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Abstract

View planning for three-dimensional (3D) reconstruction and inspection solves the
problem of finding an efficient sequence of views allowing complete and high quality
reconstruction of complex objects. To fulfil this task, view planning methods need to
deal with sensor limitations and satisfy predefined goals. Our objective is to jointly eval-
uate accuracy requirements and coverage during planning, to optimise the reconstruction
procedure, as well as to explicitly take configuration space constraints into account.

We present a novel model-based approach, which at the same time optimises ac-
curacy and coverage based on an existing model (e.g. CAD or preview scan). For accu-
racy optimisation we extended the statistical E-criterion to model directional uncertainty.
Coverage is maximised while taking configuration space and sensor characteristics into
account. We validate our approach through experimental evaluation using the Next-best-
view (NBV) benchmark framework and a robot mounted stereo fringe projection sensor.

1 Introduction
Multi-View Planning (MVP) is a key problem for high fidelity 3D inspection and object
reconstruction. Given a CAD model – or coarse 3D scan, or time of flight (TOF) 3D scan
– of the object, MVP determines a set of views. One important aspect is to find a minimal
number of views that allow for complete object reconstruction. Additionally, for high fidelity
scanning aiming at “scanning precision of a few tens of microns at a density of many samples
per square millimeters” [10], an upper bound for reconstruction error is crucial.

In this paper we present a novel model-based MVP approach, which models measure-
ment uncertainty additionally to coverage. First, Scott’s fundamental 3M approach [10]
is adapted to deliver higher coverage for complex measurement objects in the presence of
noteworthy configuration space (CS) restrictions (Section 3.1). We then introduce an uncer-
tainty estimation scheme. Using this prediction, we extend the E-criterion [13] to determine
viewpoints that minimise overall reconstruction uncertainty. Our paper’s contribution is the
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accuracy optimising MVP approach using the extended E-criterion, simultaneously taking
uncertainty and coverage into account (Sec. 3.2). Finally, we evaluate different planning
methods using the benchmark object and scheme from [5] (Sec. 4).

2 Literature Review
For an in-depth view planning survey, see Scott et al. [11]. For brevity, we focus on model-
based methods. While Tarbox’ and Gottschlich’s [12] approach was limited to viewpoint
candidate creation on a view sphere around the object, they introduced the concept of com-
plete visibility analysis over the object’s surface. Using the resulting visibility matrix, they
capitalised on the isomorphism of the view planning problem to the set covering problem.
Scott [10] further developed this method by creating arbitrary generalised viewpoints in an
optimal scanning zone. Furthermore, he systematically analysed the required sensor per-
formance model, included rotations about the sensor’s optical axis into the view planning
process and evaluated sensor pose uncertainty effects and countermeasures. Roberts et al.
[9] maximise object visibility by searching for maximally connected subgraphs in a graph
representation, where nodes representing object faces are connected, if they are visible from
a common point. Chen et al. [2, Chapters 4 and 5] use a genetic algorithm to maximise vis-
ibility using viewpoints on a sphere, while satisfying important constraints (e.g. resolution,
viewing angle, reachability).

The extension of the statistical E-criterion to NBV planning was recently introduced by
Trummer et al. [13]. However, they perform an online path planning for a 3D reconstruction
approach without active illumination, neglecting visibility and positioning constraints. Fur-
thermore, their current approach explicitly tries to reduce the single greatest uncertainty of
the current object model.

Munkelt et al. [5] proposed a benchmark method and test object for view planning. Us-
ing the benchmark procedures, one can quantitatively compare the results of different view
planning approaches in terms of coverage, reconstruction error, and average point distance.

3 Multi-View Planning
Contrary to NBV planning, MVP requires a model of the object to be scanned. But the added
complexity of providing a suitable model – either through a coarse scan using the same sen-
sor [10], a CAD model or time-of-flight online 3D scan [6] – enables the generation of more
efficient view plans. Primary application areas are e.g. high fidelity scanning of complex ob-
jects and quality inspection of multiple, similar objects. Simulated and experimental results
underline, that our method’s overhead in computation time and model creation effort can be
justified by the resulting higher coverage and accuracy, or shorter view plans, respectively.

In contrast to the majority of planning approaches, we model viewpoints v as generalised
viewpoints. Consequently, v consists of sensor pose and a set of controllable sensor param-
eters [7, 10]. This also implies, that viewpoints v are not restricted to e.g. a view sphere.

3.1 Enhanced Coverage Using Adaptive Viewpoint Generation
Our method’s basic principle follows Scott’s measurability matrix approach (3M) [10]. This
involves generating “ideal candidate generalized viewpoints” (based on object and sensor
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model) and calculation of a binary matrix describing the measurability of each model point
or triangle from each viewpoint candidate. This representation allows the determination of
a minimal set of viewpoints (view set) scanning the whole models surface by mapping the
problem to the one of minimal set cover (MSC, see for instance [3, pp. 1033 – 1038]).
Finally, a view plan is derived from ordering the view set by e.g. previously unknown area
scanned. For further details please refer to [10].

For complex objects, analysis of the 3M viewpoint candidate creation scheme reveals
some limitations. Candidates generated for surfaces in concavities may not be able to scan
the target surface they originally were created for. Furthermore, optimal, yet unreachable
(due to CS constraints) candidates may be created. While the 3M method handles object self
occlusion and sensor positioning constraints in practice reasonably well, we improved the
planners performance for complex measurement objects by an adaptive viewpoint genera-
tion.

Self Occlusion The original approach created ideal viewpoints for a model triangle s by
dilation along the surface normal n by the optimum scanning range Ro. This fails for many
technical measurement objects containing structures such as notches. Often unfeasible view-
points due to self occlusion by the object are produced. If we detect such occlusions during
viewpoint creation, we search for optimal feasible positions v′.

Configuration Space The original approach handled restricted CS by viewpoint filtering.
As Scott mentioned, the advantages of ideal viewpoint creation are negated by excessive
mobility constraints. However, practical inspection systems for large objects typically have
significant mobility constraints. If we detect viewpoint candidates outside the CS, we also
search for optimal feasible positions v′.

Adaptive Viewpoint Generation In searching a feasible solution v′ for an unfeasible
viewpoint v, we want an alternative viewing direction with small angular error compared
to v. Optimal alternative viewpoint candidates for a model triangle s lie on a half sphere
around s with radius Ro in surface normal direction. On this sphere, candidates on the same
longitude share the same angular error. Longitudinal equiangular spaced candidates on a de-
scending spiral around this sphere, starting at the pole, can be generated using a loxodrome
(or rhumb line, see [1]). If such an alternative passes the self occlusion and CS tests, a feasi-
ble solution is found. Otherwise, no viewpoint for s is created. Due to incomplete sampling,
s may still be visible from other viewpoints (this is the standard situation for unfeasible
viewpoints in the original approach).

3.2 Accuracy Optimisation Using an Extended E-Criterion
Most view planning approaches aim for complete acquisition of the measurement object.
If quality is a concern, they aim for orthogonal surface scanning. An object’s surface s is
assumed to be scannable, if a sensor pose exists, where s can be scanned in compliance to the
specification. Popular example is grazing angle threshold, ensuring that s is scanned under a
smaller angle between surface normal and viewing direction than e.g. 70◦. Other tests may
check sampling density, contrast, and other. Once a surface is (even poorly) scanned, further
scanning quality improvement is often not aimed for (except e.g. [4]).

For high fidelity scanning we propose to include either an average or maximal measure-
ment uncertainty requirement into MVP. We therefore expanded the scope of Sec. 3.1’s
view planning system beyond coverage, to model accuracy as well. By directly modelling
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uncertainty during view planning, a more accurate statement about the expected surface’s
scanning result than “scannable, exceeding minimal scanning requirements” can be made.

3.2.1 Directional Uncertainty Estimation

In order to extend the offline, MVP approach, the planner must be able to predict the mea-
surement uncertainty. This also holds true for a posteriori evaluation of scans from recon-
struction methods without dense explicit point correspondences between different views.
Therefore we a priori calibrated a model of the sensor’s measurement characteristic.

To this end, the sensor was positioned orthogonally in front of a plane at the distance of
the optimal scanning range Ro. While enforcing identical measurement conditions, multiple
scans are taken. Using identical object points along the sensor’s boresight, the sensor’s char-
acteristic covariance matrix Σc in standard position can be calculated.

Assuming normal distribution, Σc defines an equiprobable curve of measurement un-
certainty. Using eigen decomposition of Σc, we obtain eigenvalues λ

(1)
c ≥ λ

(2)
c ≥ λ

(3)
c and

corresponding perpendicular eigenvectors ξ
(1)
c ,ξ (2)

c and ξ
(3)
c , which can be used to visualise

Σc as an ellipsoid. In accordance with the known E-criterion from statistics [8], Trummer
[13] formulated an extended E-criterion as sensing perpendicular to ξ

(1)
c , the direction of the

largest uncertainty.
In order to apply this idea to offline MVP, it is necessary to solve two problems. Given a

surface triangle s, its normal n and an arbitrary viewing direction vi, we first must calculate
the corresponding covariance matrix Σi for scanning s from viewpoint vi. Second, covariance
matrices from different scans of s have to be combined to yield Σn, the joined covariance
matrix for surface s after n scans.

Calculating Σi First, using rotation matrix Svi , we rotate ξ
(1)
c ,ξ (2)

c and ξ
(3)
c , so that ξ

(1)
c

aligns with vi:
Q = ξ i = RviSvi ξ c , (1)

where Rvi rotates ξ c according to φi, the sensors roll angle around viewpoint vi’s boresight.
Utilising the covariance matrix’s symmetry and positive semi-definite properties, we con-
struct Σi by Eq. 2, where Λ is the diagonal matrix of eigenvalues λ c:

Σi = QΛQT . (2)

Calculating Σn For one model surface triangle s we now have i predicted covariance ma-
trices Σi from different viewpoints vi. Since all observations of s are modelled to share the
same mean, we can use the average of the Σi to obtain the cumulative covariance matrix Σn:

Σn =
1
n

n

∑
i=1

Σi . (3)

In analogy to the standard error of the mean, defined as SE = σn/
√

n, we now define SE
Σn

to both a priori evaluate the predicted measurement uncertainty of a candidate view set, as
well as a posteriori evaluate the computed view set:

SE
Σn

=
σn√

n
≡

√
λ
(1)
n√
n

. (4)
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3.2.2 Extended E-Criterion

For scans from arbitrary viewpoints vi measurement uncertainty rises, if the ideal scanning
conditions during determination of Σc are not met. Therefore we have to adapt Σi accord-
ingly. We chose to focus on incidence angle, focal depth and sampling density. For typical
cooperative surfaces with lambertian reflectance, fringe contrast correlates strongly with in-
cidence angle, so we did not consider it separately. Combined with Scotts approach, we
thereby take 8 of 9 sensing constraints from [2, chapter 4] into account. Furthermore, we
calculate optimal viewpoint candidates vn

i , depending on current scanning progress after n
views, the triangles surface normal n, and the sensor’s configuration space.

Quantitative Uncertainty Estimation In Sec. 3.2.1 we estimated the uncertainty’s direc-
tion. To adapt to different levels of uncertainty arising from arbitrary measurement situations,
one can scale the eigenvalues λ c accordingly. With incidence angle being the most promi-
nent quality criteria [4, 7, 9, 10], we divide λ c by fia (n,vi), the minimum of dot products
between the ray from surface s to the sensor’s emitting and receiving sub components (like
projector or cameras) at viewpoint vi, and the triangle’s surface normal n. For focal depth,
we divide λ c by the weighted difference d f d between the distance ds,vi from s to viewpoint vi
and the optimal scanning range Ro. The weighting function f f d

(
d f d
)

is a sensor specific, ex-
perimentally parameterised bell-shaped function, which is 1, if d f d = 0, and approximately
0.6 at the near focal distance. Finally, sampling density can be modelled as linearly decreas-
ing with distance ds,vi . Thus we scale λ c linearly with the associated weighting function
fsd (ds,vi) (slope sensor specific). In summary, λ i can be calculated as follows:

λ i =
fsd (ds,vi)

fia (n,vi) · f f d
(
d f d
) λ c . (5)

We use λ i in Equation (2) to calculate the adapted covariance matrix Σi. Using Eq. (3), we
can calculate Σn, which in turn yields v1 = ξ

(1)
n , the direction of the largest uncertainty.

E-Criterion Optimal Viewpoint Generation According to Trummer et al. [13], the op-
timal viewpoint for a given covariance estimation Σn is perpendicular to v1. This notion
defines an optimal view plane πs (X) : vT

1 (X− s) through e.g. the centre of gravity of trian-
gle s, in which E-optimal viewpoints reside. The viewpoint with optimal viewing direction
oE regarding both E-criterion and incidence angle is the one with minimal angle to the trian-
gle’s surface normal n:

oE =
o′E∣∣o′E ∣∣ , with o

′
E = n− nTv1

vT
1 v1

v1 . (6)

However, the more similar λ
(1)
n and λ

(2)
n are (the error ellipsoid exhibits increasingly spheroid

properties), the less descriptive is the E-optimal viewing direction oE , and the more impor-
tant is the surface normal n. To this end we calculate optimal viewing direction o as a
weighted linear combination:

o = −(wnen+(1−wne)oE) , (7)

with wne =

√
λ
(2)
n /λ

(1)
n the weight with regard to the ellipsoid’s eccentricity. The resulting

optimal viewpoint candidate v for surface triangle s is then computed by dilation along o by
the optimum scanning range Ro. If unfeasible, v′ is created according to Sec. 3.1.
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Figure 1: Left: Weighting of standard error SE
Σn

for balancing between (a) accuracy and (b)
completeness. Right: Visualization of the NBV test object’s model evaluation after 3 views
(lower uncertainty depicted by brighter shading).

3.2.3 Iterative View Plan Calculation using the Extended E-Criterion

To summarise, given an object’s model and uncertainty information, we can calculate opti-
mal viewpoints v for surface patches s. If a scan of s is performed from its derived v, the
largest uncertainty component associated with s is minimised. The object model is not lim-
ited to an appropriately processed CAD model, it can be as well a rough explorative scan
or even a partial object model of the scanning progress so far. However, if a CAD model is
available, multi-view planning can maximise completeness while limiting maximum mea-
surement uncertainty to a certain level. In NBV approaches, exploring the scene generally
involves suboptimal surface scans.

For model-based multi-view scanning, we start by calculating the initial viewpoints for
all model triangles. Then we perform the measurability matrix calculations as in Scott’s
approach. Subsequently we calculate for each viewpoint and for each model triangle it’s
estimated cumulative covariance matrix Σn (Eq. 3) and corresponding standard error SE

Σn
(Eq. 4). To choose the next best view, we select the view candidate, which decreases the
current medium measurement uncertainty (over all triangles) the most. However, to account
for different optimisation goals, we balance between coverage and accuracy by weighting
SE

Σn
according to the parameterised logistic function fe:

fe

(
SE

Σn

)
=

1
1+ exp(−14κ(SE

Σn
− τ ·SEt))

, (8)

with κ the steepness (or accentuation) and τ the offset (or compliance) with respect to the
target standard error SEt (see Figure 1 (left)). If triangle s’ uncertainty is high, the gain of
scanning s is asymptotically one. The better s is already scanned, the less is gained from
rescanning s to reduce its measurement uncertainty. By choosing a higher steepness, one
accentuates accuracy in favour of completeness. By decreasing the offset, compliance to the
chosen SEt is more strictly enforced.

The termination criteria (e.g. number of views or medium standard error) is tested after
viewpoint selection. If more views are needed, we continue by updating the current cu-
mulative covariance matrix for all triangles seen by the chosen viewpoint. Next, optimal
viewpoints with respect to the current planning state are calculated according to Eq. (7). We
then repeat the whole process by starting from the measurability matrix calculation above.
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4 Experimental Results

To examine our approach to view planning, we compared different planning strategies using
the NBV benchmark from Munkelt et al. [5]. It evaluates the planner’s performance in re-
constructing a complex measurement object (see Fig. 1 (right)) comprising of four details.
They challenge view planners with different difficulties, like self occlusion and challenging
viewability. We analysed view count, coverage (the percentage of scanned compared to the
scannable object surface) and reconstruction error (hausdorff distance between reconstruc-
tion and model) in accordance with the benchmark.

We performed the validation with a high resolution fringe projection system. It’s sensor
is composed of two cameras (triangulation angle approx. 20◦) centred around a digital pro-
jector. The optimal scanning range Ro is 750 mm and the depth of focus ±100 mm. The
calibration procedure from Sec. 3.2.1 yielded a native point distance of approx. 0.150 mm.
Furthermore, the error ellipsoid’s principal axis corresponds to the sensors boresight, with

lengths of
√

λ
(1)
c = 0.045 mm and

√
λ
(2)
c = 0.008 mm. The cut off / break down angle was

configured at 70◦. For an abstract understanding of the sensors positioning system’s CS,
imagine a spherical shell segment of valid sensor poses. The middle sphere surface at Ro
would cover approx. 33% of the area of a half sphere. The sensor is moved using a 6 DOF
robot. Candidate viewpoints are not restricted to lie on a view sphere around the object.

The rough model used for view planning consisted of 434 triangles. Following Scott’s
decoupled algorithm for viewpoint generation, four rotations around the sensors boresight
in steps of 45◦ are performed. The current planners prototypical implementation is done in
MATLAB. Favouring flexibility over performance, the runtime could be reasonably short-
ened using optimisation and parallelisation. Using a Core 2 Duo @ 2.4 GHz, the adaptive
viewpoint planner from Sec. 3.1 generates a view plan after approx. 23 min, the E-criterion
based planner from Sec. 3.2 after approx. 101 min. View planning for all approaches was
performed without pose uncertainty modelling.

4.1 Coverage evaluation

Table 1 summarises the results for Sec. 3.1. For brevity, we compared coverage according to
the NBV benchmark just for 3, 4, 6, 8 and the terminating number of views. Our “adaptive”
approach is contrasted with the original approach from Scott (“baseline”). For both, the
underlying MSC problem was solved optimally (using binary integer programming). In
contrast, “expert” is a human planned view sequence. The total view plan length of the
adaptive approach is 14, compared to baseline and expert with 16. After 8 views the adaptive
view planning strategy reaches similar or better coverage in all categories.

We investigated, why predicted coverage differed from actually realised coverage. As it
turns out, pose errors and inaccuracies in CS filtering led to discrepancies between planned
surface area acquisition and actually scanned surface area. For further experiments we must
therefore incorporate basic pose error compensation (as in [10, 12]).

We now compare two view plans created with different parameterizations for the weight-
ing function fe of the approach from Sec. 3.2. While “E-crit1” (κ = 1.5;τ = 3.0;SEt = 0.08)
balances coverage and accuracy, “E-crit2” ( [κ = 4.0;τ = 1.7;SEt = 0.08]) favours accuracy
over coverage. The planning cycle terminated after 8 views. Figure 2 shows their predicted
coverage and standard error in addition to the results for the baseline and adaptive approach.
Both approaches reach better coverage levels compared to “baseline” and “expert”.
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object 3D errors [µm] coverage (%)
detail method 8 views 3 4 6 8 total
whole baseline 24 / 52 / 96 70.9 83.7 79.8 82.4 85.6

(predicted) adaptive 28 / 60 / 108 77.0 81.5 85.6 87.8 90.3
whole baseline 9 / 21 / 42 68.5 73.0 76.6 79.5 82.4
(real) adaptive 9 / 18 / 35 74.2 79.3 84.2 86.1 87.6

expert 9 / 18 / 35 70.0 76.3 80.2 80.8 84.7
notch baseline 6 / 12 / 26 55.3 70.6 72.5 76.8 78.2

adaptive 6 / 15 / 32 63.6 63.6 76.8 76.8 83.0
expert 5 / 11 / 25 38.6 68.0 69.6 71.5 74.9

neg. sphere baseline 14 / 27 / 41 32.4 32.4 59.3 59.8 64.4
adaptive 9 / 19 / 33 64.1 63.9 78.0 77.9 83.4
expert 27 / 43 / 61 47.4 47.2 50.5 50.6 54.5

sinusoidal baseline 30 / 43 / 54 67.2 67.2 59.8 80.8 88.7
adaptive 21 / 40 / 58 61.9 83.4 87.8 91.1 91.2
expert 13 / 24 / 35 61.4 61.4 79.5 79.5 94.3

tripod baseline 6 / 14 / 27 50.1 59.8 63.6 64.5 64.5
adaptive 6 / 14 / 34 69.7 71.1 72.6 76.9 77.2
expert 6 / 15 / 28 69.7 70.6 72.9 73.3 74.8

Table 1: Coverage results using the optimal MSC solution (best value bold, total views:
baseline 16, adaptive 14, expert 16). 3D errors are given for the 1st , 2nd and 3rd quartile.
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Figure 2: Comparison of predicted (red) and realised (green) coverage, and ac-
curacy for the whole NBV test object: (a) baseline approach; (b) adaptive view-
point generation; (c) E-criterion with [κ = 1.5;τ = 3.0;SEt = 0.08]; (d) E-criterion with
[κ = 4.0;τ = 1.7;SEt = 0.08].
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object 3D errors [µm] coverage (%)
detail method 8 views 3 4 6 8
whole E-crit1 29 / 63 / 111 82.2 88.3 95.3 98.0

(predicted) E-crit2 25 / 52 / 91 86.8 89.8 93.5 96.2
whole E-crit1 10 / 21 / 41 71.4 76.9 82.3 84.7

E-crit2 6 / 16 / 31 72.7 77.4 82.4 84.7
notch E-crit1 6 / 13 / 26 60.4 71.7 71.8 77.1

E-crit2 7 / 15 / 33 61.8 61.8 78.1 81.0
neg. sphere E-crit1 20 / 43 / 72 65.6 66.0 66.1 66.5

E-crit2 12 / 25 / 39 59.3 59.4 75.1 76.3
sinusoidal E-crit1 16 / 29 / 40 58.3 58.2 87.4 87.6

E-crit2 15 / 27 / 39 59.8 80.1 79.8 87.2
tripod E-crit1 7 / 15 / 31 57.4 71.8 72.2 78.0

E-crit2 6 / 12 / 30 64.8 66.4 70.5 71.5

Table 2: Coverage results using the greedy MSC solution (best value bold). 3D errors are
given for the 1st , 2nd and 3rd quartile.

Since the underlying MSC problem solving strategy is inherently an iterative greedy
approach, Tab. 2 separately summarises the NBV benchmark coverage results. “E-crit1” can
maximise coverage, while fulfilling the accuracy requirement. Overall, coverage is lower
compared to our adaptive planning strategy, yet similar or better than the baseline approach,
despite the less optimal, iterative MSC solution.

4.2 Accuracy evaluation
Figure 2 shows the predicted measurement uncertainty for four planning methods. The E-
criterion based view planning clearly shows continually decreasing maximal, as well as me-
dian errors. While reaching similar coverage, both methods realise better accuracy (lower
interquartile range and smaller maximum reconstruction errors). As expected, “E-crit2” ex-
hibits better accuracy than “E-crit1”, at the expense of slower coverage growth.

Figure 3 shows reconstruction error evaluation according to the method described in [5].
After 8 views, our “E-crit1” method achieves slightly better error values, compared to all
other methods. The error levels for the sinusoidal face are generally higher than the other
object details due to difficult accessibility with the scanner. Yet our E-criterion algorithm
produces the lowest errors. For the “notch” and “tripod” details our maximum error is higher,
while still maintaining similar median error levels. Between predicted and realised errors
there is approximately a factor of 2, which originates from activated post processing filters
during scanning. These filters were disabled during calibration of sensor characteristics.
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Figure 3: Realised reconstruction errors (after 8 views).
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5 Conclusion

In this paper we presented an offline multi-view planning approach for simultaneously opti-
mising reconstruction completeness and accuracy of complex objects. We proposed a meth-
od for estimating uncertainty, which in turn allows to formulate the extended E-criterion for
accuracy optimisation. We integrated the planning procedure into a minimal set cover based
approach appropriate for high fidelity scanning. The method is suitable for robot mounted,
fringe projection based stereo 3D scanning with notable configuration space constraints.
Simulation and experimental evaluation show enhanced coverage, and partially improved
accuracy. Future work will address the inclusion of pose error into the planning to enhance
planning robustness.
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