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Abstract: We present a modular architecture for image understanding and ac-
tive computer vision which consists of three major components: Sensor and
actor interfaces required for data—driven active vision are encapsulated to
hide machine-dependent parts; image segmentation is implemented in object—
oriented programming as a hierarchy of image operator classes, guaranteeing
simple and uniform interfaces; knowledge about the environment is represented
either as a semantic network or as statistical object models or as a combination
of both; the semantic network formalism is used to represent actions which are
needed in explorative vision.

We apply these modules to create two application systems. The emphasis
here is object localization and recognition in an office room: an active purposive
camera, control is applied to recover depth information and to focus on inter-
esting objects; color segmentation is used to compute object features which are
relatively insensitive to small aspect changes. Object hypotheses are verified by
an A*-based search using the knowledge base.
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Abstract We present a modular architecture for image understanding
and active computer vision which consists of three major components:
Sensor and actor interfaces required for data—driven active vision are
encapsulated to hide machine-dependent parts; image segmentation is
implemented in object—oriented programming as a hierarchy of image
operator classes, guaranteeing simple and uniform interfaces; knowledge
about the environment is represented either as a semantic network or
as statistical object models or as a combination of both; the semantic
network formalism is used to represent actions which are needed in ex-
plorative vision.

We apply these modules to create two application systems. The emphasis
here is object localization and recognition in an office room: an active
purposive camera control is applied to recover depth information and to
focus on interesting objects; color segmentation is used to compute object
features which are relatively insensitive to small aspect changes. Object
hypotheses are verified by an A*—based search using the knowledge base.

1 Introduction

Autonomous mobile systems with visual capabilities are a great challenge for
computer vision systems since they require skills for the solution of complex im-
age understanding problems, such as driving a car [36] or exploring a scene. The
system presented in this contribution provides mechanisms for knowledge—based
image understanding and active computer vision. It combines and links various
modules for low—level image processing, image segmentation, and high—level im-
age analysis. We combine data—driven and knowledge-based techniques in such a
way that a goal-directed exploration guided by the explicitly represented knowl-
edge is possible. The major goal here is to explore a scene with an active camera
device. This can also be used in autonomous mobile systems which navigate
and act based on visual information. Such systems need an explicit representa-
tion of actions and search strategies. A literature review in [5] on the topic of
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knowledge-based image analysis gives a comprehensive discussion of the state of
the art. Image analysis systems have also been reported for example in [21,22].
In [21] as well as here, semantic networks are used as a formalism for knowledge
representation. We now use this formalism for the unified representation of ob-
jects, scenes, actions, and strategies in order to provide flexible and exchangable
strategies for active vision and scene exploration.

A software system for image understanding usually has a considerable size.
The major problem in software design of general imaging systems is that on
the one hand highly run—time efficient code and low-level access to hardware is
required, and that on the other hand a general and platform-independent im-
plementation is desired which provides all data types and functions also for at
least intermediate—level processing, such as results of segmentation. Today’s soft-
ware engineering is closely coupled with the ideas of object—orientation which can
help simplifying code reuse; if applied properly, it unifies interfaces and simplifies
documentation by the hierarchical structure of classes. Genericity provides an al-
ternative solution to software engineering problems. Both concepts are available
in C++. Object—oriented programming has been proposed for image processing
and computer vision by several authors, in particular for the image understand-
ing environment [15]; this approach is mainly used to represent data. We also
use object—oriented programming for operators, devices, and actions.

In Sect. 2 we outline the general structure of our system and the object—
oriented implementation. In Sect. 3 we describe some of the modules which are
provided by the system; special emphasis is layed on the knowledge representa-
tion for computer vision and on the extension of the semantic network formalism
to represent strategies and actions. We apply these modules in Sect. 4 to two
problems in computer vision.

The goal of our example application in Sect. 4.1 is to explore an office room.
Objects are hypothesized in the image based on their color. Their 3-D position
is estimated from a coarse 3—D map computed from trajectories of colored points
which are tracked during during a translational motion of the active camera. The
objects are chosen in such a way that they cannot be distinguished by their color
solely. Close—up views are captured and segmented into color regions. Features
of these regions are subject to matching with the knowledge base. If objects are
not found in the scene, the camera is moved based on action descriptions found
in the knowledge base.

In Sect. 4.2 we describe a recent research project in the area of visual guided
autonomous mobile systems. Many of the algorithms described in Sect. 3 and
Sect. 4.1 are involved. First results for visual self-localization based on color
histograms in natural office scenes are presented.

We conclude with a summary and future directions in Sect. 5.

2 System Architectures

The need for a flexible, knowledege—based computer vision system with real-time
capabilities lead to “An image analysis system” (ANIMALS, [1,26,25]) which



is implemented in C++. It provides modules for the whole range of algorithms
from low-level sensor control up to knowledge—based analysis and actions. For
a unified documentation and description of the numerous modules, the notation
as introduced in [23] has been used.

2.1 Data Flow for Knowledge—Based Analysis

The general problem of image analysis is to find the optimal description of
the input image data which is appropriate to the current problem. Sometimes
this means that the most precise description has to be found, in other cases
a less exact result which can be computed faster will be sufficient. For active
exploration, the goal is to fulfill the task which is described in the knowledge
base.

These problems can be divided into several sub—problems. After an initial
preprocessing stage, images are usually segmented into meaningful parts. Various
segmentation algorithms create so called segmentation objects [25] which can be
matched to models in a knowledge base containing expectations of the possible
scenes in the problem domain. This is achieved best if the formalism for the
models is similar to the structure of segmentation results, as it is the case for
semantic networks and segmentation objects [23].

An overview of the main components of our image analysis system is shown
in Figure 1; data is captured and digitized from a camera and transformed
to a description which may cause changes in camera parameters or tuning of
segmentation parameters. Models which are collected in the knowledge base are
created from segmentation results (in Sect. 3.3) or at least have similar structure
(in Sect. 3.6). These models are used for the analysis. Image processing tasks
are shown in oval boxes; data is depicted as rectangles.

The dotted lines in Figure 1 indicate that a control problem has to be solved
in active vision or active exploration resulting in a closed loop of sensing and
acting. Information is passed back to the lower levels of processing and to the
input devices; this way, parameters of procedures can be changed systematically,
or the values of the camera and lens can be modified. Changes to the param-
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Figure 1. Data flow in an image analysis system after [25]



eters of the image input process, selection of the appropriate algorithms, and
parameter control for both are summarized under the term action.

2.2 Examples of Other Software Environments

From the variety of software systems for image processing and analysis, we choose
two well known examples.

A group of leading experts in image analysis joint their efforts for a common
image understanding environment [15]. The system was planned as a basis for
image processing, computer vision, and knowledge based image analysis. The
system covers all areas of imaging with many applications; due to the many
contributors, a variety of ideas has to be united into a hierarchy of classes.
The design goals are: object—oriented programming with graphical interaction,
extensibility, program exchange and a common performance evaluation platform
for image processing. Real-time processing was explicitly excluded from the
original goals [15, p. 160]. In the present version, no classes are provided for
devices such as cameras. This environment is applied for example in [18] to the
analysis of satellite images.

The other widely used system is Khoros [28] which provides a nice graphical
user interface for image processing systems. Data structures beyond images and
matrices are not available to the user. Therefore, knowledge—based processing
is not integrated in the system. The interface to the large function library is
compatible to C and does not provide object—oriented features.

Real-time processing as well as symbolic data structures are crucial for active
exploration. Both systems have thus to be modified or extended to be used for
our purpose.

2.3 Object—Oriented Design for Image Analysis

The algorithms and data structures of our system are implemented in a
Hierarchy of Picture Processing ObjectS (HIPPOS, written as {wmos [26,25]),
an object—oriented class library designed for image analysis which is based on
the commonly used NIHCL C++ class library. In [26], the data interfaces were
defined as classes for the representation of segmentation results. The segmen-
tation object [26] provides a uniform interface between low—level and high-level
processing. In [16], this system is extended to a hierarchical structure of image
processing and analysis classes and objects (cmp. [4]). Objects are the actual
algorithms with specific parameter sets which are also objects (OperatorOpt in
Figure 2, [16]). Classes as implementation of algorithms are particularly useful,
when operations require internal tables which increase their efficiency since ta-
bles can then be easily allocated and handled. The basic structure of the class
hierarchy for line-based image segmentation is shown in Figure 2. On a coarse
level, operators for line-based segmentation can be divided into edge detection,
line following, gap closing, and corner and vertex detection. For each process-
ing step, which is implemented here as a class, there exists a large variety of
choices in the literature. When the whole sequence of operations is subjected
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Figure 2. Part of a class hierarchy for image operators from [16] in UML notation

to optimization, either manually or automatically, it is crucial to have similar
interfaces to exchangeable single processing steps, such as several corner detec-
tion algorithms. This is greatly simplified by object—oriented programming and
polymorphic interfaces as shown here. Only the type of input and output data
has to remain fixed for such a system. This is guaranteed by the abstract classes
directly derived from the class Operator; for example the EdgesToSegObj defines
the interface for the conversion of edge images to segmenation objects.

Several segmentation algorithms are implemented in our system which op-
erate on gray-level, range, or color images using the interfaces provided by the
segmentation object. To give an example, the application in Sect. 4.1 works on
color images and applies a split-and-merge algorithm extended to color images.
The result is represented as a segmentation object containing chain code objects
for the contours of the regions. The major advantages of operator—classes for
segmentation and image processing are threefold:

— Algorithms can be programmed in an abstract level referencing only the
general class of operations to be performed; extensions of the system by a new
derived special operator will not require changes in the abstract algorithm.

— Such an extension cannot change the interface which is fixed by the definition
in the abstract base class. This guarantees reusable, uniform, and thus easy—
to—use interfaces.! In Figure 2, this is shown for the edge detectors (Sobel
and ShenCastan) and for two different corner detectors (from [16]).

— Dynamic information about the operator which is actually used, is available.
For example, a program may just reference a filter object; during run time
it will be decided which concrete filter should be used.

1 Of course, this is not always possible to achieve.



In Sect. 2.4 we argue that these advantages produce no additional run—time
overhead. Similar hierarchies as the one in Figure 2 exist for filters and for
region—based segmentation.

2.4 Software Experiments

Our system is compiled and tested for various hardware platforms, including
HP (HPUX 9.07 and HPUX 10.20, 32 bit and 64 bit Versions), PC (Linux), SGI
(IRIX 6.20), Sun (Solaris), etc.

The NIHCL class library served as a tool for most general programming prob-
lems, such as dictionaries, lists, and external data representation. It is available
for all platforms listed above. STL was not available when the system was initi-
ated but has now been used as well.

Operator classes are invoked by virtual function calls. This overhead in com-
parison to direct function calls is negligible, as long as the operation to be per-
formed is non—trivial (as it is the case in the examples given). Pixel access —
of course — may not be programmed by virtual function calls. This would slow
down processing too much. Instead, the concept of genericity is used here (pro-
vided by templates in C++). Safe and efficient pixel access without any run—time
overhead is provided as described in [25]. The application in Sect. 4.2 shows that
real-time processing is possible using this approach.

3 Modules of ANIMALS

Various modules are provided in ANIMALS which were implemented for sev-
eral applications. Since all segmentation algorithms use the common interface
by segmentation objects, the compatiblity is high. This flexibility first requires
additional effort for portable software. On the long run it reduces the effort of
software maintenance.

3.1 Sensors and Actors

Due to the variability of the used hardware, several frame grabbers, cameras,
lenses, stereo devices, etc. are connected to the system. In order not to burden
the programs by a large number of switches, all these devices are encapsulated as
classes. Whereas the internal implementation may be sophisticated and thereby
provides the required performance, the user interfaces for these classes are simple
in C++. To give an example, the stepper motor objects can all be assigned the
desired position by the assignment operator in C++; thus, the vergence axis of
the stereo head has the same software interface as the pan axis of a surveillance
camera.

Calibration of zoom lenses is a complex problem since the motors used in
consumer cameras will not always lead to accurate postitions. For the object
localization system in Sect. 4.1 we need the enlargement factor related to a
given position of the zoom stepper motor. The calibration according to [39] is
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Figure 3. Logarithm of local enlargement factors and estimated enlargement factors

hard to do fully automatically, since a calibration pattern has to be chosen that
is visible and that provides stable segmentation data for all possible focus and
zoom settings.

In a simple approach we investigated the enlargement for two slightly differ-
ent zoom settings for arbitrary lines in an image which are defined by two cor-
responding points, each. The corresponding points are found by tracking color
points (Sect. 3.5) during zooming. To compute the factor from the smallest focal
length to a given position, all intermediate results have to be multiplied. Natu-
rally, this approach is not very stable since local errors accumulate. We took
the logarithm of the factors and approximated these values by a regression line
(Figure 3 (left)). The enlargement factors are computed by the exponential func-
tion (Figure 3 (right)). This provided reasonable accuarcy in the experiments in
Sect. 4.1.

The results of this algorithm are recorded together with the camera object.
Persistent storage of this object records all available calibration information.

3.2 Color

Most algorithms in ANIMALS operate on color images as well as gray-level
images. Color provides simple cues for object localization since it is not very
sensitive to aspect changes. Color histograms are used in [35] to form hypotheses
for the position of an object in the two—dimensional projection in an image. A
color image [fij]lgigM,lgjgN is searched for an object which is characterized
by its histogram T = [I}];=1...r in some quantization L. In addition, the
approximate size of the object in the image is needed for the algorithm; this
size is represented by a mask. D, covering the object. The function h maps a
color vector f to an index [ = 1...L in the histogram and thus permits to use
arbitrary quantizations. The principle of the algorithm is shown in Figure 4.
The histogram H of the image is used to produce an output image B of the size
of the input image; internally, an intermediate image A of the same dimension
is used.



Given: image histogram T' = [T}];=1..., of an object,
Wanted: object position (i, j:)
Compute color histogram H = [H;];—;...1, of given image
FOR Each bin ! € {1,...,L}
|Rl = min{%’l, 1} (compute ratio histogram R = [R;];=1...1.)
FOR All positions (7, 7) in the image
Mi,j = Rh(f,- )’ where f, ; denotes the color vector at position (4, 7)

B := D, x A, where * denotes convolution
(¢, J¢) := argmax; ;(Bi ;)

Figure 4. Localization of objects by histogram backprojection according to [35].

Color histograms for different color spaces are again represented as classes.
Backprojection is a method of a common base class for these histograms. This
means that the algorithm in Figure 4 can mostly be programmed as it is shown in
the mathematical notation, which does not mention any particular color space.

3.3 Statistical Object Recognition

In a Bayesian framework for 3-D object recognition using 2-D images [1,
19], statistical model generation, classification, and localization is based on
projected feature vectors O. We assume that the image [f; jli<i<mi<j<n is
transformed into a segmentation object of two—dimensional feature vectors
O = {0y € R?*|1 < k < m} consisting of points (e.g. corners or vertices) or
lines which can be detected by several combinations of segmentation operators
from the class hierarchy shown in Figure 2, e.g. by the operator EdgeToSegOb)j.
Results are shown in Figure 5. Model densities of 3-D objects appearing in im-
ages embody three principal components: the uncertainty of segmented feature
vectors, the dependency of features on the object’s pose, and the correspondence
between image and model features. Due to the projection of the 3—-D scene to
the 2-D image plane, the range information and the assignment between image
and model features is lost. The statistical description of an object belonging
to class {2, is defined by the density p(O|B,, R,t), and discrete priors p({2,),
1 < k < K, if only single objects appear, or p(f2,, 2,,..., {2, ) for multiple

%
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Figure 5. Object (left) segmented to lines and vertices (center) and points (right)



object scenes; the priors for the occurrences of an object are estimated by their
relative frequencies in the training samples. The parameter R denotes rotation
and projection from the model space to the image plane; ¢ denotes translation.
The parameter set B, contains the model-specific parameters which model the
statistical behavior of features as well as the assignment. In the special case of
segmented point features, B, statistically models the accuracy and stability of
the object points.

Let us now assume that the parametric density of the model feature c, 4,
corresponding to o, is given by p(ck i, |@x,, ), where a, ;, are the paramters for
the density function of the feature ¢, . A standard density transform results in
the density p(og|as,,, R,t) which characterizes the statistical behavior of the
feature o, in the image plane dependent on the object’s pose parameters.

Using the robot or a camera mounted on some actor we record a set of images
where the parameters R and ¢ are known from calibration. For a segmented point
it can be tested statistically, that a Gaussian distribution adequately models the
features. The unknown parameters of the model density can be estimated by
a maxium likelihood estimator. For object recognition and pose estimation, the
parameters R and ¢ are unknown as well and have to be estimated. Optimization
classes (Sect. 3.8) were developed for this application [19].

Experimental evaluations compared standard methods for pose estimation
with the introduced statistical approach. The statistical pose estimation al-
gorithm requires 80 sec. using global optimization; to compare, the alignment
method [37] needs 70 sec. in average on an HP 735. On a smaller sample of 49
images, the correct pose is computed for 45 images with the statistical approach;
the alignment method failed for 11 images. In a test based on 1600 randomly
chosen views of objects, the recognition rates for the statistical approach were
in the range of 95% for 2-D recognition.

In another approach [27] we recognize objects directly by appearance-based
statistical models of the image data. The approach can handle gray-level, color,
and depth images as well as combinations of them.

3.4 Point Tracking

The basic idea in [34] is to select those points in a sequence of gray—level im-
ages, which exhibit features for stable tracking. Thereby the two questions which
were formerly posed independently, are now combined to one problem: the ques-
tion which points to select and how to track. The method minimizes a residue
defined for a given window by approximating the image function with the spatio—
temporal gradient in the Taylor expansion. By applying this method iteratively,
the displacement is determined in sub—pixel accuracy.

We extended this differential method defined for real-valued image functions
to vector—valued ones by substituting the gradient by the Jacobian matrix. An-
other extension to the original method is to restrict the search space of correspon-
denced only to an orientation assuming pure translational camera movement. In
this case the Jacobin matrix is substituted by the directional derivative for the
orientation vector of the epipolar line; this line links each pixel to the epipole.



For both extensions the criterion for tracking has been adapted. The use
of color values shows, that more points can be selected and the tracking is
more stable. In the case of restricted search space, the criterion results in a
large gradient in the search direction. Therefore a huge number of points can
be selected. We found that better and more robust tracking is possible in RGB
than in an perceptually motivated color space or in gray—level image sequences;
the number of points lost during tracking in RGB is more then 20% smaller
than for gray-level images [1].

3.5 3-D Reconstruction

The module in Sect. 3.4 can be used to recover 3-D information. A camera
mounted on a linear sledge is moved horizontally to record a sequence of images.
Since points are tracked, no such correspondence problem as in stereo vision has
to be solved explicitly. Instead, the regression line through the trajectory of a
point determines its disparity. The regression error can be used as a measure
for the certainty of the disparity value. The reliability of the range value is
proportional to the disparity multiplied by the reliability of the disparity. The
algorithm accepts an abstract point tracking operator (object), i.e., the same
algorithm can be used for gray—level as well as color images.

3.6 Knowledge Base

In Sect. 3.3 we represented single objects by model densities. Alternatively, struc-
tural knowledge about scenes, object, as well as actions and strategies can be
represented in a semantic network. Semantic networks have been applied suc-
cessfully e.g. in [21,22,24] to pattern analysis problems. They provide an intu-
itive formalism for the representation of objects and facts which are required for
computer vision. Our goal is to continue the work on knowledge representation
concerning the semantic network formalism ERNEST [1,24] by the integration
of camera actions into the knowledge base. We also re—use the existing con-
trol algorithms for the semantic network. Alternative solutions for the explicit
representation of actions are e.g. and—or trees [14] or Bayesian networks [32].
Using the notation and structure defined in [23,33], a semantic network is
a directed acyclic graph consisting of nodes and labeled edges. The nodes are
concepts composed of attributes. They are used for the representation of objects
and camera actions. The edges denote specialization which implies inheritance
of attributes, part—of relations, and the concrete link which links entities of a
different level of abstraction. Since image processing is never exact, all entities in
the semantic network have an attached judgment which measures the degree of
certainty. The judgment values are used to guide an A* graph search algorithm.
The expansion of nodes in the search tree during analysis follows six inference
rules [33], i.e. the control works independently of judgment functions and of the
particular semantic network used in an application. Alternative possibilities for
control strategies such as Markov decision processes are discussed in [12]; we also
provide a second control algorithm called “parallel iterative control” [13].



Computer vision can be seen as an optimization problem which searches for
the best match of segmentation data to the objects in the knowledge base and
chooses optimal camera actions. A state search by A* thus is appropriate to
solve this problem.

Figure 6 shows a typical semantic network. The lower part of the network con-
tains objects which are used in the application in Sect. 4.1. The gray—shaded ovals
represent different camera actions where each competing action (direct_search for
a search without intermediate object [14], punch_besides_gluestick for a search for
a punch using the intermediate object glue stick, ...) is linked to the concept
explOfficeScene by competing part links; the control resolves these alternatives
which are collected in so—called sets of modality (see [24] for details), i.e. for each
alternative a new node in the search tree is generated during analysis. Concrete
links relate the camera actions such as e.g. direct_search to the knowledge on
objects. An instantiation of the concept direct_search calculates a new value for
the attribute “pan position”. The same holds for punch_besides_gluestick. Both
instances have associated judgments, which are now used by the control in com-
bination with the judgments of the scene knowledge to select the next search
tree node for expansion. A subsequent instantiation of explOfficeScene using the
higher judged camera action yields a camera movement to the position stored in
the pan attribute. After this movement, new instances for the concepts represent-
ing the scene knowledge (colorRegion, punch ...) are generated. If the judgments
of these concepts get worse, the search tree node which contains the instance
of the other camera movement becomes the node with the highest judgment in
the search tree. Therefore this node is selected by the control for expansion,
which causes a second instantiation of the concept explOfficeScene. During this
instantiation the other camera movement is performed.

The implementation, naturally, provides classes for all major items in the
semantic network. A formal language definition is used to generate a parser
and code generator which creates C++ code from the knowledge-base definition.
Two control strategies can be tested on only one (unchanged) knowledge base
definition. The classes involved here are an abstraction of the analysis procedure
which is seen as a sequence of analysis states.

3.7 Active Contours and Active Rays

A simple and thereby powerful method for fast object detection and tracking
is based on active contours or snakes [20]. A number of control points has to
be chosen which define a parametric curve around an object. From an initial
estimate, an energy minimization process contracts the contour to the object. To
track moving objects, this step is repeated over time, in combination with some
prediction mechanism to introduce some coherence of the contour movement in
time [7].

In [1,7] we proposed the notion of active rays which can also be used for
the description of an object’s contour; this reduces the 2-D contour extraction
problem of active contours to a 1-D one. In this case, rays are cast in certain
directions from an initial reference point inside the contour. The image is sampled
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Figure 6. Combined representation of actions and objects in a knowledge base

along each ray. The contour points are now located in 1-D signals, i.e. the
sampled image date on each ray. Similar to active contours, an internal and
external energy is defined. The contour is extraced by minimizing the sum of
these energies. In contrast to active contours, the energy minimization now takes
place only along 1-D rays to attract points on each ray to the estimated object
contour. The coherence in space of the contour is forced by the internal energy.
Both ideas, active contours and active rays, are naturally represented as classes
and share many lines of code.

Compared to active contours, there are several advantages of active rays for
real-time applications: first, due to the representation of the contour points, pa-
rameterized by an angle defining the direction of each ray, neither any crossing
can occur in the contour nor the contour points can move along the contour of
the objects. Thus, prediction steps can be robustly applied. Second, an any—time
algorithm can be defined which allows for an iterative refinement of the contour
depending on the time which is available for each image. This is an important
aspect for real-time applications. Third, textural features can be efficiently de-
fined on 1-D signals, to locate changes in the gray—value statistics, identifying
borders between two textured areas. This is a computational expensive task for
active contours due to the independent search in the 2-D image plane [31]. Fi-
nally, an efficient combination with a 3-D prediction step is possible by using a
similar radial representation of 3-D objects [8]

A complete object tracking system, called COBOLT (contour based local-
ization and tracking, [7]) has been implemented in the ANIMALS framework



to evaluate the new approach in the area of real-time pedestrian tracking in
natural scenes [9]. A pan—tilt camera is looking on a place in front of our insti-
tute. A motion detecion module detects moving objects and computes the initial
reference point for active rays. The tracking module computes for each image
the center of gravity of the moving pedestrian by using active rays and changes
the settings of the axes as described in Sect. 3.1 to keep the moving object in
the center of the image. In five hours of experiments under different weather
conditions, in 70% of the time tracking was successful. On an SGI Onyx with
two R10000 processors, 25 images per second could be evaluated in the complete
system which summarizes the image grabbing, tracking and camera movement.
For contour extraction alone using 360 contour points, approximately 7 msec.
are needed per image.

3.8 Optimization

The solutions of the optimization problems outlined in Sect. 2.1, Sect. 3.3, and
Sect. 3.7 require that several strategies for optimization are evaluated. The re-
sults of the individual algorithms, the sequence of the operations, and the setting
of the camera parameters, each is included in the optimization process.

Probabilistic optimization routines which allow practically efficient solutions
for object recognition are discussed in [19]. Again, a class hierarchy for optimiza-
tion strategies similar to the operator hierarchy above simplifies the experiments.

The basic idea of the implementation is to program the algorithms inde-
pendently from the function which is to be optimized. An abstract base for all
optimization strategies has an internal variable which is the function to be op-
timized; the class provides a method for minimization or maximization to all
derived classes.

All optimization algorithms can be divided into global and local procedures;
additional information may be present such as e.g. the gradient of the function
which yields another class in the hierarchy. Procedures which use the function
directly are e.g. the combinatorial optimization, the simplex algorithm, or the
continuous variant of the simulated annealing algorithm. The gradient vector can
be used for the optimization of first order. Examples are the iterative algorithms
implemented in [19], the algorithm of Fletcher und Powell, and the well known
Newton—Raphson iteration. The interface to the optimization classes simply
accepts vector objects of real numbers and does not impose any other constraints
on the parameters other than an interval in the case of global optimization. The
computation times measured in [19] for the optimization classes were around one
minute for 10000 calls to the function to be optimized.

4 Examples and Applications

4.1 Active Object Recognition

The goal of our major example in the context of this article is to show that a
selection of the modules presented in Sect. 3 can be combined to build a system



that locates objects in an office room. In [38] colored objects are located without
prior knowledge; the image is partitioned and searched in a resolution hierarchy.
The system here actively moves the camera and changes the parameters of the
lens to create high resolution detail views. Camera actions as well as top-level
knowledge are explicitely represented in a semantic network; the control algo-
rithm of the semantic network used to guide the search is independent of the
camera control. Knowledge on objects is represented in [11] by a hierarchical
graph which could as well be formulated as a semantic network; the viewpoint
control described there is part of the control algorithm for evaluating the graph.
In contrast, [30] uses Bayesian networks to represent scenes and objects. Evi-
dence gathered during analysis determines the next action to be performed which
can be either a camera action or a new segmentation.

Real-world objects (e.g. a tape roller Figure 5, a glue stick and a punch
Figure 7 right) are used in our experiments. The objects occupy only few pixels
in the wide—angle views captured initially (Figure 7 left); they are presented
to the system first isolated from the background; their color histogram for the
current lighting is recorded. The approximate size of the object is stored in the
semantic network manually in advance. This simple object model is sufficient
to discriminate the objects in this example. The formalism used as well as the
control structure allows for arbitrary other object models, such as for example
aspects as applied in [11]; such a model will be simple for the object Figure 5
(left) but will be complex in the case of objects such as the punch in Figure 7
(right). Hypotheses for object locations in the scene are generated based on color
using the algorithm outlined in Sect. 3.2. Results are shown below in Figure 9 for
the object from Figure 5. An evalutation of six color normalization algorithms
in [6] on 20 objects including those in Figure 5 and Figure 7 (right) revealed
that the choice of the best color normalization algorithm with respect to object
localization depends on the particular object. In most cases, UV histograms
performed better than RGB.

The pan-tilt unit mounted on the linear sledge is moved to estimate 3-D
information using the ideas outlined in Sect. 3.5; we compute a set of scattered
3-D points. The focal length is known from calibration (Sect. 3.1). A result is
shown in Figure 8; neither the accuracy nor the number of points is sufficient to
estimate 3—-D surfaces of the objects.

The subsequent goal now is to fovealize each object hypothesis and to ge-
nerate close—up views. This is required since for the object’s size in the overview
image no stable features based on segmented regions can be detected. Figure 7
shows an overview of the scene captured with minimal focal length. Figure 7
shows three hypotheses in the close—up view. First, the pan—tilt unit is rotated
such that the optical axis of the zoom lens points to the hypothesized object
position estimated from the backprojection. From the 3-D information and the
approximate size stored in the knowledge-base we can now estimate the zoom
position which is appropriate for a close—up view of the object. In [40, p. 45]
three methods are listed to do fovealization technically. The method above using
a pan-tilt device on a linear sledge adds a new fourth method to this list.
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Figure 8. Two projections of 3-D points for Figure 9. Backprojection of red ob-
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The segmentation of color regions on the detail view of the scene now uses
the color segmentation mentioned in Sect. 2.3 and passes these regions to the
knowledge-based analysis module; they are collected in a segmentation object
attributed by the focal length, distance to the camera, and reliability of the
depth value. Results are shown in Figure 10.

The goal of the module for object verification is to find an optimal match
of segmented regions in the color close—up views and the gray ovals in Figure 6.
The search is directed by the judgment of the concept officeScene which is the
goal concept for the subgraph of gray ovals in Figure 6. For the computation
we use the attributes, relations, and their judgments in the parts and concrete
concepts. In the concept colorRegion we use the Euclidian distance of the mean
color vector to a prototype of the color red which is determined by the mean of a
histogram, previously. The color space is the intensity—normalized RG B—space.

The similarity of regions for the concepts punch, adhesive_Tape, and gluestick
is computed by the attributes height and width of the objects and thus — in the
current implementation — depends on the aspect. An extension is envisaged in



Figure 10. Segmentation of object hypotheses; shown in Figure 7 (right).

combination with the project in Sect. 3.3. The actual scale is determined by the
3-D information computed in Sect. 3.5.

For the search during matching of the regions we use an A* control [23] for
the graph search which computes an instantiation path through the network.
The concepts are then instantiated bottom—up in the order determined by the
path. This means, that no restrictions are propagated during the analysis. The
judgment of the nodes in the search tree is equal to the judgment of the goal
concept; all judgments of non-instantiated parts are set to one as long as the
goal concept is not reached, in order to guarantee an optimistic estimate. The
computation of the judgment is deferred to computations of judgments for con-
cepts which in turn use their attributes. The similiarity measure for color regions
influencing the judgment is part of the task specific knowledge and can thus be
exchanged easily.

In 17 experiments for evaluation of this application we used the punch, glue
stick and two tape rollers of identical shape but different size; thus object identi-
fication based only on color was not possible. The data driven hypotheses located
77 of 97 objects correctly. To restrict the size of the search tree to 300-600 nodes,
we presently use a heuristic judgment function which weights regions of the ob-
ject’s color higher than regions of other colors. The rate of correct verifications
of the hypotheses is around 70%. This figure includes the frequent confusions of
stapler with the large tape. If we leave this object out, the recognition rate is
around 80%. The total time for processing is around 2 min. for one scene on an
SGI 02 (R10000, 195 MHz). Large parts of this time are spent for the color seg-
mentation, backprojection, and waiting for the camera to reach a stable position.
The convolution in Figure 4 was replaced by a 21 x 21 median filter to obtain
good local maxima which needs several seconds per image to be computed.

4.2 Autonomous Mobile Systems

Autonomous mobile systems ideally can be used to integrate different aspects
of computer vision into one common application. In the project DIROKOL? a
service robot will supply employees in hospitals by so—called fetch and carry ser-
vices. The system is equipped with a couple of classical robotic sensors (sonar,

2 The project is funded by the Bavarian Research Foundation (Bayerische
Forschungsstiftung).



Figure 11. Left: Sample landmark defintion. Right: Confusion matrix of the positions
during a movement through our lab showing the quality of self-localization. Dark areas
indicate high correspondence between two positions. Bars indicate turning points.

infrared, etc.), a four finger hand [3] mounted on a robot arm, and with a stereo
camera system for visual navigation, object recognition and active knowledge—
based scene exploration. Similar to the application described in Sect. 4.1 seman-
tic networks are used. The complexity of dynamic scenes in autonomous mobile
systems applications makes it necessary, to apply probabilistic knowledge rep-
resentation schemes (Markov models, dynamic Bayesian networks) as well. For
these approaches it is more natural, to acquire knowledge during a training step
automatically. The goal for the future is, to combine the classical approach of
semantic networks with probabilistic representation schemes to have both, a
hard—wired explicit knowledge base and an adjustable, trainable part, especially
for the active components in an active vision system.

Actual work on probabilistic methods in this context has been performed on
automatic natural landmark definition and localization with application to vi-
sual self-localization based on stochastic sampling [10]. The landmark definition
is based on color histograms (Sect. 3.2) which has been extended to contain ad-
ditional information on the distribution of the pixels position of a certain color
bin as in [17]. The extented color histogram is implemented by re-using code
of the classical histogram by deriving a new class with additional information
about the distribution in the image plane of pixel falling into a certain histogram
bin.

The experiments have shown, that on average 4.2 landmarks (variance: 11.19)
have been automatically defined for each position (see Figure 11, left). With these
landmarks self-localization by a stochastic sampling have been evaluated. The
computation time for landmarks definition and self-localization is 230 msec. and
14 msec. for 100 samples, respectively. In Figure 11, right, results are shown by
using a confusion matrix of the positions in our laboratory. As expected, the di-
agonal of the matrix has many entries, indicating a good self-localization ability.
Also, similar positions seen during the movement are recognized (dark entries



on certain side diagonal elements). It is worth noting, that these results are only
based on color histograms without any 3D knowledge or other active sensors.
Actually neither dependencies between landmarks seen at a certain position nor
context in time is taken into account. This is done in our actual work.

5 Conclusion and Future Work

Most knowledge—based systems in computer vision represent only objects or
scenes in the knowledge base. Here, an approach to represent actions and strate-
gies in the same formalism was presented. This will be most important in active
vision and for autonomous systems.

We described our system architecture for active image understanding which
is implemented in an object—oriented fashion. Classes and objects encapsulate
data, devices, and operators as well as the knowledge base. The applications
presented make use of a subset of the modules and prove that the approach is
feasible for knowledge-based analysis as well as real-time processing. We ar-
gued that this programming paradigm simplifies solving image analysis tasks.
Object—oriented programming is preferred to genericity for hierarchies of oper-
ator classes; assuming that the task of an operator is not trivial, the overhead
imposed by this implementation scheme is negligible. Genericity is used for reg-
ular data structures such as for pixel access in image matrices.

In our application for active object recognition and scene exploration, we
used a knowledge base represented as a semantic network of camera actions
and object models. In our application for autonomous mobile systems, color was
used for landmark detection as a first stage of knowledge—based navigation and
operation. Both applications share various modules for image processing and
analysis.

More modules exist in our system which can be combined with the systems
described in Sect. 4. To give an example, one of the color normalization al-
gorithms described in [6] will be selected for each object in the application in
Sect. 4.1; this selection will be annotated to the object in the knowledge base.
Moving objects in an object room will be tracked using the methods of Sect. 3.7
after they have been localized. An integration of statistical models (Sect. 3.3)
and semantic networks (Sect. 4.1 [19,27]) will be used for holistic object recogni-
tion as in [21]. These models are invariant of the aspect. To apply our appearance
based statistical method (Sect. 3.3 [27]), a fixed size of the object within the im-
age is required. Therefore, we need exact knowledge about depth to zoom to
the appropriate size. The changing perspective distortions at different object
distances are neglected.
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