
Self-supervised Data Bootstrapping for Deep Optical Character
Recognition of Identity Documents

Oliver Mothes
Computer Vision Group

Friedrich Schiller University Jena, Germany
oliver.mothes@uni-jena.de

Joachim Denzler
Computer Vision Group

Friedrich Schiller University Jena, Germany
joachim.denzler@uni-jena.de

Abstract

The essential task of verifying person identities at
airports and national borders is very time-consuming.
To accelerate it, optical character recognition for iden-
tity documents (IDs) using dictionaries is not appropri-
ate due to the high variability of the text content in IDs,
e.g., individual street names or surnames. Addition-
ally, no properties of the used fonts in IDs are known.
Therefore, we propose an iterative self-supervised boot-
strapping approach using a smart strategy to mine real
character data from IDs. In combination with synthet-
ically generated character data, the real data is used to
train efficient convolutional neural networks for char-
acter classification serving a practical runtime as well
as a high accuracy. On a dataset with 74 charac-
ter classes, we achieve an average class-wise accuracy
of 99.4%. In contrast, if we would apply a classifier
trained only using synthetic data, the accuracy is re-
duced to 58.1%. Finally, we show that our whole pro-
posed pipeline outperforms an established open-source
framework.

1 Introduction

The identity of people plays an increasingly impor-
tant role in everyday life. At airports and national
borders the manual verification of single IDs is essen-
tial. To speed up this time consuming task, the use of
scanners and optical character recognition (OCR) algo-
rithms can accelerate the identification task. For OCR
a strong reliable character classifier is necessary, since
the total OCR error of a text field increases exponen-
tially with string length if each character is classified
separately. Character classifiers trained with a convo-
lutional neural network (CNN) show powerful results
for this task [1, 2, 3, 4, 5]. Unfortunately, for train-
ing a CNN from scratch an immense amount of labeled
image data is necessary [6], which cannot be fulfilled
in our application concerning the small amount of IDs
for training. Therefore, we use synthetic character im-
ages generated for CNN pre-training. Afterwards we
apply a iterative bootstrapping approach to recognize
and extract real character image patches of IDs in a
self-supervised manner. Figure 1 illustrates this boot-
strapping cycle.
In text spotting [1, 2, 3, 4] strings are detected in im-

Synthetic
Data

Model
Training

Classifier

OCR

MANCHESTER

Augmented Data

Merge

Validation / 
Correction

result GTExtraction
MANCHES7ER

MANCHESTER

Merge

Figure 1: The iterative bootstrapping extracts in ev-
ery stage more and more real data, where afterwards,
the initial synthetic data is merged with the extraction
results, which is used for updating the classification
model.

ages of different scenes and recognized afterwards. For
the OCR process two techniques are common. Using
a step-wise methodology, the text elements are local-
ized, segmented to single character patches and rec-
ognized sequentially, while on the other hand an in-
tegrated methodology processes these steps in an end-
to-end manner [7]. For end-to-end learned OCR tech-
niques long short-term memory (LSTM) networks [8]
combined with convolutional layers for feature genera-
tion show strong performance [2, 4]. Regrettably, these
recurrent networks learn label context knowledge, like
statistical occurrence of character combinations, e.g.,
bigrams and trigrams. This is a disadvantage for the
very individual strings on IDs, like city names, street
names or surnames. Thus, concerning the diversity of
text fields in our application, a step-wise OCR tech-
nique is applied, which is independent of the string con-
text. Unfortunately, in most cases of OCR no or only
few correctly labeled training data is available. There-
fore, synthetic text image patches are generated from
dictionaries and word lists for training [1, 9]. Concern-
ing the diversity of text values in our applications, we
can not use dictionaries for generating synthetic text
patches. Hence, only single synthetic characters are
generated in our approach.
In this paper, we introduce a powerful iterative boot-
strapping method to mine as much real data as possi-

ar
X

iv
:1

90
8.

04
02

7v
1 

 [
cs

.C
V

] 
 1

2 
A

ug
 2

01
9



ble in a self-supervised manner. Initially, a robust and
fast character classification model based on a CNN ex-
ploits a versatile generator to train the model using the
synthetic characters. This pre-trained model is used
to extract as much real character image patches from
a present ID dataset. Afterwards, the extracted real
data is merged with synthetic data and the pre-trained
model is updated. In the following bootstrapping iter-
ations, more and more real data is extracted and im-
prove the model performance.

2 OCR for Identity Documents

In our OCR pipeline, initially, an ID is digitalized
by a special document scanner, which provides an in-
frared recorded image together with an RGB image.
After scanning, an undistortion process is applied to
the scanned image. The document bounds are located
automatically, which enables a correctly rotated crop-
ping. Afterwards, the extracted cropped document im-
age is classified by type, nationality, generation and
front or back using a pre-trained classifier. With this
knowledge an existing database provides region infor-
mation of visible readable zones, including the posi-
tion, size and the text format of the text fields on the
classified document. The extracted text fields images
serve as input data for the OCR process. In the first
step the image is binarized by an adaptive threshold
method [10]. Text elements in a text field can have
lines and strings. Therefore, a line separation and af-
terwards a string separation is applied to the sub-text
field. Both methods use statistical analyses of the cu-
mulated axis-projected pixel intensity values. To ex-
tract character patches from the sub-text fields includ-
ing a single string, a contour search algorithm [11] is
used together with statistical analyses of the vertically
projected pixel intensity values. For classification, a
CNN classifies the character patches. Afterwards, the
results are assembled and the recognized string is re-
turned. Finally, the document class knowledge is ex-
ploited with information about text formats of certain
text fields, like date formats or the structure of unique
identity numbers. With these information a post pro-
cessing step corrects the returned strings if necessary.

3 Synthetic Character Generator

In cases of OCR where no labeled training data is
available, a versatile character generator can be used
to provide the missing OCR training data. Our devel-
oped generator starts with modeling the image back-
ground using a random gray value as background color
and adds random sized blotches of noise for a speckle
effect to the 64× 64 pixel image. Afterwards the class-
related character is centrally rendered with two neigh-
bor characters randomly sampled from all character
classes. The usage of random neighbors left and right
next to the centered character should guarantee inde-
pendence concerning knowledge of the distributions of

bigrams and trigrams. This turned out to be an im-
portant prerequisite, especially working with personal
data, since we have to assume that these data does not
follow a certain distribution of the character combina-
tions. For rendering characters, the generator selects
a random font with a random font face and font size.
In the last step, the three characters together are ran-
domly translated and rotated in a practically relevant
range.

4 Character Bootstrapping

Particularly, when CNNs are used for classification
tasks, a huge amount of data is necessary [6]. In some
cases this precondition is not or only partially fulfilled.
To overcome this, synthetic data can be incorporated
for pre-training. The proposed character bootstrap-
ping approach is an iterative method for mining real
data and adaption of the character classification model
to the distribution of real data.

Character Classification A high classification
accuracy is absolutely necessary for the whole OCR
process, since the recognition error of a text field in-
creases exponentially with the string length. Addition-
ally, the runtime of model inference is important to
make the algorithm applicable in practice. In order
to fulfill these conditions, we decide to use different,
compact CNN architectures that have demonstrated
proven performance for classification tasks (LeNet [5],
CifarNet [12], Resnet-10 [13] and Resnet-20 [14]). All
models are trained with character images of the same
input size (64×64px) to classify a given number of char-
acter classes. The models can be trained from scratch
if enough training data is available. Otherwise they can
be fine-tuned [15] using a pre-trained model as weight
initialization.

Bootstrapping Cycle The foundations for
the bootstrapping approach are synthetically gener-
ated characters as described in Section 3 and our OCR
pipeline as specified in Section 2 with a reliable char-
acter classifier based on a CNN. Initially, a classifica-
tion model is trained for all character classes with syn-
thetic data only. Afterwards, this model is applied to
the data of real documents. The real character images
patches are extracted using the character segmentation
approach described in Section 2. After the classifica-
tion of each character, the results are evaluated with
the ground truth of the text region patch. In case of
misclassification a character patch label is corrected.
The next step merges this correctly labeled and ex-
tracted real data together with synthetic data by aug-
menting (affine transformations, gray value transfor-
mations) the real data on the one hand and adding a
percentage of synthetic data on the other hand. The
amount of synthetic data in the new dataset decreases
with each bootstrapping cycle. Now, the used CNN
model is updated with the new dataset using fine-
tuning [15] and the bootstrapping cycle starts again



with extracting real data. The whole bootstrapping
process is illustrated in Figure 1.

5 Experiments
Datasets and Evaluation Metric For evaluat-

ing the performance of OCR models on synthetic data,
we generated 20.000 training images and 2.000 test im-
ages for each of the 74 character classes. The char-
acter classes contain numbers (0-9 ), uppercase (A-Z )
and lowercase letters (a-z ) as well as special characters
(.-/()) frequently used on IDs in our datasets. Each
character image is rendered as described in Section 3.
For evaluation, an ID dataset of three different nations
(Germany, Austria, Switzerland) is provided, named
DS1 in the following. The dataset contains 15 docu-
ment classes with 2822 text field image patches of dif-
ferent visible and readable regions, e.g. surnames, birth
dates or unique identity number. Document classes in
our dataset include identity cards, passports, drivers li-
censes and visa with the backside of some documents as
additional class. Furthermore, a second dataset of two
nations (Germany, Austria) and 8 document classes is
available, which contains 320 image patches of text
fields. It is named DS2 in the following. As evalua-
tion metric, we use the Levenshtein distance [16], which
counts the number of changes (deletion, addition, sub-
stitutions) in a string, where a text field is recognized
correctly if the edit distance is zero.

OCR Model Comparison We compare different
CNN model architectures and a baseline Support Vec-
tor Machine (SVM) model [17]. Common CNN model
architectures (LeNet [5], CifarNet [12], Resnet-10 [13]
and Resnet-20 [14]) are modified concerning the 64×64
pixel input images by changing the kernel sizes of the
convolutional layers and the following pooling opera-
tions. As baseline, we trained a linear SVM with his-
togram of oriented gradients (HOG) features [18] us-
ing 10-fold cross-validation. For OCR model compari-
son, the classification accuracy and runtime is impor-
tant for the application, since the recognition error of
a text field increases exponentially with string length.
To make the OCR on IDs practically applicable a max-
imum target runtime of 50ms per character classifica-
tion is desired. Table 1 compares the classification ac-
curacy and runtime on a synthetically generated test
set.
It can be clearly seen that the SVM model does not
achieve the performance of the CNN models and re-
quires 20 times longer than the fastest CNN. This run-
time is justified by the time for feature extraction and
prediction. In addition, the more complex Resnet CNN
models improves the less expensive CNN models LeNet
and CifarNet in terms of accuracy.

Boostrapping Evaluation In the following ex-
periment, we show the improvement of our bootstrap-
ping approach described in Section 4. The iterative
method mines real data to improve the CNN model
performance. Initially, the CNN model trained with

Table 1: The character classification model compari-
son by accuracy and runtime shows a significant per-
formance gap of CNNs compared to SVM with HOG
features. All models are trained with the same syn-
thetically generated data and tested on a separate test
set (Intel Core i7-7700, 32GB RAM).

Model Accuracy Time (ms)
SVM (linear) [17] 0.63 200
CNN (LeNet) [5] 0.84 10
CNN (CifarNet) [12] 0.94 10
CNN (Resnet-10) [13] 0.97 31
CNN (Resnet-20) [14] 0.98 43

synthetic characters is used together with the OCR
pipeline described in Section 2. For this experiment
the dataset DS1 is used. In the initial bootstrapping
stage, the extracted 7069 characters (71 of 74 classes)
are augmented by some affine and gray-value transfor-
mations. Subsequently, they are merged with the same
amount of synthetic data. If no characters could be ex-
tracted for a single class, they are generated completely
synthetically. Afterwards, 2000 characters (1000 of
real/augmented data and 1000 of synthetic data) of
each class are provided for fine-tuning the CNN model
at the initial bootstrapping stage, while for validation
the data is divided class-wise in 90% training data and
10% test data. For fine-tuning the model train all
weights using the pre-trained model weights as initial-
ization. After the initial stage, the character classifier
achieves an accuracy of 95.9% on the test set. The up-
dated model is then used to extract again characters
from the dataset DS1, which were also augmented and
merged, but with only half of the synthetic data from
the last stage. Thus, in every iterative stage we reduce
the synthetic data and update the model with a higher
number of extracted real data, which leads to a more
accurate model (99.4% at stage 4). Figure 2 shows the
number of extracted real characters and the accuracy of
the trained models in every bootstrapping stage. It can
be clearly seen, that the performance of the classifier
increases together with number of extracted characters
within each stage.
In another experiment, we compare the initial model
trained with synthetic data and the final model after
four bootstrapping stages. We validate the accuracy
of bootstrapping stage 4 on the test set with 14871
character patches extracted from dataset DS1. While
the initial models achieve an accuracy of 58.1%, the
fine-tuned model reaches an accuracy of 99.4%.

OCR Pipeline In our last experiment, we com-
pare our full OCR pipeline of Section 2 to the TESSER-
ACT OCR framework [19] of version 4.0.0, which uses
a sequence-based OCR technique with LSTMs [8]. We
use the default model of TESSERACT and the Resnet-
20 model trained with bootstrapped data. It is possible



0 1 2 3 4
bootstrapping stage

8000

10000

12000

14000

16000

nu
m

be
r o

f e
xt

ra
ct

ed
 c

ha
ra

ct
er

s

0.70

0.75

0.80

0.85

0.90

0.95

1.00

cla
ss

ifi
ca

tio
n 

ac
cu

ra
cy

Figure 2: In every bootstrapping stage the character
classifier performs better and allows to extract more
real data for the new model update.

to train a TESSERACT model with own data, but in
our case the existing amount of data is not sufficient.
For the evaluation we use the dataset DS2 with 320
text fields that was so far unseen for all models. While
TESSERACT reaches only 59 correctly recognized text
fields (18.4%), our pipeline is able to read 273 text
fields (85.3%) correctly. The reason for incorrectly rec-
ognized text fields lies in most cases in the quality of
input images, e.g., smudges are recognized as dots. For
comparison, if we use the CNN model trained only on
synthetic data, our OCR pipeline already recognizes
161 text fields (50.3%) correctly.

6 Conclusions

In this paper we proposed an iterative self-
supervised data bootstrapping approach using a smart
strategy to mine real character from IDs. Synthetic
data combined with the extracted real data is used to
train efficient character classifiers based on CNNs. We
have shown that the number of real extracted charac-
ters increases in each bootstrapping stage. Simulta-
neously, the accuracy of the model trained with these
extracted characters improves. The final model of the
last bootstrapping stage has demonstrated a superior
performance compared to an established open-source
OCR framework. The improvements through the use
of our bootstrapping now allow an industrial use of the
method.

References

[1] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Deep
features for text spotting,” in European conference on
computer vision. Springer, 2014.

[2] P. He, W. Huang, Y. Qiao, C. C. Loy, and X. Tang,
“Reading scene text in deep convolutional sequences.”

in AAAI, 2016.
[3] Z. Zhang, C. Zhang, W. Shen, C. Yao, W. Liu, and

X. Bai, “Multi-oriented text detection with fully con-
volutional networks,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
2016.

[4] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable
neural network for image-based sequence recognition
and its application to scene text recognition,” IEEE
transactions on pattern analysis and machine intelli-
gence, 2017.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Pro-
ceedings of the IEEE, 1998.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in Advances in neural information processing
systems, 2012.

[7] Q. Ye and D. Doermann, “Text detection and recog-
nition in imagery: A survey,” IEEE transactions on
pattern analysis and machine intelligence, 2015.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, 1997.

[9] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic
data for text localisation in natural images,” in Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

[10] E. Rodner, H. Se, W. Ortmann, and J. Denzler, “Dif-
ference of boxes filters revisited: Shadow suppression
and efficient character segmentation,” in IAPR Work-
shop on Document Analysis Systems, 2008.

[11] S. Suzuki et al., “Topological structural analysis of dig-
itized binary images by border following,” Computer
vision, graphics, and image processing, 1985.

[12] A. Krizhevsky and G. Hinton, “Learning multiple lay-
ers of features from tiny images,” Citeseer, Tech. Rep.,
2009.

[13] M. Simon, E. Rodner, and J. Denzler, “Imagenet pre-
trained models with batch normalization,” arXiv preprint
arXiv:1612.01452, 2016.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep resid-
ual learning for image recognition,” in Proceedings of
the IEEE conference on computer vision and pattern
recognition, 2016.

[15] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE
international conference on computer vision, 2015.

[16] V. I. Levenshtein, “Binary codes capable of correcting
deletions, insertions, and reversals,” in Soviet physics
doklady, 1966.

[17] C. Cortes and V. Vapnik, “Support-vector networks,”
Machine learning, 1995.

[18] N. Dalal and B. Triggs, “Histograms of oriented gra-
dients for human detection,” in Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on. IEEE, 2005.

[19] R. Smith, “An overview of the tesseract ocr engine,”
in Document Analysis and Recognition, 2007. ICDAR
2007. Ninth International Conference on. IEEE, 2007.


	1 Introduction
	2 OCR for Identity Documents
	3 Synthetic Character Generator
	4 Character Bootstrapping
	5 Experiments
	6 Conclusions

