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Abstract. Segmenting videos into meaningful image sequences of some partic-
ular activities is an interesting problem in computer vision. In this paper, a novel
algorithm is presented to achieve this semantic video segmentation. The goal is to
make the system work unsupervised and generic in terms of application scenar-
ios. The segmentation task is accomplished through event detection in a frame-
by-frame processing setup. For event detection, we use a one-class classification
approach based on Gaussian processes, which has been proved to be successful
in object classification. The algorithm is tested on videos from a publicly avail-
able change detection database and the results clearly show the suitability of our
approach for the task of video segmentation.

1 Introduction

A major goal of computer vision is to make computers do at least some of the vision-
based tasks that are currently tedious or difficult for humans to perform. In many real-
world applications it is often the case that there is a large corpus/stream of videos with
interesting events sparsely spread over it. It then becomes an exhausting task to extract
interesting events from the huge amount of data. The aim of this work is to achieve this
interesting event extraction by segmenting the input video into various semantic phases.
Applications of this vary widely, e.g. in surveillance, most of the time nothing abnormal
happens but suddenly there is an important activity like breach of rules. In microscopic
videos recording microbial activities, interesting events happen sparsely over time and
it is a huge waste of manpower to keep it under constant observation. In such situations,
automated event extraction is a very important tool.

In addition, video segmentation gets us into important theoretical issues such as
what defines an interesting event and how can a machine guess by itself what an inter-
esting event may be. As definitions of events are application dependent, a generic def-
inition of an event can only be stated as : “Something that is not normal in the video”,
i.e. something novel. This leads us to the main contribution of this work: the application
of one-class classification (OCC) algorithms to generic unsupervised video segmenta-
tion. In our approach, detecting temporal novelties in a video is a big step towards
video segmentation. To perform one-class classification, we look among the various



approaches that have been proposed in the field of object classification. There exist var-
ious approaches based on one-class classification techniques, such as Gaussian process
regression (GPR) [3], support vector data description (SVDD) [9], one-class SVM [8],
or Parzen density estimation [6]. One can clearly see that the OCC setup matches our
problem scenario: a model of normality (or known patterns) has to be built by clustering
in the feature space and novelty is declared in case an outlier is met in the testing phase.
We show in the following sections how one-class classification techniques can be used
for video segmentation.

The remainder of this paper is organized as follows. First, in section 2, we review
related work in the field of video segmentation. A brief discussion of their relative ad-
vantages and shortcomings is provided. In section 3, we review one of the most promi-
nent OCC techniques, namely Gaussian process regression. We then present our video
segmentation approach in section 4 together with the explanation how to use OCC tech-
niques for event detection in videos. The results on the thermal videos of the CVPR
change detection dataset [2] are presented in section 5 highlighting the suitability of
our approach. A summary of our findings and suggestions for future research directions
conclude the paper.

2 Previous Work

The work by Koprinksa and Carrato [4] provides a good survey of video segmentation
techniques based on a very diverse range of theoretical concepts and for various ap-
plications. Most of the algorithms presented there concentrate on directly finding the
differences between frames through some distance measure between feature vectors of
consecutive frames. A threshold is then applied to this distance to achieve a segmenta-
tion. This approach yields reasonable results but is based on directly finding inter-frame
differences without modeling the underlying scenario. Thus, they can not detect seman-
tic changes, e.g. approaches based on global color histograms may not detect events
such as a person bending or falling as it is not likely that there is a significant change in
the color histogram.

Liu et al. [5] have presented an approach based on the perceived motion energy
feature, where optical flow vectors in each frame are averaged and multiplied with a
factor arising out of the dominant direction of motion. These features are then clustered
to form segments of the video corpus. This method is very useful for videos containing
a lot of motion, but when events happen that do not alter the motion profile of the frames
(e.g. color changes), it is likely to fail.

Therefore, we need a generic framework for video segmentation without assump-
tions of a specific application. The next section provides the theoretical aspects of our
proposed approach based on OCC.

3 One-Class Classification Techniques

In this section, we briefly describe the idea behind OCC as well as one of the most
prominent techniques, i.e. the Gaussian process regression framework presented by [3].



3.1 The Task of One-Class Classification

In an OCC scenario, there are only training samples X = (z",..., ™)) of a sin-
gle class available. Thus, all of them have the same constant label, e.g. y = 1 =
(1,1,..., l)T. This class is often referred to as target class and the corresponding sam-
ples as target data or target set [9]. The aim is to find an appropriate description of the
class distribution to distinguish this single class from every other possible and currently
unknown class. Therefore, a novelty score should be inferred for each test sample x*
such that a large score indicates strong membership to the target class. If this score is
below a certain threshold, the test sample will be treated as an outlier not belonging to
the estimated distribution. The following methods allow for a suitable modeling with
samples that only stem from a single class.

3.2 Gaussian Process Regression

The Gaussian process framework is a well-known probabilistic methodology that is suc-
cessfully used for tasks such as regression and classification [7]. In the case of Gaussian
process regression (GPR), outputs y(x) are assumed to be generated according to a la-
tent function f and a noise term &:

y(@) = f(z) +e . M

Following a Bayesian framework, output values of unknown samples x* are predicted
probabilistically by marginalizing over both latent function values and noise. While
this is in most cases infeasible to realize exactly, a few assumptions make the prediction
tractable:

1. Latent functions f are drawn from a Gaussian process prior with zero mean, and
covariance function k.
2. The noise term is assumed to be normally distributed: ¢ ~ N(0, 02).

Using these assumptions, the predictive distribution over output values is normally
distributed, i.e. y*| X, y, * ~ N (pi«, 02), where moments /1, and o2 can be computed
in closed form. The work of [3] shows how GPR can be used to solve OCC problems.
The authors propose using either the predictive mean p,. (GPR-Mean) or negative vari-
ance —o2 (GPR-Var) as novelty scores:

po =k (K+02I)"'1 and 2
~02 = — (ko — kI (K +020) "y +02) )

where K = k (X, X) , k. = k (X, 2*) , k.x = Kk (x*,2*), and I the unit matrix.

We have decided to choose the GPR approach, because it is shown by [3] that Gaus-
sian processes are superior to the SVDD approach of [9] in visual object categorization.
Since one-class SVM leads to equivalent results compared to SVDD [8], the GPR ap-
proach is our method of choice. Having this OCC technique on hand, we explain how
to use it for video segmentation in the next section.



4 Video Segmentation by Event Detection

In this section, we first focus on our idea of using OCC methods for video segmentation.
Afterwards, we present the algorithm of our OCC approach. The last part of this section
is about the features we use to obtain proper video segmentation.

4.1 The Idea of Our Approach

The goal of this work is to semantically segment videos into meaningful image se-
quences. To achieve such a partition, an approach similar to work flow segmentation
can be used, where different phases of the video are marked based on their semantic
content. In each time step, we model the current situation with a OCC model and then
look for special events (novelties) in the consecutive frames.

Thus, in our approach we want to detect events that lead to a change of the current
phase. This is carried out by using OCC methods as explained in the following section.
In the end, we are able to evaluate the resulting segmentation of the whole sequence
which comes from the detected events.

4.2 Our One-Class Classification Approach

Let us assume that there are features available for each frame stored in a specific fea-
ture vector. The feature extraction methods will be explained in section 4.3. We start
with learning a one-class model (Sec. 3) using the features of the first ' frames of the
video. Here, we assume that there is no event within these first frames and assign them
with phase count 1. In most real-life situations, a few frames in the order of 30 to 60
correspond to 2-3 seconds, where it is reasonable to assume that no interesting event
happens. For every consecutive frame, we evaluate the learned model to obtain its nov-
elty score. This is done until the score of a frame drops below a specified threshold 7T'.
If this is the case, we have detected an event leading to a phase change.

Assuming that such events, which indicate a phase change, are sparsely spread over
time (i.e. do not happen closely, with a gap of at least F' frames between them), we learn
a new one-class model with the features of the next F' frames. The unlabeled previous
frames are assigned with the phase count of the old model and we update the phase
count of the current model. The video sequence is segmented this way, completely
unsupervised. An overview of our approach can be seen in Figure 1.

Note that our approach does not need a training step using manually labeled se-
quences to learn a suitable model. Moreover, it can be directly applied to any video
sequence since the model is learned on-the-fly within the sequence that should be seg-
mented. We may only have to adjust the parameters F' and 7" as well as method specific
parameters of the OCC model.

4.3 Features for Each Frame

Due to the fact that we want to build a generic framework for video segmentation with-
out using specific knowledge about the target application scenarios and definition of



Input: 7', F
Set currentPhase = 1

Calculate training kernel matrix : K}?

Get test frame features and
calculate kernel matrices

| Calculate score = —o2 |

score < threshold ? I phaseCount = phaseCount + 1
No Yes |

Fig. 1. Overview of our one-class classification Fig. 2. Example frames of the five se-

approach for video segmentation quences within the CVPR change de-
tection dataset: (a) corridor, (b) lake-
Side, (c) diningRoom, (d) library,
(e) park

events, it is extremely challenging to choose a suitable feature set for the algorithm. For
the present implementation evaluated on the thermal surveillance videos, we use pyra-
midal histogram of oriented gradients (PHOG) as proposed in [1]. This is a very suit-
able feature because in surveillance sequences, events are defined by entry of a person,
change in the normal movements of the people in the scene, etc., and PHOG features
are very efficient at representing object shapes in the frame. In this feature representa-
tion, local features are represented as histograms of edge orientations. The number of
bins is a parameter of the feature descriptor. Each histogram bin represents the number
of edges orientated in a specific direction. To represent shapes of various sizes within a
frame, an image pyramid is built for the frame and histograms from each pyramid level
are concatenated. For more details, the reader is referred to [1].

S Experiments

As generic semantic segmentation of video sequences is a new challenge in computer
vision, we are not aware of any existing dataset specifically intended for this purpose.
For this reason, the change detection dataset for the CVPR 2012 change detection work-
shop [2] is used to test our approach and to demonstrate its suitability. The thermal
images from this dataset have been used because they contain sequences with large
variance in object size and intensity contrast. Example frames of the dataset are shown
in Figure 2. The ground truth data provided with the dataset is oriented towards motion



detection and hence, we created our own ground truth for our application.! The data is in
the form of grayscale frames of size 320x240 pixels. There are five sequences, namely
corridor, diningRoom, lakeSide, library, and park. Each sequence contains different
kind of motion and different zoom levels such that the object sizes are very different.

5.1 Experimental Setup

The parameter F, i.e., the number of frames used for training the model, was fixed at
50. Thus, the first 50 frames are assumed not to have any special event. At the normal
rate of 25 frames per second, this means we are assuming constancy for only 2 seconds,
which is a very realistic and reasonable assumption. The threshold 7" was set to 0.175,
which was determined empirically on the dataset. Future work will include automatic
determination of even these two system parameters. Furthermore, 30 bins are used in
the PHOG descriptor for each histogram calculated over three levels.

5.2 Results on the CYVPR Change Detection Dataset

In most of the published works including [5], the performance measures used are sub-
jective and do not lend themselves to comparison. The reason is that in problems like
video segmentation, it is very difficult to define a good performance measure for the al-
gorithms. Hence, we concentrated on the fact that our algorithm works on the principle
of detecting events and use performance measures for event detection. To evaluate the
results of the algorithm qualitatively, we used the detection rate 7:

number of correct detections

number of events in ground truth

It is often the case that the detection of the algorithm and the ground truth vary by
about 20-25 frames, because the algorithm makes hard decisions using a threshold and
ground truth is marked by human observers. This is not a serious problem, since in
real-life videos 25 frames corresponds to a time span of 1 second, in which generally
not many events happen. For most applications, this difference is not a major problem.

Additionally, over-segmentation is expected, because our algorithm works com-
pletely unsupervised. As the threshold is set without any prior knowledge about the
video and is thus completely independent of it, often very small and insignificant changes
in the video result in a new segment being reported. However, this is also not a cause
for alarm as this stage is usually intended to be followed by a higher processing stage
or a human observer in most applications. Thus, at the higher level, we can choose to
ignore these particular extra segments in a post-processing step. We represent the effect
of over-segmentation with the over-segmentation ratio :

number of false detections
o . 5)

number of events in ground truth

! Readers interested in obtaining the ground truth for their own further research or verification
of our methods can contact the authors.



Table 1. Results on the thermal video subset of the CVPR Change Detection Dataset for F' = 50
and T" = 0.175 using detection rate 7 (4) and over-segmentation ratio y (5)

Video n ¥
corridor 0.68 0.31
diningRoom 0.81 0.45
lakeSide 0.17 0
library 1 2.78
park 0.83 0.5

This represents the average number of extra segments for every segment in the ground
truth. However, it should be noted that under-segmentation could be more costly and
hence needs to be reduced. Table 1 shows the results for each video in the dataset.

The results for the lakeSide video are evidently poor compared to other videos. It is
heavily under-segmented. This is due to the fact that the video has extremely low con-
trast and even for a human observer, it is very challenging to locate events. In addition,
the events and objects in the video are of very small dimensions. To detect events in
this scenario, one has to set the threshold extremely low, which would increase the false
detection rate in other generic cases. On the other hand, we see that the library video is
over-segmented. This can be solved by increasing the threshold (experiments revealed
that increasing the threshold to 0.25 in this case reduces false detection rate to 0.35,
while retaining the excellent detection rate).

Often, it is even desirable to have over-segmented videos, e.g. in the library video,
the detected extra events are basically the person under observation turning pages.
These are not labeled in the ground truth because they are minor events but could be
interesting for the application. In the diningRoom video, the extra events detected are
basically the person turning, which is an interesting change but again not labeled in the
ground truth.
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Fig. 3. Segmentation timeline for the library video (with 7' = 0.175 and F' = 50), with the
ground truth (the shadings indicate the matched detections)

Figures 3 and 4 show a timeline and an example frame segmentation on the library
video, and Figure 5 shows segmentation example frames for corridor video. To analyze
the effect of the parameter 7" on the overall performance, the 7 vs. -y curve is plotted for
the library and corridor videos in Figures 6 and 7. We have varied 7" from 0.15 to 0.20.
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Fig.4. Example segmentation on the library  Fig.5. Example segmentation on the corridor
video video

Larger values of the threshold result in an over-segmented video, i.e., high v, whereas
smaller values result in under-segmented videos. An interesting point to note is that for
over-segmented videos, we obtain detection rates n often less than those with lower .
This is due to the training time F'. Often, an event is detected when there is none (i.e.,
over-segmentation) and during the following training time, an event is missed.

The results are promising and there are strong indications that a video dependent
threshold determination will solve most of these existing issues.
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Fig. 6. Detection rate ) vs. over-segmentation  Fig. 7. Detection rate 7 vs. over-segmentation
ratio -y for the library video ratio y for the corridor video

6 Conclusions and Future Work

The work was aimed at segmenting the video sequences into activity phases, enabling us
to further process the smaller units and extract the interesting parts. We used a one-class
classification approach based on Gaussian processes to do this with success as seen in
the previous section. The accuracy in event detection is quite impressive even with the



simple PHOG features used in this implementation. This demonstrates the possibility
of using one-class classification schemes, such as the ones based on GPR, for the task
of video segmentation.

As noted earlier, the accuracy of the system can be further enhanced by intelligent
selection of parameters. Automated parameter optimization is one topic of future work.
This may yield better results because then the parameters will be dependent on the video
instead of being universal and it may avoid situations as the one encountered in the case
of the lakeSide video.

Furthermore, feature selection will be part of further research. The authors believe
that feature selection is of critical importance in this case and the use of more sophis-
ticated features could drastically improve the performance of the approach. To exploit
features representing shape and motion in a combined descriptor is a promising idea for
future work.
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