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Abstract

Recent approaches in traffic and crowd scene anal-
ysis make extensive use of non-parametric hierarchical
Bayesian models for intelligent clustering of features into
activities. Although this has yielded impressive results, it
requires the use of time consuming Bayesian inference dur-
ing both training and classification. Therefore, we seek to
limit Bayesian inference to the training stage, where un-
supervised clustering is performed to extract semantically
meaningful activities from the scene. In the testing stage,
we use discriminative classifiers, taking advantage of their
relative simplicity and fast inference. Experiments on pub-
licly available data-sets show that our approach is compa-
rable in classification accuracy to state-of-the-art methods
and provides a significant speed-up in the testing phase.

1. Introduction
Inferring spatio-temporal dependencies is a major chal-

lenge in machine vision. As providing training labels is of-
ten difficult or impractical in these situations, it becomes
imperative to use unsupervised learning approaches. Signif-
icant progress has been made over the years on the problem
of unsupervised scene analysis and event detection (some
early examples can be seen in [16, 8]). The problem is
not only theoretically important, but also has many practical
applications, such as traffic scene analysis, crowd behavior
analysis etc. [19, 9, 6].

We concentrate here on the application of unsupervised
traffic scene analysis (cf. Fig. 1). In these videos, activities
happening in the scene are characterized by the relation-

Figure 1. Examples of typical traffic scenes. Some of the activities
have been marked with arrows. Activities are characterized by the
spatio-temporal relationships between the motions of the actors.

ships (both spatial and temporal) between the movements
of the contained objects. The main issues here are the com-
plexity of the scenes and the high variability of objects in
terms of appearance. There are often more than a hundred
objects in the scene and it is nearly impossible to use sim-
ple object tracking approaches to analyze these situations
due to heavy occlusions. As can be seen from Fig. 1, sim-
ple clustering and classification schemes will not be able to
handle the activities at the junction.

The dynamic complexity of the scene motivates us to
use low-level features such as optical flow and then use
non-parametric methods to cluster them into meaningful ac-
tivities. A frequently adopted approach to achieve this is
to use probabilistic topic models [19, 9, 7]. These mod-
els can extract meaningful latent structures from the input
data. However, a major shortcoming is the time complex-
ity of these models, especially when new large-scale video
streams need to be analyzed. Therefore, the main contribu-
tion of this paper is a novel way of combining generative
(in this case the Hierarchical Dirichlet Processes (HDP)
models) and discriminative models in a step-wise manner to
reduce computational complexity and running time during
testing. This allows for using models learned from HDP for
traffic scene analysis. Furthermore, previous studies pro-
vided only a limited quantitative evaluation of these strate-
gies mostly tested on data-sets with only very basic activi-
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ties (e.g., horizontal and vertical motion used in [10, 11]).
In contrast, our analysis is based on three publicly available
data-sets with one containing seven different activities.

1.1. Previous Work

Li et al. [10] and Hospedales et al. [6] demonstrated the
possibility of using topic models from natural language pro-
cessing domain for video analysis. Further works by Kuet-
tel et al. [9] and Wang et al. [19] established the effective-
ness of HDPs for video scene analysis with an emphasis on
crowd and traffic scenes. There are other approaches in the
same line, e.g. [7, 11], which use various adaptations of the
topic models to the problem at hand. The main step in these
approaches is the Bayesian inference of latent parameters,
where the observed words in documents are clustered into
topics based on co-occurrence. A major stumbling block
here is that the Bayesian inference step is computationally
expensive, in spite of attempts such as that by Yao et al.
[20] to reduce this overhead. The complexity mainly arises
from the fact that each sampling iteration requires a large
number of operations to be performed, including random
number generation.

Another interesting method tackling the problem is the
one by Ricci et al. [14]. The authors extract activity his-
tograms from short motion trajectories and then use the
Earth Movers Distance (EMD) as the objective function to
solve the resulting matrix factorization problem for cluster-
ing. However, when one needs to consider a large dimen-
sionality of histograms or a large number of words, the opti-
mization problem can be cumbersome and time consuming.
In such cases, topic models are a better alternative and our
approach, as we will see, handles such situations well and
provides comparable performance.

In the works by Nater et al. [12, 13], simple tracker
hierarchies are arranged in a tree-structure to analyze hu-
man behavior. However, they only consider temporal inter-
dependencies and hence can not separate two atomic activi-
ties happening at the same time. Our approach, being based
on the HDP model, inherently clusters based on spatio-
temporal co-occurrences and is therefore a more represen-
tative model of the scene. Fritz et al. [4] also use generative
models to initially cluster features into classes, but their ap-
proach requires additional knowledge about the system, like
the number of target classes.

We use topic models to extract activities from the ob-
served motion vectors and use these for training a discrimi-
native classifier. This gives us the full capabilities of HDPs
in modeling complex scenes with the speed of discrimina-
tive classification approaches during testing time. We will
also demonstrate that our approach performs at least on par
with the state-of-the-art with respect to recognition accu-
racy.

Figure 2. A complete HDP model formulation (from a stick-
breaking construction perspective)

2. Hierarchical Dirichlet Processes
Modeling principles : The use of HDPs for modeling ma-
chine learning data followed the seminal work by Teh et al.
[15]. These models can be viewed as a generalization of La-
tent Dirichlet Analysis (LDA) [2], but unlike LDA, in HDP
models, the number of latent topics is inferred from the data
and a small number of hyper-parameters. Figure 2 shows
the basic HDP model. Suppose we are given an input data
corpus, which is split intoM groups (commonly referred to
as documents) and each document contains Nm data points
xm,n(called words). It is then the goal of the HDP model to
cluster these words into meaningful latent structures (called
topics). It is worth noting that the order/position of the ap-
pearance of the words within a document is not considered
inherently by this approach.

For video processing, we follow [9, 19], i.e., a corpus
corresponds to the whole video, documents correspond to
clips, topics correspond to atomic activities and words cor-
respond to the 4-tuple of optical flow and position coordi-
nates. We use these pairs of terms interchangeably in this
work.

In an HDP, a Dirichlet Process(DP) generates the global,
video-wide list of activities. Then, for each clip, we have
a DP generating the list of activities in that particular clip.
These clip-specific DPs are seen to be drawn from the global
list. Formally, we write the generative HDP formulation as
follows.

G0 | γ,H ∼ DP (γ,H)

Gm |α,G0 ∼ DP (α,G0) for m ∈ [1,M ]
(1)

The hyper-parameters γ and α are called the concentration
parameters and the distribution H is called the base distri-
bution (which, in our case, is Dirichlet distributed with a
parameter D0). Next, the observed words xm,n are seen
as being sampled from the mixture priors φm,n, which in
turn are seen as being drawn from a Dirichlet Process Gm.
The possible values for mixture components are drawn from
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another process, θk. Thus, the remaining part of the formu-
lation of this construction can be written as,

θk ∼ P (η) for k ∈ [1,∞)

φm,n |α,Gm ∼ Gm for m ∈ [1,M ], n ∈ [1, Nm]

xm,n |φm,n, θk ∼ F (θφm,n
)

(2)
Here, M is the number of clips, Nm is the number of words
in clip m, P (·) is the prior distribution over topics and F (·)
is the prior word distribution given the topic.
Bayesian Inference : In our task, we have to tackle the
problem of Bayesian Inference, i.e., given xm,n, how to
calculate φm,n? In general, this is a hard problem and
closed form expressions do not exist for the target distri-
butions. Hence, we need to use approximate methods, like
the Markov Chain Monte Carlo (MCMC) methods ([1, 5]),
especially Gibbs sampling. Using the well-known Chinese
Restaurant Franchise-based formulation, we obtain the fol-
lowing expression for sampling the conditional distribution
for Gibbs sampler iteration ([15]):

p(φm,n = k |x, α, γ, η, θ,H) ∝

(n¬m,nm,k + αθk) ·
n¬m,nk,t + η

n¬m,nk + V · η
(3)

where nm,k, nk,t and nk represent count statistics of the
word-topic associations, topic-document associations and
the topic-wise word counts, respectively. The superscript
¬m,n indicates that the present word, xm,n, is to be ex-
cluded from these statistics. V is the size of the dictionary.

The first term in equation (3) implies that, the probability
that the current word will be associated with a topic, is pro-
portional to the number of words already assigned to that
topic. The second term (which is the probability of start-
ing a new topic) shows that the hyper parameters α, γ and
especially η can be used to control the number of topics in-
ferred. We also perform hyper-parameter sampling to make
our framework completely data-driven, without any super-
vision.

3. Fast Activity Classification

Our approach is a step-wise combination of generative
and discriminative approaches. In the first step, we take
a training video (split into M clips), from which activi-
ties θk are extracted. They are then assigned to flow-words
xm,n by mixture variables φm,n. In the second step, we
use the set of pairs (xm,n, φm,n) obtained from the gener-
ative model as the training data for a discriminative classi-
fier. Once such a classifier is trained, in the third step, new
unseen incoming video data is analyzed using the discrim-
inative classifier trained previously. We now describe the
process in more detail. Figure 3 summarizes our approach.

(a) Training

(b) Testing

(c) Process of extracting a bag-of-flow words representation for
each clip

Figure 3. Summary of our step-wise approach.

From the input video, we extract the optical flow for
each consecutive pair of frames. For this, we use the pub-
licly available implementation of the TV-L1 algorithm [21].
Next, the optical flow vectors are thresholded to remove
noise and are quantized into 8 directions. A dictionary is
then built with all possible flow words (flow words are four-
tuples, with the x-y co-ordinates and associated flow val-
ues). Then, we divide the video into clips of equal size (of
a few seconds) and form a bag-of-words representation for
each clip. Figure 3(c) shows this process.

Next, we perform Bayesian inference for HDP. The
hyper-parameters are set to control the total number of top-
ics extracted. For each word in the input data, we get one
topic associated with it. Though in theory we can have an
infinite number of topics, we consider only the activities
which explain at least 5% of the scene. The others are of-
ten insignificant topics, containing too few flow words to
explain any meaningful activity in the scene and arise most
often due to noisy flow features.

The next step is the training of a discriminative classifier.
For this purpose, we use a one-versus-all C-SVM classi-
fier (using [3]) with a Gaussian Radial Basis Function(RBF)
kernel (similar to [4]). Since we have multiple classes, we
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train K (number of topics) binary C-SVM classifiers and
vote for the final classification. Flow words of each class
form the positive samples for it and the rest form the neg-
ative samples. Finally, the incoming video is grouped into
clips and optical flow words are extracted, which are then
classified by the SVM classifier.

The activities happening in the scene are determined by
voting. Not all activities are present in all image regions.
Thus, to boost the performance of the classifier, we split
each frame into 4 quadrants before training, which reduces
classification problem size by restricting the classification
problem to the activities within the respective quadrants.
Abnormality Detection: For abnormality detection, we
take the classification results of the above SVM classifiers
and simply declare non-conformants as abnormalities. For
example, if the classification result declares that 2 activities
are happening in a clip, then, any flow vector that does not
belong to these activities is an abnormality (we ignore sin-
gle outliers as noise and consider only groups of a minimum
of 4 flow words). This method, while simple, yields satis-
factory results, as will be shown later. As can be expected,
the gain in computation speed and reduction of algorithm
complexity is quite considerable, when contrasted with an-
other inference step required by purely generative methods.
There, one has to perform another sampling step to deter-
mine the probability that the new document was generated
by the learned model and then mark as abnormality the clips
with very low probability.

4. Experiments and Results
For validating our approach, we have used three different

publicly available data-sets. The Bayesian inference dur-
ing training was realized with a Gibbs’ sampler. To speed
up computations and to reduce the number of iterations re-
quired, we used the techniques proposed in [20]. We also
used the split-and-merge procedure described in [18]. As
mentioned before, hyper-parameter were sampled to make
them driven by data, but as initial values, we set α = 1,
γ = 1 and η = 0.5 in all cases.

4.1. Complex Activity Extraction and Classification

Data-set : In the relevant previous works like [11, 14],
one major drawback in assessing true performance is that
they generally use data-sets with ground truth labels such as
“horizontal” or “vertical” traffic flow. This leads to a rela-
tively simple recognition problem that does not demonstrate
the true capabilities of the respective methods in extracting
complex meaningful activities from the scene in an unsu-
pervised manner.

To overcome this problem and to demonstrate the capa-
bility of our fast HDP techniques, we use the Traffic dataset
of [17]. This video contains over 44 minutes of recording of
road traffic with a resolution of 360× 288 pixels per frame.

(a) (b)

(c) (d)

Figure 4. Activities extracted by the HDP model for the Traf-
fic sequence. The arrows in white show the ground truth activi-
ties. (Split into four images for better viewing)

The video was split into clips of 10 seconds each, to obtain
265 clips. We divided them into 100 training and 165 testing
clips. A human annotator marked the salient and semanti-
cally meaningful activities in the scene, at the scene level
(not at the flow-word level)1. There were 7 activities in the
ground truth, 3 vehicular and 4 pedestrian. Figure 4 shows
an example frame with ground truth activities marked with
the thick arrows.
Results : To qualitatively analyze the output of our method,
we plot the activities extracted by the HDP model for the
Traffic sequence in Figure 4. As can be seen, these ex-
tracted activities closely match the human ground truth
markings, and it shows that our method can extract complex
and semantically meaningful activities that simple cluster-
ing/classification schemes can not extract and classify.

We compare our results with the purely generative ap-
proach of [9], using the code made public by the authors.
Table 1 shows the results. Our approach performs better in
terms of accuracy, and, more importantly, in terms of run
time during testing.

To compare our method with a baseline cluster/classify
scheme (without supervision) and to demonstrate where
such simpler schemes fail in the present application, we
used Gaussian Mixture Model (GMM) clustering with 7
cluster points. Classification was performed as before us-
ing the SVM classifier learned from the extracted clusters.
The accuracy for this method was only 45.43% and it failed
where activities were mainly consisting of diverse flow di-
rections or overlapped spatially.

1Ground-truth link: https://cms.rz.uni-jena.de/bin/
page/index.php?id=710&suffix=zip&nonactive=1&
lang=de&site=dbvmedia
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Table 1. Comparison of our approach with that of [9] on the Traffic
dataset.

Data-set Accuracy Training Time Testing Time
DDP-HMM [9] 87.88% 26 min 31 min
Our Approach 92.12% 12 min 4 secs

(a) Junction (b) Roundabout

(c) MITTraffic

Figure 5. Example frames of the Junction, Roundabout and MIT-
Traffic sequences.

4.2. Comparison with State-of-the-Art

To demonstrate that our two-step method performs on
par with state-of-the-art even while providing significant
gains in terms of reduced complexity and run time in
the testing stage, we use publicly available data-sets with
marked ground truth. In order to make the comparison
meaningful, we used parameters consistent with previous
works in extracting and quantizing optical flow, with 8 flow
directions [9]. We compare our method with [14, 11, 9].
For [9], we used the code made available by the authors.
For [14, 11, 9], a direct comparison with the their results is
possible on the following data-sets.
Junction and Roundabout data-sets : The Junction and
Roundabout data-sets ([11, 10]) are made up by 33600 and
61500 frames, respectively, each of size 360 × 288 pix-
els. The videos are divided into clips of 12 seconds each.
Example frames can be seen in Fig. 5(a) and 5(b). There
are 8 abnormal activities in the Junction video and 6 in the
Roundabout video.

In these data-sets, the density of vehicles is compara-
tively high and motion is, therefore, quite complex. The
ground-truth data is supplied with the data-sets (with two
simple labels, i.e., horizontal and vertical traffic flow).
MITTraffic data-set : The MITTraffic dataset ([19]) con-
tains 20 video recordings of a traffic junction. The first
video has 8295 frames and the subsequent videos have 6920
frames each. The frame size is 720 × 480. We split the
videos into clips of 8 seconds each. Figure 5(c) shows ex-

Figure 6. Six most probable activities extracted for the Junction
dataset.

Table 2. Comparison of classification accuracy
Data-set EMD-

L1 [14]
Cas-
pLSA [11]

DDP-
HMM [9]

Our Ap-
proach

Junction 92.31% 89.74% 87.18% 92.31%
Roundabout 86.4% 76.2% 83.05% 88.13%
MITTraffic NA NA 84.21% 89.47%

ample frames for this sequence. As the ground-truth data
was unavailable for this data-set, they were marked in a
manner consistent with the previously mentioned data-set.
We divided the traffic flow into horizontal and vertical di-
rections and used that as the ground-truth for the clips.
Results : Figure 6 shows the actions extracted for the Junc-
tion sequence. Even though our method extracts many com-
plex activities from the scene (as shown in Fig. 6), due to
limitations in data-set ground truth (and to enable effective
comparison with [14, 11]), quantitative evaluation is per-
formed by mapping the perceived activities to two-classes
in the case of Junction, Roundabout and MITTraffic videos
depending on the mean flow direction. Table 2 summarizes
the results.

The results show that our algorithm achieves same levels
of performance compared to other relevant works. The real
gain, however, is in run time. For the MITTraffic sequence,
the completely generative approach of [9] took 38 minutes
to train and 41 minutes to test, whereas our approach only
required 12 minutes and 5 seconds respectively.

In the baseline GMM-based approach of Sec. 4.1, with
the number of clusters set to 2 (for horizontal and vertical),
we achieved a classification accuracy of 97.36% for Junc-
tion data-set, which demonstrates that the simplistic ground
truth provided with the Junction and Roundabout data-sets
is not sufficient to quantitatively analyze the capabilities of
activity extraction and classification systems.

4.3. Abnormality Detection

We performed abnormality detection for the Junction
and Roundabout data-sets using their ground truth. For the
Junction video, we achieved True Positive Rate (TPR) of
75% at a False Positive Rate (FPR) of 12.9% and for the
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Figure 7. Detected abnormality in clip 4 of the Junction data-set,
where a fire-engine interrupts traffic flow. (Some flow vectors have
been removed to improve visibility.)

Roundabout sequence, we achieved TPR of 83.33% at a
FPR of 22.64%. These results compare favorably with those
reported in [11] (TPR of 75% at FPR of 12.9% for Junction
and TPR of 83.33% at FPR of 33.9% for Junction video).
Figure 7 shows an abnormality detected in a clip from the
Junction sequence, caused by a fire engine interrupting the
normal traffic flow.

5. Conclusions

We have presented a novel combination of generative
and discriminative models for the purpose of unsupervised
traffic scene analysis and fast analysis of large-scale video
data. Results demonstrated that our method is capable of
perceiving meaningful activities from complex traffic video
data. We also showed that while this method achieves
state-of-the-art performance in both classification accuracy
and abnormality detection, it provides significant speed up
in computation time by approximating Bayesian inference
during testing with a margin-based classifier.

We have considered the application of traffic scenes in
this work. However, our approach is not limited to this
application and other feature representations could be used
in this setup. We hope that the speed up provided by our
method will widen the scope of HDP models to other video
scenes and application fields. Furthermore, currently, the
HDP models can not handle temporal ordering information.
Developing methods that can incorporate temporal informa-
tion into HDPs might be very useful in analyzing repetitive
activities in traffic scenes.
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