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Abstract. Traditionally, object recognition systems are trained with
images that may contain a large amount of background clutter. One way
to train the classifier more robustly is to limit training images to their
object regions. For this purpose we present a semi-supervised approach
that determines object regions in a completely automatic manner and
only requires global labels of training images. We formulate the problem
as a kernel hyperparameter optimization task and utilize the Gaussian
process framework. To perform the computations efficiently we present
techniques reducing the necessary time effort from cubically to quadrat-
ically for essential parts of the computations. The presented approach
is evaluated and compared on two well-known and publicly available
datasets showing the benefit of our approach.

1 Introduction and Related Work

Image categorization became a well studied problem in the area of image un-
derstanding during the last years. Traditionally, one represents already labeled
training images by certain features and trains a classifier based on features and
labels. In a second step labels of unknown images can be estimated by evaluating
the response of the classifier for each image. The main assumption is the presence
of only one single dominant object per training image with only few clutter and
occlusion. Otherwise, the extracted features would not be representative for the
category given by the image label. Going one step further, researchers attempted
to overcome this limitation by using more complex classifiers [11] or by extract-
ing a large set of features [12, 3]. Nevertheless, this leads to higher computation
times as well as higher memory demand in many cases. For this reason, we in-
troduce a new method to determine object regions in training images only given
the category label. Therefore, we interprete the object region in an image as a
kernel function hyperparameter and optimize the model likelihood with respect
to these hyperparameters. This allows obtaining convenient training images for a
robust training of a classification system. To reduce the computational effort we
apply two lemmata that allow computing inverse and determinant of a matrix
in quadratically time in contrast to cubically effort with standard approaches.
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Many publications directly deal with the detection or localization of objects
in images [5, 8]. Many of these approaches use sliding window techniques to
collect hundreds of possible object regions, classify each region and return the one
classified with lowest uncertainty or best score. Obviously, this is not possible,
if the classifier was trained on images rather than on regions. An alternative are
generic object detectors, as proposed by Alexe et al. [1]. They perform detection
of arbitrary objects by defining object cues for the presence of an object — like
strong color contrast or high edge density.

To our knowledge, just a few publications directly address the determination
of object regions in training images by using class labels only. Chum et al. [4]
select the region in an image which achieves the highest similarity score to all
other images of its class, measured by similarities of visual words and edge
densities. Bosch et al. [2] present a method similar to [4] that also obtains object
regions in images by maximizing a similarity score, but evaluates the similarity
function only on a subset of the training images, instead of considering every
training example. In contrast to these approaches, we select the image region,
which gives highest probability to explain the class labels by considering only
the part of the image covered by the region.

The remainder of the paper is organized as follows. In Sect. 2 we will briefly
review classification with Gaussian processes, present our approach for object
localization with hyperparameter optimization and show techniques for efficient
computations. Experimental results are given in Sect. 3 that show the benefit
of our approach. A summary of our findings and a discussion of future research
directions conclude the paper.

2 Object Localization with Hyperparameter Optimization
in a Gaussian Processes Framework

Brief review of Gaussian Process Classification Assume a given set of
training images

(
I1, . . . , In

)
represented by certain features X =

(
x1, . . . ,xn

)
and a vector tL ∈ {−1, 1}n containing the labels of the images. Then we are
interested in estimating the general relationship between unseen examples x∗ ∈
X and their class labels t∗. If we use a kernel function κ : X × X → R that
maps each pair of features to a similarity score we can model the relation in
a probabilistic way using Gaussian processes (GP) [11]. The main assumption
is that every label ti is created by a continous latent variable yi. Then every
two labels yi, yj are expected to be jointly Gaussian and their covariance is
specified by applying the kernel function κ(xi,xj) to their inputs. As in [11]
we assume the yi to have a zero mean, which leads to P(y|X) ∼ N (0,K)
with Ki,j = κ(xi,xj). The choise of κ is crucial for the performance of the
classification system, because it defines how strong the estimated label differs
given a change in the feature vector. Therefore, to adjust the chosen kernel
function to the training data one possibility is to use a parameterized kernel
function and to optimize its hyperparameters with respect to the training data.
In the Gaussian process framework, optimization can be done by maximizing
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the model likelihood P
(
tL|X,β

)
, which states how well the class labels can be

explained given the training data under the chosen model.

Object localization with hyperparameter optimization If the object re-
gion in an image is interpreted as a hyperparameter of the kernel function,
object localization becomes equivalent to optimization of hyperparameters. Let
β =

(
β1, . . . ,βn

)
be the vector of hyperparameters with βi as a representation

of the object region for the ith image, such as upper left and lower right corner
of a rectangle. Then the determination of the object regions can be done by

β∗ = argmax
β

P
(
tL |X,β

)
. (1)

If we expect only additional Gaussian noise in the labels, the logarithmic likeli-
hood in the GP regression framework can be written in closed form [14]

log P
(
tL |X,β

)
= −1

2
log det(Kβ + σ2I)− 1

2
tTL
(
Kβ + σ2I

)−1
tL + const . (2)

In (2), Kβ denotes the GP covariance matrix computed with the parameterized
kernel function, which in our case is equal to restricting the training images to
the regions specified by β.

If we have a multi-class classification task that is tL ∈ {1, . . . ,m}n, m one-
vs-all-classifiers can be used. Assuming independent outputs of the m classifiers,
we can again compute the joint likelihood [11]

log P
(
tL |X,β

)
=

m∑
j=1

log P
(
t
(j)
L |X,β

)
, (3)

with binary label vectors t
(j)
L whose entries are equal to one if the corresponding

entry of tL is j and −1 otherwise.
To perform the optimization of (2) and (3) one typically uses non-linear

optimization techniques like gradient descent. Caused by the descrete parameter
space this is not possible in our case. Therefore and due to the combinatorial
complexity, we use a greedy strategy as an approximation. In detail, we fix every
dimension of β except one and perform likelihood optimization according to this
dimension. This is done for every dimension and repeated for several times, which
is known as cyclic coordinate search [13]. In practice this corresponds to fixing
every image region except for one and choosing the region for this specific image
that maximizes the likelihood with respect to the already computed regions of
all other images.

Methods for efficient computations To reduce the computational effort
we draw advantage of our greedy approximation scheme. While performing the
optimization of one single dimension, the resulting kernel matrix changes only
in one row and one column. This is equal to a rank-2-update of K. Therefore
we can apply Woodbury’s formula [9] to compute the inverse of the slightly
changed covariance matrix K ′ by utilizing the already computed inverse of K.
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Table 1. Recognition rates averaged over all categories of Caltech-101. Entry x/y
denotes restricting training images to x and test images to y

# training examples global / ROI est. / GT ROI /
per category global GT ROI GT ROI

5 39.12 40.63 49.11
10 44.89 45.55 55.17
15 48.76 49.42 58.59

This results in a computational effort from only O(n2) compared to O(n3) with
standard approaches like Cholesky decomposition. With our implementation,
this leads to a time effort of just 0.04 s for inverting a 2000 × 2000 -Matrix on
a standard PC in contrast to 12.04 s with a complete Cholesky decomposition.
Apart from that, we also benefit from using the determinant lemma (see chapter
18 of [10]). With the Schur-Complement of K on hand — which we already
needed for the efficient determination of the inverse — we are able to compute
the determinant in constant time for rank-2-modifications of K.

3 Experimental Results

To demonstrate the benefit of our approach, we performed experiments on
Caltech-101 [7] and Pascal VOC 2008 [6]. We extracted PHOG-features [2]
and BoF-features (identical setup as presented in [15]) for every image to use
both structure and color information. The results were combined with uniform
weights. As supposed in [11] we also tested weight optimization but this de-
creased the results slightly. We want to point out that we did not focus on
choosing the most promising features or optimize their extraction. To generate
region hypotheses for the greedy optimization scheme we performed a sliding
window approach. Therefore, we scaled the initial image region by a factor rang-
ing from 1.0 to 0.6 with step size of 0.1. To perform the optimization of (2) or
(3) in Sect. 2, we initialized the bounding boxes with the whole image regions
and repeated the iterations over all training images for 10 times. For the multi-
class classification task we measured recognition rates averaged over all classes
whereas we chose the average precision measure for the binary case.

Evaluation Although Caltech-101 is not the most convenient dataset for evalu-
ating the performance of an object localization system, it is one of the standard
datasets for classification tasks. Therefore, we present the results achieved with
our approach on this dataset.

As we can see in Table 1, our approach improves the quality of the training
step slightly, although there is still some space left for improvement compared
to the results based on ground truth regions for training. This is due to the fact,
that many images of Caltech-101 show only one dominant object. Nevertheless,
the automatically determined object regions are visually meaningful as shown
in Fig. 1.
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Fig. 1. Good (left) and bad (right) results achieved with our approach on Caltech-101
with 15 training images per category (best viewed in color)

Classifying images from Pascal VOC 2008 is a more challenging task. On
this difficult dataset our method showed superior performance compared to the
standard approach, which can clearly be seen in Table 2. Although the results
obtained with our approach are a little lower than the ground truth results, the
improvement is up to a factor of six for our simple feature set. This clearly points
out the advantages of our approach for a robust training especially in difficult
classification tasks. The results confirm the fact that images restricted to their
object regions give an essential benefit for building classifiers more robustly.
Fig. 2 shows some exemplary results on Pascal VOC 2008 bicycle achieved by our
approach. Note that the bad examples are cases where the bicycle regions are too
small compared to the minimum scaling factor or are not highly representative
for the bicycle category.

4 Conclusion and Future Work

We have shown that reducing images to their object regions allows building clas-
sifiers more robustly. Our approach showed superior performance by improving
classification results up to a factor of six for challenging tasks compared to clas-
sification based on whole images. To overcome computational limitations we
proposed techniques for efficient computations. As future work we plan to re-
place the sliding window approach with a generic object detector to reduce both
computation time and probability of choosing non-meaningful image regions.
It could also be interesting to evaluate the utility of our approach in an active
learning setup. Apart from this, we want to use our approach to localize multiple
objects per image in the test step.

Table 2. Average precision rates achieved on Pascal VOC 2008 bicycle

# training examples global / ROI est. / GT ROI /
per category global GT ROI GT ROI

15 6.13 11.63 56.67
30 8.46 35.74 55.03
50 7.48 42.84 57.28
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Fig. 2. Good (left) and bad (right) results achieved with our approach on Pascal VOC
2008 bicycles with 50 training images per category (best viewed in color)
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