty detection [6]. Tax [19] divides them into
three different categories: density-based methods,
boundary methods and reconstruction-based meth-
ods. Density-based methods attempt to estimate the
whole probability density of the target class. Ex-
amples are Gaussian distributions or Gaussian mix-
ture models (GMM). Boundary methods focus on
computing the boundaries of the target class with-
out estimating the complete density. This is ad-
vantageous, especially if the training sample set is
not representative or consists only of few examples
[19]. Reconstruction-based methods subdivide the
feature space and represent it by subspaces or proto-
types. Most of these approaches make use of a pri-
ori knowledge about the data or the generating pro-
cess [19]. For this work, two approaches are cho-
sen: the K-means clustering and a Gaussian mixture
model. Both approaches are shortly summarized in
the following subsections.

3.1 K-means Clustering

K-means clustering is chosen due to its simplicity
and its feasibility to represent the feature space as
a set of prototype vectors [6]. Considering the rope
data, it is an acceptable assumption to think of the
features as representatives of a certain signal char-
acteristic, which repeats over time due to the pe-
riodic structure of the rope. Hence, an approach
which subdivides the feature space into clusters be-
longing to one of the prototypes, fits this assump-
tion. The number of prototypes equals the number
of clustersK and is predefined in advance. For
training, resulting in the prototype vectors and a
cluster radius, the following error function is mini-
mized. By that, for every feature~α extracted by lin-
ear prediction, its nearest cluster center~µk is com-
puted in the sense of the euclidian distance:

εkmeans =
X

i

“

min
k

||~αi − ~µk||
2

”

. (10)

Training is done via an iterative procedure. In the
first step new samples are assigned to the nearest
cluster, and in the second step the cluster centers,
representing the prototype, are recomputed as the
mean vector of all cluster samples [1]. After the
training, it is possible to define a threshold on the
maximum distance to a cluster as a criterion for out-
lier rejection. The distance of a feature~α′ to the

nearest prototype is defined as

dkmeans(~α
′) = min

k
||~α′ − ~µk||

2
. (11)

The maximum distance obtained for a feature in the
training stage is used for threshold computation [6].
Due to noise and uncertainty in the training set, the
maximum distance is not a good choice. It is stated,
that an optimal thresholdtopt should be among the
mean distancedmean and the maximum distance
dmax measured during the training step.

topt = λdmean + (1 − λ)dmax (12)

Hereλ with 0 ≤ λ ≤ 1 is the free parameter steer-
ing the threshold. A good evaluation method for an
optimally chosen thresholdtopt are receiver operat-
ing characteristics (ROC) [16]. This evaluation is
given in section 4.

3.2 Gaussian Mixture Models

As second classification strategy a Gaussian mix-
ture model is chosen. Estimating the underlying
density only with help of a simple Gaussian would
be too inflexible due to the unimodal character of
a single Gaussian. A way to approximate complex
densities is provided by the usage of Gaussian mix-
ture models [1]. Many authors use a Gaussian mix-
ture model with a predefined number of Gaussian
kernels to describe the underlying density in the
sense of one-class classification, e.g. [19, 16, 21].
A Gaussian mixture consists of a linear combina-
tion of K single Gaussian kernels with dimension
d.

pN (~α | ~µ, Σ) =

1

(2π)
d

2 |Σ|
1

2

exp

„

−
1

2
(~α − ~µ)T Σ−1 (~α − ~µ)

«

(13)

Each Gaussian componentj = 1, . . . , K is
parametrized by its mean vector~µj and its covari-
ance matrixΣj as well as the corresponding mixing
coefficientπj .

pMoG(~α) =
K

X

j=1

πjpN (~α | ~µj , Σj) (14)

The mixing coefficientsπj represent the influence
of that component with respect to the overall den-
sity. It holds that

PK

j=1
πj = 1.



(14) gives the likelihood of a certain sample
~α belonging to the target density. The parame-
ters~π = {π1, . . . , πK}, ~µ = {~µ1, . . . , ~µK} and
Σ = {Σ1, . . . , ΣK} are derived in the training step
based on the EM-algorithm [1]. In contrast to the K-
means clustering, the Gaussian mixture model com-
putes a soft assignment for every new sample con-
sidering the membership to a certain component [1].
For the use of density-based models it is possible to
define an analytic threshold [19]. One strategy for
doing so is presented in [7]. In this work, the thresh-
old is determined in a similar manner as described
in section 3.1 for K-means clustering. Based on
the minimal likelihood, assigned to one of the train-
ing samples, and the mean likelihood achieved in
the training, the optimal threshold is evaluated with
help of ROC-curves and results are presented in sec-
tion 4.

3.3 Anomaly Detection Model

In this section, the anomaly detection model is in-
troduced. By regarding the rope data as a multi-
channel version of a 1-D time series, it becomes
clear that the signal characteristics of the individ-
ual channels are not equal. This is induced by the
different periodicity of the local structure present in
variable regions of the rope. Especially in regions
around the rope borders, the period length of a light-
dark change is different from that of the interior
rope regions. Furthermore, defective regions are
limited to only a small amount of channels. Hence,
the construction of a very high-dimensional feature
vector out of the feature vectors for every individual
channel would suppress the defect probability of the
frame in case of a present defect. For this reason,
every channel is treated separately concerning fea-
ture extraction and classification. Figure 3 presents
a rough sketch of the underlying model. For every
channel its own feature space is created. In every
feature space clustering of the defect-free samples is
performed, resulting in a representation of the over-
all density by an individual model. Testing with real
rope data is also performed channel-wise. For every
channel an individual decision about the rejection
as outlier is made. Unfortunately, this technique in
general leads to a high rejection rate of defect-free
samples due to noise or mud, existent in at least one
of the channel-signals. Therefore, the proposed ap-
proach makes use of neighbourhood information in
the decision process. The classification output is

examined in a fixed-sized channel-neighbourhood,
and the whole frame is only labeled as anomaly if
the number of potential outliers in one neighbour-
hood exceeds a certain thresholdtN . Experimental
evaluation of this threshold is presented in section 4.

Since most of the defects in real rope data have
an elongation between 100 and 300 lines, a further
assumption is made for the outlier detection: if one
frame in the range of this defect is rejected as an
outlier, the whole defect is marked as detected. This
procedure is necessary at the moment due to the fit-
ting characteristic of the linear prediction model to
the underlying data. From this follows, that it is not
possible to determine the exact area of the error with
the presented approach. In case of a detection run
in a real-life scenario without groundtruth-labeling,
the human expert would have to control a sufficient
large area around the outlier frame.

4 Experiments and Results

Evaluation is done on real rope data, which was ac-
quired within the feasibility study for the already
mentioned prototype device. For this reason, the
underlying dataset contains real rope defects, and
the data is noisy and deranged with mud or wa-
ter. Since these are real-life problems, the following
evaluation can proof the practicability of the pre-
sented approach.

The data set we used has 13.618.176 lines ac-
quired by each line camera. For every view there
exists a labeled error table, giving the range and the
label of every defect or anomaly in the rope. For the
learning step only rope regions which are assumed
to be fault-free were used. For the testing phase a
connected region with all available defects was cho-
sen. The number of defects in this region of about
13.100.000 lines varies from view to view between
9 and 13.

The evaluation was done with respect to a com-
parison of the two different one-class classification
strategies. We used Torch3 library [4] as imple-
mentation for the K-means clustering, as well as for
the Gaussian mixture model. The performance of
the whole system can be best assessed with help
of ROC curves, which show the system behaviour
concerning false and true positive rates with respect
to the threshold for outlier rejection. Furthermore,
some of the parameters are evaluated in order to
find an optimal setting. These are in the follow-



Figure 3: Multichannel-version of the classification model. For every channel in the frame (blue) a feature
is extracted and examined in a separate feature space for that channel.The red part in the detection window
marks the signal values, which are predicted in the actual step.
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Figure 4: Plot of the mean distance with respect to the number of clusters (left) and mean log pdf-value
with respect to the number of Gaussians (right), achieved in a training stepwith 100.000 lines of defect-free
rope data. Evaluation was done on channel 50 of view 2.

ing the size of the training set (in lines), the number
of channel-outliers which have to be reached in or-
der to consider the whole frame as outlier, and the
number of cluster centers or Gaussians, which are
predefined for the classification task.

4.1 Number of Clusters/Gaussians

In order to determine the optimal number of clus-
ters or Gaussians for the one-class classification
of defect-free rope data, the mean distance (mean
probability density function-value (pdf) of one fea-
ture) reached in the learning step was used. This
mean distance (pdf-value for the Gaussian mixture
case) is assumed to decrease (increase) for every
added cluster (Gaussian). Indeed, adding one ad-
ditional cluster or Gaussian to a small number of
already used ones, should have a higher impact on
the mean distance (pdf-value), than adding an addi-
tional cluster or Gaussian to an already huge num-

ber of clusters/Gaussians. The plots in figure 4
show exemplary the results for the channel 50 out
of 130. For the other channels results are similar.
Note that Torch3 implementation, like common ap-
proaches, uses the log likelihood instead of the like-
lihood. To be consistent concerning the range, they
therefore negated the euclidian distance used in the
K-means approach. Based on these plots, the num-
ber of clusters for the K-means approach was set to
five. In the Gaussian mixture model 8 components
were used in the following experiments.

4.2 ROC Curves

ROC curves describe the behaviour of the system
with respect to true and false positive rates and a
varying threshold for the rejection of one class. The
goal is in general to maximize the TPR and min-
imize the FPR. However, in the context of visual
rope inspection it is important not to miss any de-



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e 
P

os
iti

ve
 R

at
e

False Positive Rate

Kmeans Clustering, k=5
Gaussian Mixture, k=8
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fect. On account of this, the primary and most im-
portant interest is to minimize the FPR. A maxi-
mization of the TPR is only suggestive while the
FPR stays zero. The ROC curves in figure 5 show
the system behaviour with regards to the threshold
computation from (12), whereλ is varied from0-
1 in steps of0.05. The number of lines used for
training was 10.000. Apparently, the Gaussian mix-
ture approach outperforms the K-means clustering.
Nevertheless, both strategies result in a quite high
true positive rate. Hence, a huge amount of rope,
up to 90 percent and more, can be excluded from
further inspection.

4.3 Influence of the Training Size

Clearly, the size of the training sample set has an
influence on the results, because the goal is to best
represent the underlying density of defect-free sam-
ples. For this task, it is important to cover enough
faultless observations from the rope data in order
to discriminate between real defective sample and
noisy, but defect-free samples. Testruns, resulting
in ROC curves, for both classification approaches
based on different sized training sample sets (2.000,
20.000 and 200.000 lines of rope data) were per-
formed. The outcome of the experiments can be
seen in figure 6. A size of 2000 lines is not suffi-
cient for the chosen setting with a frame width of 40
lines and an overlap of 15 lines. Best results were
obtained for a training sample set consisting of fea-

tures from 200.000 lines of rope data. The course
of the ROC curve for K-means clustering and learn-
ing with 2.000 lines of rope data shows a curious
behaviour at one point. This can be caused by the
random initialisation of the K-means clustering in
every learning step. Note that even the miss of one
defect causes the FPR to increase apparent.

4.4 Impact of the Outlier Threshold

This experiment is used to show the impact of the
heuristic pre-processing, which is done after the
classification of every individual channel. Given a
neighbourhood of 15 channels, the whole frame is
only rejected as an outlier if a sufficient number of
channels in this neighbourhood vote for an outlier.
This threshold is varied in our experiment between
1 and14 and figure 7 shows the result fortN = 3, 5
and10 respectively. The results for the Gaussian
case (right) are close to the results for the K-means
approach (left). It is obvious that too high values
for tN result in lower overall performance because
the procedure is made less sensitive for defects. On
the other hand a very low threshold will also reduce
the performance due to a high sensitivity for noise.
Regarding the plots, a threshold between three and
five seems to be a good choice in order to achieve a
high TPR with minimal FPR.

5 Conclusion and Outlook

A new approach for the challenging, automatic vi-
sual inspection of wire ropes was presented. As a
first step, features based on linear prediction were
introduced. The use of this features is justified
by their ability to incorporate the temporal context,
which is useful to detect deflections from a normal
structure. A combination of a one-class classifi-
cation strategy using K-means clustering or Gaus-
sian mixture models with the LP-based features was
motivated and described. The presented work inte-
grates well in the field of novelty detection, with
respect to an optimal separation of defective or ab-
normal samples from the learned, fault-free struc-
ture of wire ropes. The evaluation of the whole sys-
tem proofs its applicability for the real-life problem
of visual inspection. The system is able to exclude
up to 90 percent and more of the rope data from
further visual inspection. Considering the severity
of the data, this is a remarkable result. Indeed, it
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Figure 6: ROC curves for usage of K-means clustering (left) and a Gaussian mixture model (right) with
different sized training sets of 2000 (red), 20000 (green) and 200000 (blue) lines of rope data.
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Figure 7: ROC curves with regard to the outlier rejection thresholdtN = 3, 5, 10 for the K-means approach
(left) and the Gaussian mixture model (right). Training was performed with 20000 defect-free sample lines.

is not possible to classify the potential defects auto-
matically with respect to their corresponding defect
class. That will be in the focus of future work. Fur-
thermore, it has to be restudied if a context-based
classification approach from the field of time se-
ries analysis, like a hidden markov model, will im-
prove the system in a way, that makes it possible
to determine the exact area of the defect. Beyond,
the incorporation of a priori knowledge about de-
fects from the few examples available in advance
will be a topic under investigation. A compari-
son with another frequently used one-class classi-
fication method, the support vector data description
[19], is also of great interest.
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