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Abstract. We propose a hierarchical Bayesian model - the wordless Hi-
erarchical Dirichlet Processes-Hidden Markov Model (wHDP-HMM), to
tackle the problem of unsupervised cell phenotype clustering during the
mitosis stages. Our model combines the unsupervised clustering capabil-
ities of the HDP model with the temporal modeling aspect of the HMM.
Furthermore, to model cell phenotypes effectively, our model uses a vari-
ant of the HDP, giving preference to morphology over co-occurrence. This
is then used to model individual cell phenotype time series and cluster
them according to the stage of mitosis they are in. We evaluate our
method using two publicly available time-lapse microscopy video data-
sets and demonstrate that the performance of our approach is generally
better than the state-of-the-art.
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1 Introduction

Machine analysis of time-lapse microscopy videos has become a very important
application field of computer vision. Presence of a large amount of objects like
cells, microbes etc. in these videos often make manual analysis cumbersome and
prone to subjective errors. One of the main tasks for machine learning algorithms
in this field is the analysis of time-lapse videos of cell culture, where mitosis
events are happening.

Based on internal cell dynamics and morphology changes, biologists suggest
that there are five main stages of mitosis: prophase, prometaphase, metaphase,
anaphase and telophase ( [10]: §18.6, pages 849-851). The stage between the
mitosis events is called the interphase. These various stages of cell life cycle are
shown in Fig. 1. Given a video, the problem is to classify each cell in it according
to the stage of mitosis it is in.
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Fig. 1. The six main stages of cell life cycle: (a) Interphase, (b) Prophase, (c)
Prometaphase, (d) Metaphase, (e) Anaphase and (f) Telophase. The second row in
(a)-(f) show the corresponding phenotypes of the nuclei, shown in orange in the first
row.

In biology research labs, often, different types of cells are analyzed, using
different dyes and illumination methods. This makes the problem challenging,
as a learning system trained on one type of cell with certain dye and illumination
will not work well in other situations. To retrain the algorithm, an expert has
to painstakingly label a new sequence and this is again time consuming, and
undesirable.

Using cell population analysis tools such as the one in [2] to perform this task
does not often suffice. Studying the temporal dynamics of cell phenotypes at a
single cell level across a recording is an important aspect of the state-of-the-art
biology research [4].

Thus, from a time-lapse microscopy video analysis system, we desire the
following three properties:

1. it should be able segregate multiple stages of the cell life cycle.
2. it should be unsupervised.
3. it should model the cell phenotypes in tracks of single cells extracted from

across the video.

For unsupervised clustering tasks, Hierarchical Dirichlet Processes (HDP)
and their variants have been used before on tasks ranging from text analysis [13]
to Traffic Scene Analysis [15]. Since the traditional HDP models lack the ability
to handle temporal information, using HDP to provide prior distribution for a
Hidden Markov Model (HMM) was proposed in [13]. This HMM will model the
temporal changes in cell morphologies, resulting in unsupervised clustering. To
model distances in feature spaces better compared to standard topic models,
Rematas et al. [12], proposed a Kernel Density Estimate (KDE) based scheme
for LDA models. Here, the dictionary-of-visual-words representation of standard
HDP models is replaced with kernel densities, making the approach wordless. We
combine the above ideas to formulate a wordless Hierarchical Dirichlet Processes
- Hidden Markov Model (wHDP-HMM), derive the inference procedure for the
model, and develop an unsupervised method based on it to cluster cells in a
time-lapse video according to the stage of life cycle they are in.
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This paper is arranged as follows. In Sect. 2 we provide a brief overview of the
existing literature on the problem. Sect. 3 discusses our temporal HDP model,
and inference procedure. Experiments conducted on two publicly available data-
sets are described in Sect. 4, along with results and discussions. Sect. 5 covers
some concluding remarks and ideas for future work.

2 Previous Works

Due to its immense potential in aiding biology research, the problem of cell
life cycle modeling has been extensively dealt with in the past. The approach
of Yang et al. [16] performs the tasks of segmentation, tracking and mitosis
detection. They use level-set methods for segmentation and tracking and use
image attributes like circularity, area, average intensity etc. to classify cells under
mitosis. While they report good results, it is to be noted that their approach is
only effective in detecting late anaphase/telophase. Furthermore, each different
sequence has to be separately analyzed and parameters over attributes need to
be readjusted.

Supervised cell life stage classification problem has been dealt with previously
with considerable success. Online Support Vector Classifiers are used in [14],
continuously retraining the model to accommodate changing experimental con-
ditions. But they do not consider temporal information that can be an important
influence on the performance. Liu et al. [9] and Huh et al. [6] use Hidden Condi-
tional Random Fields (HCRF) and their variants to perform mitosis detection
on four stages of mitosis. Harder et al. [4] performed mitosis stage classification
through a finite state machine (FSM), also accounting for abnormal shapes. The
authors use cell tracks to construct time series and traverse a FSM for each track.
Thus, they prevent biologically impossible results and improve the performance.
Further in the time series-based methods, the HMM-based approaches of Held
et al. [5] and Gallardo et al. [3] were demonstrated to perform very well. In their
approach, a HMM was trained with the mitosis stages as the hidden states of
the Markov model. We use this idea in our model (cf. Sect. 3).

The recent Temporally Constrained Combinatorial Clustering (TC3) scheme
of [17] tackles a scenario similar to ours, and reports the best results on a pub-
licly available data-set, according to our knowledge. Hence we use this in our
performance analysis. The TC3 scheme is a combinatorial clustering scheme with
biological causality constraints like “no cell goes back to the previous state of its
life”. Similarly to the approaches of [4, 5], they segment the cells in each frame,
extract various features such as shape, intensity etc., and construct multiple time
series by tracking each cell using a nearest neighbor tracker. They then use the
TC3 stage followed by Gaussian Mixture Model Clustering and then by a HMM
stage to improve performance by correcting errors.

Whereas the approach of Zhong et al. [17] performs quite well, the clustering
stages consider each individual cell time series and does not take into account
the clustering in other time series. However, information regarding the causal
progression of life stages in cell time series can be shared among the time series to
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Fig. 2. Our wHDP-HMM model, with correspondences of the model components to
data representation for microscopy videos.

improve the performance. This leads us to apply HDP models, as they inherently
share information among various data groupings.

Unlike the various methods discussed above, our model has three impor-
tant aspects, namely, (i) unsupervised clustering, (ii) temporal modeling and
(iii) sharing information among different time series.

3 Wordless HDP-HMM

Figure 2 shows our wHDP-HMM model. It is to be noted that, unlike the HDP-
HMM models of [8, 13], we limit our HDP-HMM model to single HMM. This is
due to the fact that biologically, causal ordering in cell life cycle is fixed and one
HMM is sufficient to model it.

3.1 Modeling Principles

We now describe the generative process within our model. As shown in Fig. 2,
the topmost level is the whole sequence, which is the complete set of cell tracks,
represented by a Dirichlet Process (DP), G0. This DP is parametrized by the
concentration parameter γ and the base distribution H. (a more detailed descrip-
tion of HDP is presented in [13]). The base distribution is set to be a Dirichlet
distribution, with a hyper-parameter ζ. In the standard HDP terms, this level
corresponds to the data corpus.

From the DP G0, M number of cell tracks are sampled. And each cell time
series is associated with a DP Gm (m ∈ [1,M ]), with α as the concentration
parameter and G0 as base distribution. These correspond to documents in HDP
models.

And these cell time series DPs provide priors for the HMM hidden states
vt,m (t ∈ [1, T ], m ∈ [1,M ]). These state variables vt are indicator variables
which denote which of the six states θk most likely generated the corresponding
feature vectors xt. The features are seen as originating from the feature space
F , which is a deviation from the usual HDP models where the feature words are
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seen as samples from a dictionary with multinomial distribution for sampling. In
the following, we omit the time series index m for variables v and x for lucidity.
In HDP terms, v correspond to topic mixtures and x to words.

We have the following generative model:

G0 | γ,H ∼ DP (γ,H)

Gm |α,G0 ∼ DP (α,G0) for m ∈ [1,M ]
(1)

And for each time series m,

vt | vt−1, Gm ∼ Gm for t ∈ [1, T ]

xt | vt, θk,F ∼ F (θvt) where k ∈ [1,K]
(2)

Where F (·) is the prior feature distribution given the state. In line with the
biological considerations as explained in Sect. 1, we set the number of states K
for our problem of mitosis stage modeling to six.

3.2 Inference

Given the observed data xt for all cell time series, to estimate the hidden states
vt, we perform Bayesian inference using the Markov Chain Monte Carlo proce-
dure, specifically the Gibbs sampling scheme. Here, we iterate over the condi-
tional distribution of the hidden states given the previous state and the feature
vectors. This distribution can be factored as follows.

P (vt = k | vt−1, xt) ∝
P (xt | vt = k, vt−1, x1,...,(t−1),(t+1),...,T )P (vt = k | vt−1)

(3)

Here, the first term in right hand side is the probability of word distribution,
and following the idea of [12], we evaluate it through Gibbs iteration as follows.

P (xt | vt = k, vt−1, x1,...,(t−1),(t+1),...,T ) ∝ 1

|Φk,t′ 6=t|

T∑
t′

Φk,t′ ·K(xt, xt′) (4)

where K(·) is the kernel function and Φ is the |F| ×K matrix of features and
their corresponding topic allocations.

The second term in the right hand side of (3), P (vt | vt−1) is the transition
probability of the HMM. This is evaluated by first initializing it to α and then
iteratively evaluating

P i(vt = k | vt−1) ∝
P i−1(vt = k | vt−1) + α· P i−1(v0=k)∑

k P
i−1(v0)+γ∑

k′ 6=k P
i−1(vt = k′ | vt−1 = k) + α

(5)

where i represents the iteration index. The derivation of (5) follows similarly to
the one of Infinite HMM discussed in [1].

For the overall inference task, we alternate between the Gibbs sampling and
transition probability iteration at each step. The hyper-parameters α and γ are
also sampled, whose details are discussed in [1, 13].
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(a) cellcognition (b) mitocheck

Fig. 3. Example frames from the two data-sets used for experimental evaluation of our
method.

4 Experiments and Results

4.1 Data-sets

The cellcognition data-set The cellcognition data-set from [5, 17] is a part
of the Cellcognition1 project. An example frame can be seen in Fig. 3(a). The
reference data consists of 7 sequences of RNAi treated human HeLa Kyoto cells
expressing fluorescent H2B-mCherry (orange) and α-tubulin (green). The frame
resolution is 1392×1040 pixels. The data-set, in total, contains 363,120 individual
cell objects, segmented and tracked using the Cellcognition framework. There
are 9,078 cell division events in the whole data-set.

The data-set comes with ground-truth regarding the life cycle stage of each
segmented cell. Furthermore, the authors provide 257-dimensional feature vec-
tors they extracted for each cell. These features consist of various intensity,
shape, and texture features. We use these features in our experiments to effec-
tively compare our method with respect to theirs.

The mitocheck data-set The mitocheck data-set of [11] is a part of the
mitocheck project2. Overall, the database contains more than 129,500 video se-
quences, each of approximately 32 seconds, recorded at 2 fps. The frame resolu-
tion is 1344 × 1024 pixels. Since the data-set is extremely large, to restrict the
task of evaluation to reasonable limits without giving up significantly on gener-
ality, we randomly selected a subset of 100 sequences from them, each containing
on an average 64 frames.

In the publicly available data-set videos, frames contain the mCherry ex-
pressing nuclear spindles, i.e. the microtubule structures formed during mitosis.
Thus, the task is to segment the spindles, track and extract them, and to apply
our wHDP-HMM to cluster them.

Segmentation for this data-set is performed using the ilastik3 framework and
tracking is done using the two-stage graph optimization method of Jiang et
al. [7].

1 http://www.cellcognition.org
2 http://www.mitocheck.org
3 http://www.ilastik.org

http://www.cellcognition.org
http://www.mitocheck.org
http://www.ilastik.org


Unsupervised Cell Phenotype Clustering 7

Since the ground-truth for the data-set has not been made public, we have
manually marked the ground-truth. The ground-truth was marked by two non-
experts independently and conflicts in markings were resolved in a second iter-
ation by one of them. Owing to the fact that the ground-truth markings were
not done by biology experts, class labels were limited to the clearly defined
telophase. Thus, evaluation on this data-set is limited to two classes, telophase
and non-telophase. The data-set contains 994,163 cell objects (returned by the
segmentation step) and 16,491 cell division instances.

4.2 Experimental Set-up and Evaluation

We design our experiments in order to demonstrate our various modeling choices
such as the use of KDEs as opposed to the standard co-occurrence statistics in
HDP models. In the following, we describe the experimental set-up in each case.

Standard HDP The standard HDP model is used to analyze the video. As
the model lacks the capability to handle temporal information, the representation
of the data is changed for this case. Here, cells are detected from each frame
and features for them are extracted. These features are then used to build a
dictionary with 512 visual words, using a Gaussian Mixture Model clustering
algorithm. These visual words from each frame form one document for the HDP.

Once we have this grouped representation, we analyze the data through
Bayesian inference, with topics representing cell states. For our experiments,
we set the three hyper-parameters to 0.5. These hyperparameters are resampled
based on the data later and initial values do not affect the results by a large
margin.

HDP-HMM Following the standard HDP, we test the HDP-HMM algo-
rithm presented in [8,13]. Here, we analyze the cell time series data from track-
ing and make use of the temporal information. In Gibbs sampling, we use the
co-occurrence statistics as described in [13]. For this, we construct a dictionary
as with the standard HDP model. Thus, we see the effects of not using the cell
morphology information explicitly in modeling, and only implicitly through dic-
tionary construction. In this experiment, we set the hyper-parameter values as
with the standard HDP.

wHDP-HMM Here, we use the cell time series information as for the HDP-
HMM case. However, unlike before, we now use the kernel matrix of the features
extracted in stead of the co-occurrence statistics, as discussed in Sect. 3. For our
experiments, we used the Gaussian Radial Basis Function (RBF) kernel, with
parameter σ = 1.5, determined through cross-validation.

Evaluation Metrics For evaluation, we follow the evaluation schemes of
[17]. Thus, if TP represents true positives, TN - true negative, FP - false positive,
and FN - false negative, then,

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

F-score =
2 · (Precision× Recall)

Precision + Recall

(6)
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(a) Interphase (b) Prophase

(c) Prometaphase (d) Metaphase

(e) Anaphase (f) Telophase

Fig. 4. Unsupervised clustering results using our wHDP-HMM model for the cellcog-
nition data-set.

For both the data-sets, we average and report the results over all the sequences
involved, and additionally report the maximum deviation from it.

4.3 Results and Discussion

Results for the cellcognition Data-set

For the experiment involving HDP, HDP-HMM and our wHDP-HMM models,
we ran 1500 iterations each of the Gibbs sampler. Our unoptimized MATLAB®

code for the wHDP-HMM model, the whole process took 20 minutes per video
of approximately 200 frames, with precalculated feature kernels. In comparison,
the method of [17] took 15 minutes with precomputed feature data.

Figure 4 shows some unsupervised clustering results. It shows some nuclear
spindle images clustered into each group by our method. As can be seen, the
algorithm preforms reasonably well in separating the cell life stages. Due to
their closeness in morphology and temporal ordering, anaphase and telophase
are often confused. This is reflected in the quantitative results as well, as we
shall see in the following.

Table 1 shows the quantitative results for the cellcognition data-set. For [17],
we use the results reported by the authors. As can be expected, owing to its
being the first stage and morphologically separated from the rest of the stages,
performance for the interphase is better than the rest. The performances for
the following three phases are quite similar to one another. The last two stages,
anaphase and telophase have relatively worse performance, as their morpholog-
ical closeness results in increased confusion.
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Table 1. Results for various experiments over the cellcognition data-set. The numbers
represent the mean values over 7 sequences and maximum variations. “ [17] TC3+”
implies the results of the TC3+GMM+DiscreteHMM approach of Zhong et al., as
reported in the cited paper.

Precision
Algorithm Inter Pro Prometa Meta Ana Telo

[17] TC3+ 95.97±0.83 83.53± 2.07 91.47±2.45 96.82±0.92 80.57± 7.67 84.57± 5.28

HDP 94.72± 1.47 74.03± 1.79 69.12± 1.05 78.23± 2.02 58.02± 6.52 51.21± 3.49

HDP-HMM 93.45± 1.03 79.25± 1.93 76.24± 1.63 81.02± 1.95 72.12± 5.67 67.02± 2.89

wHDP-HMM 93.11± 0.98 85.43±1.47 88.94± 2.85 92.25± 1.37 81.44±6.73 86.74±3.28

Recall
Algorithm Inter Pro Prometa Meta Ana Telo

[17] TC3+ 99.51± 0.32 82.75± 4.13 84.43± 2.96 88.24± 3.63 80.22± 6.24 79.50± 5.09

HDP 96.13± 0.75 71.32± 2.94 69.03± 1.89 64.57± 4.31 66.18± 4.21 64.14± 6.12

HDP-HMM 98.78± 1.26 80.37± 3.12 81.52± 2.41 83.31± 4.10 79.05± 4.69 69.31± 5.64

wHDP-HMM 99.62±0.94 85.01±3.25 88.81±1.79 90.02±2.72 82.33±5.82 81.12±4.62

F-score
Algorithm Inter Pro Prometa Meta Ana Telo

[17] TC3+ 97.69±0.36 82.84± 2.62 87.64± 2.35 92.05±2.00 80.03± 6.79 81.51± 4.70

HDP 95.14± 0.99 72.36± 2.27 68.93± 1.35 70.53± 2.95 61.71± 5.26 58.08± 4.72

HDP-HMM 95.86± 1.12 79.55± 2.35 78.43± 1.94 82.04± 2.71 75.12± 4.93 68.05± 4.26

wHDP-HMM 96.03± 0.95 84.89±2.48 88.43±2.03 90.92± 1.98 81.65±6.02 83.57±3.63

Results for the mitocheck Data-set

Similar to the previous data-set, for the experiment involving HDP, HDP-HMM
and our wHDP-HMM models, we ran 1500 iterations each of the Gibbs sampler,
and one round of execution time for our wHDP-HMM was approximately 13
minutes for a video of 64 frames.

Figure 5 shows the unsupervised clustering for the mitocheck data-set. Again,
it can be noted that there is greater confusion between anaphase and telophase
than among other phases.

Table 2 shows the quantitative results for the mitocheck data-set. For [17],
we use the program made public by the authors and use parameter settings used
by them. Performance is measured only with respect to the telophase, since the
ground-truth only involved the this stage. As can be seen, our method performs
well compared to other schemes. Nevertheless, the added confusion in the Markov
chain shows that low frame rates in video recordings of time-lapse microscopy
can have detrimental effects on the performance of cell tracking based approaches
like ours, due to gaps in time series.

5 Conclusions

We presented the wHDP-HMM model and as discussed Sect. 1, used it to per-
form the task of unsupervised mitosis stage modeling in time-lapse microscopy
videos, represented in terms of temporal tracks. In our model, HDP provides
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(a) Interphase (b) Prophase

(c) Prometaphase (d) Metaphase

(e) Anaphase (f) Telophase

Fig. 5. Unsupervised clustering results using our wHDP-HMM model for the mitocheck
data-set.

Table 2. Results for various experiments over the mitocheck data-set. The numbers
represent the mean values over 100 sequences and maximum variations. “ [17] TC3+”
implies the results of the TC3+GMM+DiscreteHMM approach of Zhong et al., obtain-
able from the code made public by the authors.

Method Precision Recall F-Score

[17] TC3+ 83.19± 4.47 76.29± 3.52 79.41± 3.83

HDP 51.03± 3.63 62.86± 5.45 56.11± 4.45

HDP-HMM 66.47± 5.26 68.13± 5.23 67.04± 5.24

wHDP-HMM 84.52± 3.79 79.48± 4.71 81.62± 4.02

prior distributions for the HMM, making the system unsupervised and able to
handle temporal information. To directly handle cell phenotypes, we replace the
co-occurrence based sampling scheme of standard HDP- HMM models with one
based on kernel density estimates.

We demonstrated the performance of our method using two publicly available
data-sets: cellcognition and mitocheck. The results compared favorably with the
state-of-the-art.

The Bayesian inference step is a time-consuming operation and in deployment
scenarios, maybe undesirable. To handle this situation, one can use a two-stage
approach, combining our generative model for training and a discriminative clas-
sifier for testing. Furthermore, it will be of immense practical use if it is possible
to extend the model to jointly perform tracking and clustering. Another inter-
esting idea for future research is to extend the model to allow a certain degree
of user interaction, so that an expert user can provide a few inputs to improve
system performance.
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