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Alexander Lütz, Erik Rodner and Joachim Denzler

Computer Vision Group, Friedrich Schiller University Jena
{alexander.freytag, erik.rodner, joachim.denzler}@uni-jena.de

http://www.inf-cv.uni-jena.de

One of the main assumptions in machine learning is that sufficient training data is avail-
able in advance and batch learning can be applied. However, because of the dynamics in a
lot of applications, this assumption will break down in almost all cases over time. There-
fore, classifiers have to be able to adapt themselves when new training data from existing
or new classes becomes available, training data is changed or should be even removed. In
this paper, we present a method allowing for efficient incremental learning of a Gaussian
process classifier. Experimental results show the benefits in terms of needed computation
times compared to building the classifier from the scratch. In addition we highlight the
general benefits of incremental learning.

1 Introduction

In the last decade, research in visual object
recognition has focused mostly on batch learn-
ing, i.e., a classifier is build using a pre-defined
and fixed set of training examples. However, if
we think of the main goal of closing the gap be-
tween human and computer vision, which still
exists when focusing on the recognition perfor-
mance in real-world scenarios, batch learning is
not appropriate. Even by using the large num-
ber of training examples already present in cur-
rent image databases [1], a fixed learning sys-
tem would not be able to adapt to new tasks and
object classes. Due to this reason, it is important
to incrementally learn a classifier in an efficient
manner, i.e., by utilizing previously calculated
model parameters. Such a procedure is often
referred to as online or incremental learning.

Incremental learning has been studied for
various types of classifiers. The work of
Cauwenberghs and Poggio [2] presents how to
carefully update the set of support vectors and
their weights when incrementally adding new
training data to existing SVM classifiers. Build-
ing on the algorithmic ideas of [2], Tax and
Laskov [3] focus on incrementally learning a
support vector data description classifier, which
is a one-class classification method. For on-

Fig. 1. Multi-class incremental learning: adding ex-

amples to already existing or new classes. Color

brightness shows the classifier class score.

line learning on a class level, i.e., when exam-
ples of new classes become available, the meth-
ods proposed by Yeh et al. [4] can be used to
perform online learning of one-vs-all SVMs.
Csató and Opper [5] show how to apply the idea
of Bayesian online learning to sparse Gaussian
process (GP) models.

This paper focuses on exploring the advan-
tages of a one-vs-all Gaussian process classifier
in incremental learning scenarios. In contrast to
previous work, we do not utilize a sparse GP



representation or approximate inference tech-
niques. We briefly review the GP framework
and present the update formulas necessary to
add new examples. The presented approach is
applied to a 2d toy example in Fig. 1.

2 Regression with Gaussian Processes

In the following, we briefly describe the ba-
sic principles of Gaussian process regression.
We are given a set of input examples X =(
x1, . . . ,xn

)
∈ Ωn, where Ω is the space of

possible inputs. Let us further assume a vec-
tor tL ∈ Rn containing the corresponding func-
tion values is given. For the regression case,
we are interested in estimating the relationship
f : Ω → R between inputs and outputs. Be-
cause of the finite size of X , we are not able to
determine a single unique solution for f . There-
fore, we model f to be drawn from a distribu-
tion over functions, i.e., a random process with
index set R. One possible choice for an un-
derlying random process is a Gaussian process
GP(µ, κ) [6]. The mean function µ : Ω → R
with

µ(x) = Ef [ f(x) ]

is used to specify our prior assumptions about
the mean value of the function at certain posi-
tions. The covariance function κ : Ω2 → R :

κ(x,x′) = Ef

[(
f(x)− µ(x)

)(
f(x′)− µ(x′)

)]
models the expected covariance of the function
values, which is directly related to the expected
local variability of functions drawn from the
process. Learning from output and input values
and estimating the output t∗ of a new example
x∗ can be done with Bayesian inference. In the
following, we assume a zero mean function and
that observed values tL of f are corrupted with
independent Gaussian noise with variance σ2

n.
In this special case, Bayesian inference leads to
a closed-form solution for the posterior [6]:

p(t∗|x∗,X, tL) = N (t∗|µ∗, σ2
∗) . (1)

This means that the posterior is Gaussian with
the following mean and variance:

µ∗ = kT
∗
(
K +σ2

nI
)−1

tL (2)

σ2
∗ = k∗∗ − kT

∗
(
K +σ2

nI
)−1

k∗ + σ2
n . (3)

With a slight abuse of notation, we use k∗∗ =
κ(x∗,x∗), k∗ = κ(X,x∗) and K = κ(X,X)

as abbreviations for the kernel values of the
training set and the new example. It should be
noted that the possibility to estimate the vari-
ance of the classifier output is an important
benefit for advanced incremental learning, be-
cause it allows for active learning [7] and out-
of-vocabulary detection [8].

3 GP Regression for Multi-class
Classification

As we have seen in the previous section,
the GP model and a Gaussian noise assump-
tion leads to simple inference equations. If we
consider non-Gaussian noise for classification
problems, there are no closed-form solutions
available and approximation methods are nec-
essary [6]. However, it has been demonstrated
in several papers [7, 8, 9] that applying GP re-
gression directly to binary classification prob-
lems, without considering the discrete nature of
the labels t ∈ {−1, 1}, gives comparable re-
sults. Therefore, we assume the discrete labels
to be generated by a real-valued function which
we estimate using GP regression.

For multi-class classification problems with
t ∈ {1, . . . ,M}, the one-vs-all technique can
be applied, which leads to the following scores
for each class c ∈ {1, . . . ,M}:

µ(c)
∗ = kT

∗
(
K +σ2

nI
)−1

t
(c)
L , (4)

with t
(c)
L ∈ {−1, 1}n representing the vector of

binary training labels for class c [7]. The final
score of the multi-class classifier is achieved by
taking the maximum of the scores of all classes:

µmc
∗ = max

c=1...M
kT
∗ (K +σ2

n · I)−1t
(c)
L , (5)

and returning the corresponding class c.
Since the predictive variance σ2

∗ for a new test
example x∗ is not affected by the training labels
(see eq. (3)) the resulting variance is the same
for all classes.

4 Efficient Updates of the Kernel Matrix

As shown in equations (2), (3), (4), we only
need tL,k∗, and

(
K +σ2

nI
)−1 for computing

the predictive mean and predictive variance of a
new input x∗, respectively. Therefore, if train-
ing data is changed or new training data be-
comes available, we have to consider methods
for updating the corresponding variables.



In the following, we show how to update
the inverse of the regularized kernel matrix(
K +σ2

nI
)

in an efficient manner. Another op-
tion is to update the Cholesky factorization, as
described in [10, 11].

Let K be a n×n-Matrix, U a n× p-Matrix,
C a p×p-Matrix, and V a p×n-Matrix. Let fur-
ther K and C be invertible. Woodbury’s For-
mula [12] states that

K′−1 =
(
K + UCV

)−1
= (6)

K−1 −K−1U
(
C−1 + V K−1U

)−1
V K−1 .

If we already precomputed K−1 and K is only
changed by adding UCV , we are able to com-
pute K′−1 in a more efficient manner compared
to standard approaches if p � n. For the fol-
lowing derivations we set C to the identity ma-
trix.

Update of a single example Changes in only
one specific training example xi to x′i can be
modeled by

K′ =
(
K + UV

)
(7)

with U =
[
a(i) ei

]
, V =

[
eT
i a(i)T

]T
, ei being

the ith unity vector, and

a(i)
q =

{
κ
(
x′i,xq

)
−Ki,q if i 6= q

1
2

(
κ
(
x′i,xq

)
−Ki,q

)
if i = q

(8)

as the vector of differences between old
and new kernel values for xi. Because of
rk
(
UV

)
= 2, we call K ′ a rank-2-update of

K. Thereby, we can directly apply (6) for com-
puting the new inverse of the kernel matrix ef-
ficiently. The resulting asymptotic runtimes are
derived in section 5.

Update of multiple examples If not one but a
set S = {xs1 , . . . ,xsk} of training examples
changes, the update can be done either by it-
eratively changing one example or directly up-
dating all examples simultaneously. For the di-
rect update, the presented ideas for the rank-2-
update can be generalized in the following way.
We build the vector of differences between old
and new kernel values

a(i)
q =

{
κ
(
x′i,xq

)
−Ki,q if xq /∈S

1
2

(
κ
(
x′i,xq

)
−Ki,q

)
if xq∈S

(9)

with i ∈ S = {s1, . . . , sk}. Further-
more, we set the two matrices U and V with
U =

[
a(s1) . . .a(sk) es1 . . . esk

]
and V =[

eT
s1
. . . eT

sk
a(s1)T . . .a(sk)

T
]T

such that UV

transforms K to K ′, which means that K ′ is
a rank-2k-Update of K. Thereby, we again can
apply (6) for efficiently computing the modified
inverse K ′−1. Resulting asymptotic runtimes
for both approaches are given in section 5.

Efficient Incremental Learning The previous
explanations focused on efficiently updating K
when existing examples are modified. If new
training data becomes available, we can directly
make use of these ideas. For adding one ex-
ample (rank-2-update), we increase the size of
K by one, whereas for k new examples (rank-
2k-update) we attach k new rows and columns
to K with value one on the main diagonal and
zero elsewhere. After preparing K in this way,
we can apply the presented update formulas
and end up with a GP classifier incrementally
trained in an efficient way.

Efficient Decremental Learning When think-
ing about a system for lifelong learning, the
most prominent tasks are to efficiently deal with
new or altered data. Nonetheless, such a sys-
tem has also to be capable of dealing with data
which becomes invalid over time. This task is
known as decremental learning and can be seen
as counterpart to the previously presented prob-
lem.
To enable efficient decremental learning, we ap-
ply the same approaches as already used for
incremental learning, but in an inverse man-
ner. More precisely, if the current example i
becomes invalid, we use the update rules from
eq. (6) such that the resulting row and column
contains one on the ith position and zero else-
where. Finally, we remove the ith row and col-
umn of the kernel matrix. The same holds for
deleting several examples using either the itera-
tive or the direct update.

Updates for multi-class classification The pre-
sented approach is independent of the number
of classes taken into account. As presented in
eq. (4) every one-vs-all classifier uses the same
matrix K and differs merely in the correspond-
ing binary label vector tL(c). Therefore, only a
single update of the shared inverse covariance
matrix K ′−1 is required. Even for new classes



a corresponding classifier can be trained with
minimal effort by computing the new binary
label vector and using the efficiently updated
K ′−1.

5 Asymptotic Runtimes

Baseline Training a GP classifier with n + k
training examples and ignoring any previous
knowledge needsO

(
(n+ k)3

)
operations. This

term is dominated by the time spent for com-
puting the inverse of K. Even with methods
such as Cholesky decomposition, which takes
advantage of the positive definiteness of K, the
main complexity stays cubically in the number
of examples.

Update of a single example If k equals one,
we just add a single example. If we have a
closer look on eq. (6) we notice, that the most
time-consuming operation is the multiplication
of K−1U with time requirement quadratic in
the number of examples. Since we update a sin-
gle example, the matrix

(
C−1 + V K−1U

)
is

of size 2× 2 and can therefore be inverted with
a constant number of operations. Consequently,
the computations necessary for updating the in-
verse can be performed within O

(
(n + 1)2

)
operations. Since the kernel matrix is of size
(n + 1)2 and all entries of its inverse have to
be updated, this asymptotic performance is the
best achievable one.

Update of multiple examples Using the pre-
sented iterative IL approach, i.e., performing k
updates with a single new example, the asymp-
totic bound is O

(
k(n + k)2

)
. With the direct

approach, we can perform the computation in
O
(
k3 + (n + k)2

)
operations. Note, that for

this approach the involved constants are rela-
tively high, which is caused by the fact that(
C−1 + V K−1U

)
(see eq. (6)) is not sym-

metric and can therefore not be inverted using
Cholesky decomposition.
As a rule of thumb we can observe, that if
n ∈ O(k), the iterative update should be pre-
ferred, whereas for large datasets with only
small changes (k � n) the direct approach
should be the method of choice. We validate
this fact in our experiments given in section 6.
In all cases the update of the corresponding tL
can be done in constant time. If an example of a
new class becomes available the new label vec-

tor has to be computed requiring O(n + k) and
not affecting the complexity at all.

6 Experiments on the Caltech-101 dataset

Our update rules do not use any approxima-
tions, therefore, the differences between the
results of batch and incremental learning are
marginal and caused by numerical differences.
The recognition rates are not affected. Due to
this reason, we concentrate on evaluating the
runtime in this section only. How incremen-
tally added examples affect the resulting perfor-
mances is evaluated in section 7.

Data We follow the experimental setup of [4]
and use the well-known Caltech-101 dataset
[13]. For each step, we randomly sample n im-
ages and train a GP regression classifier based
on these examples. Afterwards, we additionally
sample k examples to add them incrementally
or for batch training. Using suitable features
and multi-class GP classification allows average
recognition rates of up to 74% with 15 training
examples on this dataset [7].

Features For realistic evaluations, we again
follow the setup of [4] and choose feature vec-
tors corresponding to the spatial pyramid match
kernel [14] as a representation for each im-
age. Given computation times include the time
needed for feature calculation.

Evaluation The experimental results shown in
Fig. 2 confirm a significant benefit arising from
incrementally training the classifier compared
to batch training. Note that for k = 1, iterative
and direct updates result in the same computa-
tions. As expected the resulting gain depends
on the ratio of n and k. In our experiments, the
speed-up was up to a factor of 100. Addition-
ally, the theoretical result that a direct IL ap-
proach is most useful when k is large but k

n
is

small, can be verified.

7 Experiments on the 15 scenes dataset

Data We use the 15Scenes database [14] to
experimentally analyze the benefits of incre-
mental learning strategies. As previously sug-
gested [15], we scale all images to a size of
256 × 256 pixels to avoid results biased by the
specific image sizes of different classes. We
sample different numbers of images from the
training set with respect to the known classes in
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Fig. 2. Time measurements for incremental compared

to batch learning with GP regression. Times are

given in seconds and displayed in logarithmic scale.

each step. For testing, 100 images are randomly
sampled for every class, resulting in 1,500 test
images. Results are averaged over 10 runs.

Features We represent images by bag of
visual words (BoV) features computed us-
ing the toolkit provided with the ILSVRC’10
database [16].

Evaluation In a first experiment, we increase
the number of known classes during training
over time but perform evaluations on all avail-
able classes. As can be seen in Fig. 3, the per-
formance increases significantly with the num-
ber of categories known to the system. This
behaviour is as expected, since only classes
known to the system can be classified correctly.
Obviously, this fact validates the necessity of
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incrementally increasing the data accessible by
the system.
In a second experiment, we train the classifier
with all available 15 classes, but use only a
small fraction with 5 examples per class. Af-
ter evaluating the resulting performance on 100
distinct examples per class, we make new ex-
amples available in an incremental way, i.e., we
incrementally add 10 examples per class in one
step. Fig. 4 shows recognition rates achieved af-
ter different steps. It can clearly be seen, that the
system benefits from the availability of new ex-
amples, especially when only a limited amount
of training data was available before.

8 Conclusions and Future Work

The aim of this paper was to show that Gaussian
Processes, which are a powerful machine learn-
ing tool, can be applied to incremental learning
scenarios using efficient retraining methods.We
presented in-depth how to utilize the well-
known Woodbury formula to incrementally up-



date a GP-based classifier and performed exper-
iments for the tasks of object recognition. To
incrementally add several new examples, we in-
troduced two strategies: iterative update and di-
rect update. Both approaches reduce the nec-
essary computations for retraining from cubi-
cal to quadratic in the number of known exam-
ples. The experimental results clearly demon-
strate the large benefit of incremental learning
for improved classification capabilities.
Future research will focus on incremental ker-
nel hyperparameter optimization, which is es-
pecially important when combining several dif-
ferent feature types with multiple kernel learn-
ing. Another interesting direction is to per-
form updates of a tree-based GP classifier [17].
This would allow us to use large-scale training
datasets [1] as initial knowledge base for incre-
mental learning.
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