
EFFICIENT MULTI-CLASS INCREMENTAL LEARNING USING
GAUSSIAN PROCESSES

Alexander Lütz, Erik Rodner and Joachim Denzler

Computer Vision Group, Friedrich Schiller University Jena
{alexander.freytag, erik.rodner, joachim.denzler}@uni-jena.de

http://www.inf-cv.uni-jena.de

One of the main assumptions in machine learning is that sufficient training data is avail-
able in advance and batch learning can be applied. However, because of the dynamics in a
lot of applications, this assumption will break down in almost all cases over time. There-
fore, classifiers have to be able to adapt themselves when new training data from existing
or new classes becomes available, training data is changed or should be even removed.
In this paper, we present a method allowing efficient incremental learning of a Gaussian
process classifier. Experimental results show the benefits in terms of needed computation
times compared to building the classifier from the scratch.

Introduction

In the last decade, research in visual object
recognition has focused mostly on batch learn-
ing, i.e. a classifier is build using a pre-defined
and fixed set of training examples. However, if
we think of the main goal of closing the gap be-
tween human and computer vision, which still
exists when focusing on the recognition perfor-
mance in real-world scenarios, batch learning is
not appropriate. Even by using the large num-
ber of training examples already present in cur-
rent image databases [1], a fixed learning sys-
tem would not be able to adapt to new tasks and
object classes. Due to this reason, it is important
to incrementally learn a classifier in an efficient
manner, i.e. by utilizing previously calculated
model parameters. Such a procedure is often
referred to as online or incremental learning.

Incremental learning has been studied for
various types of classifiers. The work of
Cauwenberghs and Poggio [2] presents how to
carefully update the set of support vectors and
their weights when incrementally adding new
training data to existing SVM classifiers. Build-
ing on the algorithmic ideas of [2], Tax and
Laskov [3] focus on incrementally learning a
support vector data description classifier, which
is a one-class classification method. For on-
line learning on a class level, i.e. when ex-
amples of new classes become available, the
methods proposed by Yeh et al. [4] can be used

Fig. 1. Multi-class incremental learning: adding ex-

amples to already existing or new classes. Color

brightness shows the classifier class score.

to perform online learning of one-vs-all SVMs.
Csató and Opper [5] show how to apply the idea
of Bayesian online learning to sparse Gaussian
process (GP) models.

This paper focuses on exploring the advan-
tages of a one-vs-all Gaussian process classifier
in incremental learning scenarios. In contrast to
previous work, we do not utilize a sparse GP
representation or approximate inference tech-
niques. We briefly review the GP framework
and present the update formulas necessary to
add new examples. The presented approach is
applied to a 2d toy example in Fig. 1

Regression with Gaussian Processes

In the following, we briefly describe the ba-
sic principles of Gaussian process regression.
We are given a set of input examples X =(
x1, . . . ,xn

)
∈ Ωn, where Ω is the space of

images. For the regression case, let us further
assume a vector tL ∈ Rn containing the corre-
sponding function values is given and we are in-
terested in estimating the relationship f : Ω →
R between inputs and outputs. Because of the
finite size of X , we are not able to determine
a single unique solution for f . Therefore, we
model f to be drawn from a distribution over
functions, i.e. a random process with index set
R. One possible choice for such an underlying
random process is a Gaussian process GP(µ, κ)
[6]. The mean function µ : Ω→ R with

µ(x) = Ef [f(x)]

is used to specify our prior assumptions about
the mean value of the function at certain posi-
tions. The covariance function κ : Ω2 → R :

κ(x,x′) = Ef

[(
f(x)− µ(x)

)(
f(x′)− µ(x′)

)]
models the expected covariance of the function
values, which is directly related to the expected
local variability of functions drawn from the
process. Learning from output and input values
and estimating the output t∗ of a new example
x∗ can be done with Bayesian inference. In the
following, we assume a zero mean function and
that observed values tL of f are corrupted with
independent Gaussian noise with variance σ2

n.
In this special case, Bayesian inference leads to
a closed-form solution for the posterior [6]:

p(t∗|x∗,X, tL) = N (t∗|µ∗, σ2
∗) . (1)

This means that the posterior is Gaussian with
the following mean and variance:

µ∗ = kT
∗
(
K +σ2

nI
)−1

tL (2)

σ2
∗ = k∗∗ − kT

∗
(
K +σ2

nI
)−1

k∗ + σ2
n . (3)

With a slight abuse of notation, we use k∗∗ =
κ(x∗,x∗), k∗ = κ(X,x∗) and K = κ(X,X)
as abbreviations for the kernel values of the
training set and the new example. It should be
noted that the possibility to estimate the vari-
ance of the classifier output is an important
benefit for advanced incremental learning, be-
cause it allows for active learning [7] and out-
of-vocabulary detection [8].

GP Regression for Multi-class Classification

As we have seen in the previous section,
the GP model and a Gaussian noise assump-
tion leads to simple inference equations. If we
consider non-Gaussian noise for classification
problems, there are no closed-form solutions
available and approximation methods are nec-
essary [6]. However, it has been demonstrated
in several papers [7, 8, 9] that applying GP re-
gression directly to binary classification prob-
lems, without considering the discrete nature of
the labels t ∈ {−1, 1}, gives comparable re-
sults. For multi-class classification problems
with t ∈ {1, . . . ,M}, the one-vs-all technique
can be applied, which leads to the following
scores for each class m ∈ {1, . . . ,M}:

µ(m)
∗ = kT

∗
(
K +σ2

nI
)−1

t
(m)
L , (4)

with t
(m)
L representing the vector of binary train-

ing labels for class m [7]. The final decision
of the multi-class classifier is done by returning
the class m with the highest score µ(m)

∗ .

Efficient Updates of the Kernel Matrix

As shown in equation (2) and (4), we only
need tL,k∗ and

(
K +σ2

nI
)−1 for computing the

predictive mean of a new input x∗. Therefore, if
training data is changed or new training data be-
comes available, we have to consider methods
for updating the corresponding variables. In the
following, we show how to update the inverse
of the regularized kernel matrix

(
K +σ2

nI
)

in
an efficient manner. Another option is to up-
date the Cholesky factorization, as described in
[10, 11] and will be evaluated in a future work.

Let K be a n×n-Matrix, U a n× p-Matrix,
C a p×p-Matrix and V a p×n-Matrix. Let fur-
ther K and C be invertible. Woodbury’s For-
mula [12] states that

K′−1 =
(
K + UCV

)−1
= (5)

K−1 −K−1U
(
C−1 + V K−1U

)−1
V K−1 .

If we already have precomputed K−1 and K
is only changed by adding UCV , we are able
to compute K′−1 in a more efficient manner
compared to standard approaches if p � n.
Changes in only one specific training example
xi to x′i can be modeled by

K′ =
(
K + UV

)
(6)

with U =
[
a(i) ei

]
, V =

[
eT
i a(i)T

]T
, ei being

the ith unity vector, and

a(i)
q =

{
κ
(
x′i,xq

)
−Ki,q if i 6= q

1
2

(
κ
(
x′i,xq

)
−Ki,q

)
if i = q

(7)

as the vector of differences between old
and new kernel values for xi. Because of
rk
(
UV

)
= 2 we call K ′ a rk-2-update of K.

If we now set C to the identity matrix, we can
directly apply (5) for computing the new inverse
of the kernel matrix efficiently.

If not one but a set S = {xs1 , . . . ,xsk} of
training examples changes, the update can be
done either by iteratively changing one exam-
ple or directly updating all examples simultane-
ously. For the latter case, the presented ideas
for the rk-2-update can be generalized in the
following way. Again we build the vector of
differences between old and new kernel values

a(i)
q =

{
κ
(
x′i,xq

)
−Ki,q if xq /∈S

1
2

(
κ
(
x′i,xq

)
−Ki,q

)
if xq∈S

(8)

with i ∈ {s1, . . . , sk} and set C to the unity
matrix. Furthermore, we set the two matri-
ces U =

[
a(s1) . . .a(sk) es1 . . . esk

]
and V =[

eT
s1
. . . eT

sk
a(s1)T . . .a(sk)

T
]T

such that UV

transforms K to K ′, which means that K ′ is
a rk-2k-Update of K. Thereby, we again can
apply (5) for efficiently computing the modified
inverse K ′−1.

The previous explanations focused on effi-
ciently updating K when existing examples are
modified. If new training data becomes avail-
able we can directly make use of these ideas.
For adding one example (rk-2-update), we in-
crease the size of K by one, whereas for k new
examples (rk-2k-update) we attach k new rows
and columns to K with value one on the main
diagonal and zero elsewhere. After preparing
K in this way, we can apply the presented up-
date approach and end up with an GP classifier
incrementally trained in an efficient way.

The presented approach is independent of the
number of classes taken into account. As pre-
sented in eq. (4) every one-vs-all classifier uses
the same matrix K and differs merely in the
corresponding binary label vector tL(m). There-
fore, only a single update of K ′−1 is required.
Even for new classes a corresponding classifier

can be trained with minimal effort by simply
computing the new binary label vector and us-
ing the efficiently updated K ′−1.

Asymptotic Runtimes

Training a GP classifier with n + k training
examples and ignoring any further knowledge
needsO

(
(n+k)3

)
time. This term is dominated

by the time spent for computing the inverse
of K. Even with methods such as Cholesky
decomposition, which takes advantage of the
positive definiteness of K, the main complex-
ity stays cubically in the number of examples.
Using the presented iterative IL approach the
asymptotic bound decreases to O

(
k(n + k)2

)
.

Finally, when adding k examples directly we
can perform the computation in O

(
k3 + (n +

k)2
)

time. Unfortunately, the involved con-
stants are relatively high, which is caused by the
fact that

(
C−1+V K−1U

)
(eq. (5)) is not sym-

metric and can therefore not be inverted using
Cholesky decomposition. If n ∈ O(k), the it-
erative update should be preferred, whereas for
large datasets with only small changes (k � n)
the direct approach should be the method of
choice. In all cases the update of the corre-
sponding tL can be done in constant time. If an
example of a new class becomes available the
new label vector has to be computed requiring
O(n+k) and not affecting the complexity at all.

Experiments

Our update rules do not use any approxi-
mations, therefore, the differences between the
results of batch and incremental learning are
marginal and do not affect the recognition rates
in our experiments. Due to this reason, we con-
centrate on evaluating the runtime only.

Data We follow the experimental setup of
[4] and use the well-known Caltech-101 dataset
[13]. For each step, we randomly sample n im-
ages and train a GP regression classifier based
on these examples. Afterwards, we additionally
sample k examples to add them incrementally
or for batch training. Using suitable features
and multi-class GP classification allows average
recognition rates of up to 74% with 15 training
examples on this dataset [7].

Features For realistic evaluations, we again
follow the setup of [4] and choose feature vec-
tors corresponding to the spatial pyramid match

 0.01

 0.1

 1

 10

 100

 1000

 0 500 1000 1500 2000ti
m

e
 f

o
r

tr
a

in
in

g
 [

s
]

(l
o

g
s
c
a

le
)

training images n [1]

Adding k=1 example

Batch learning
Increm. learning

 0.01

 0.1

 1

 10

 100

 1000

 0 500 1000 1500 2000ti
m

e
 f

o
r

tr
a

in
in

g
 [

s
]

(l
o

g
-s

c
a

le
)

training images n [1]

Adding k=10 examples

Batch learning
Iterative increm. learning

Direct increm. learning

 0.01

 0.1

 1

 10

 100

 1000

 0 500 1000 1500 2000ti
m

e
 f

o
r

tr
a

in
in

g
 [

s
]

(l
o

g
-s

c
a

le
)

training images n [1]

Adding k=100 examples

Batch learning
Iterative increm. learning

Direct increm. learning

Fig. 2. Time measurements for incremental compared

to batch learning with GP regression. Times are

given in seconds and displayed in logarithmic scale.

kernel [14] as a representation for each im-
age. Given computation times include the time
needed for feature calculation.

Evaluation The experimental results con-
firm a significant benefit arising from incremen-
tally training the classifier compared to batch
training. As expected the resulting gain depends
on the ratio of n and k. In our experiments, the
speed-up was up to a factor of 100 (Fig. 2). Ad-
ditionally, the theoretical result that a direct IL
approach is most useful when k is large but k

n
is

small, can be verified in Fig. 2.

Conclusions and Further Work

The aim of this paper was to show that
Gaussian Processes, which are a powerful ma-
chine learning tool, can be applied to incremen-
tal learning scenarios using efficient retrain-

ing methods.We presented in-depth how to uti-
lize the well-known Woodbury formula to in-
crementally update a GP-based classifier and
performed experiments for the tasks of object
recognition. Due to the lack of space, we did
not consider efficient Cholesky updates [11]
and numerical comparisons, which will be the
topic of future work. Furthermore, the aim of
this paper was to show the large number of ad-
vantages of the Gaussian Process framework for
incremental learning.

References
[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and

L. Fei-Fei, “Imagenet: A large-scale hierarchical
image database,” in CVPR, 2009, pp. 248 – 255.

[2] G. Cauwenberghs and T. Poggio, “Incremental and
decremental support vector machine learning,” in
NIPS, 2001, vol. 13, pp. 409–415.

[3] D. Tax and P. Laskov, “Online svm learning: from
classification to data description and back,” in
Workshop on Neural Networks for Signal Process-
ing (NNSP’03), 2003, pp. 499–508.

[4] T. Yeh and T. Darrell, “Dynamic visual category
learning,” in CVPR, 2008, pp. 1–8.

[5] L. Csató and M. Opper, “Sparse representation for
gaussian process models,” in NIPS, 2000, pp. 444–
450.

[6] C. E. Rasmussen and C. K. I. Williams, Gaussian
Processes for Machine Learning. The MIT Press,
01 2006.

[7] A. Kapoor, K. Grauman, R. Urtasun, and T. Dar-
rell, “Gaussian processes for object categorization,”
IJCV, vol. 88, pp. 169–188, 2010.

[8] M. Kemmler, E. Rodner, and J. Denzler, “One-class
classification with gaussian processes,” in ACCV,
2010, pp. 489–500.

[9] E. Rodner, D. Hegazy, and J. Denzler, “Multiple
kernel gaussian process classification for generic 3d
object recognition from time-of-flight images,” in
Proceedings of the IVCNZ’10, 2010.

[10] D. Nguyen-Tuong, M. W. Seeger, and J. Peters,
“Model learning with local gaussian process re-
gression.” Advanced Robotics, vol. 23, no. 15, pp.
2015–2034, 2009.

[11] M. W. Seeger, “Low rank updates for the cholesky
decomposition,” University of California at Berke-
ley, Tech. Rep., 2004.

[12] W. W. Hager, “Updating the inverse of a matrix,”
Society for Industrial and Applied Mathematics
(SIAM) Review, vol. 31, no. 2, pp. 221–239, 1989.

[13] L. Fei-Fei, R. Fergus, and P. Perona, “Learning
generative visual models from few training exam-
ples: An incremental bayesian approach tested on
101 object categories,” in CVPR ’04: Workshop on
Generative-Model Based Vision, 2005.

[14] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond
bags of features: Spatial pyramid matching for rec-
ognizing natural scene categories,” in CVPR, 2006,
pp. 2169–2178.

