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Abstract—In various real-world applications of distributed
and multi-view vision systems, ability to learn unseen actions
in an online fashion is paramount, as most of the actions are
not known or sufficient training data is not available at design
time. We propose a novel approach which combines the unsu-
pervised learning capabilities of Hierarchical Dirichlet Processes
(HDP) with Temporal Self-Similarity Maps (SSM) representations,
which have been shown to be suitable for aggregating multi-
view information without further model knowledge. Furthermore,
the HDP model, being almost completely data-driven, provides
us with a system that works almost “out-of-the-box”. Various
experiments performed on the extensive JAR-AIBO dataset show
promising results, with clustering accuracies up to 60% for a 56-
class problem.

I. INTRODUCTION AND RECENT WORK

Activity extraction and recognition from video data is
an important area of research in computer vision. This is
motivated by myriads of possible applications, including
surveillance, smart environments, geriatric care, and many
others. 3-dimensional representations of the real-world become
possible with the ubiquitous presence of visual sensors in
various places of day-to-day life. It is thus imperative that viable
solutions be found to analyze the video data from multiple views,
as this helps to overcome problems induced by ambiguities or
self-occlusions. On the other hand, the usage of camera systems
by non-technical users has increased, and one can no longer
depend on the availability of good training labels. In addition,
in many cases, the cost of labeling the data is prohibitive and
an unsupervised, online learning approach is called for, which
is commonly referred to as activity perception [1], in order to
distinguish it from classical action recognition tasks.

Despite its practical significance, there exist only a small
number of well-developed approaches to tackle this task. Most
of the existing works on activity recognition focus on the su-
pervised training-testing paradigm (cf. [2], [3]). They are either
based on interest-point/object tracking and 3D reconstruction or
on view-independent features. The work of Huynh and Schiele
[4] deals with the problem of unsupervised activity extraction
by representing activities as automatically learned projection
sub-spaces (using a PCA-like method) and using distances from
these sub-spaces as the basis for classification of new data. A

major shortcoming of this approach is that, in the case of large
number of activities (for example more than 50, as we have in
our experiments), the distances between the sub-spaces can be
small and the accuracy would suffer as a result. In addition,
this method is not suitable for online learning.

Although there are some approaches which apply Hier-
archical Dirichlet Processes (HDP) (or broadly Probabilistic
Topic Models (PTM)) on the problem of activity classification,
like [1], [5]–[8], they largely deal with the 2D case instead of
incorporating multi-view knowledge. Furthermore, they mostly
rely on motion features like local optical flow, which tend to
be noisy and often not suitable for various applications like
human action classification. Nevertheless, the power of the
HDPs to model co-occurrence statistics and infer rules from
these makes it a very useful modeling tool.

We propose to tackle this problem through a novel com-
bination of HDPs and Temporal Self-Similarity Maps (SSM)
recently proposed for action recognition tasks by Körner et al.
[9]. The main contributions of this paper are two fold:

i) We introduce a novel joint framework using SSMs
for data representation and HDPs for latent action
extraction.

ii) We use this framework to perform unsupervised action
perception in the context of multi-view video data,
showing its applicability.

Additionally, we also affirm the statement made by Körner
et al. [9], that SSMs based on Fourier features form a good
representation of video data which is robust to view-point
changes, even for action perception scenarios.

The remainder of this paper is structured as follows: in
Sect. II, we will introduce HDPs and motivate their use for
unsupervised machine learning tasks. Subsequently, SSMs will
be briefly described in Sect. III. A description of the combined
system follows in Sect. IV and the results of various experiments
performed on a large-scale dataset will be reported in Sect. V.

II. HIERARCHICAL DIRICHLET PROCESSES

The Hierarchical Dirichlet Processes (HDP) [10] model is
a tool to cluster grouped data according to word co-occurrences.
In HDP models and other non-parametric generative models,
the calculation of parameters for the prior distributions are
avoided, unlike the supervised, discriminative models, and the
latent distributions are inferred depending on the data and a
small number of hyper-parameters.
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Figure 1: Hierarchical Dirichlet Processes. The latent mixtures
φm,n are to be estimated from the observed words xm,n. The
topics are denoted by θk.

Fig. 1 shows the basic HDP model, which clusters grouped
data in a hierarchical manner. HDPs assume that the data is
ordered in a hierarchical manner, with a corpus forming the
complete dataset, smaller clips forming the documents (say M
in number), and features extracted from these clips forming the
words (denoted as xm,n, n ∈ [1, Nm]). Given this data as one
Bag of Words histogram for each clip, the HDP model assigns
topics (i.e,activities in our scenario) to the feature words that
occur together.

Generative models view the data as being generated by
random processes governed by latent distributions. In the case
of HDPs, two layers of generative processes are assumed, one
at the corpus level, denoted by G0, and one on the other layer
for each clip, denoted by Gm. Using the hyperparameters α
and γ, we can formulate the generating process as

G0 | γ,H ∼ DP (γ,H) ,

Gm |α,G0 ∼ DP (α,G0) for m ∈ [1,M ] .
(1)

Here, H is the base distribution, which is a Dirichlet distribution
in our case (as conjugate prior, cf. [10]). From these clip-wise
Dirichlet Processes, we assume that topic mixtures φm,n are
generated, which in turn define priors over the observed words.
Thus, the remaining part of the so-called Chinese Restaurant
Franchise formulation is given by

θk ∼ P (η) for k ∈ [1,∞) ,

φm,n |α,Gm ∼ Gm for m ∈ [1,M ] and n ∈ [1, Nm] ,

xm,n |φm,n, θk ∼ F (θφm,n
) .

(2)
Here, M is the number of clips, Nm is the number of words
in clip m, and θk represent the pool of topics from which the
topic mixtures draw words. F (·) and P (·) are parametrized
distributions, and we set them as Dirichlet distributions.

Given the feature words X = {xm,n}, the task of Bayesian
inference is to estimate the topic mixtures φm,n, which we
interpret as individual actions in our context. This task is
not simple and has no closed-form solution. To manage this
computation, we resort to the widely used Markov Chain Monte
Carlo methods [11], [12], especially the Gibbs sampler. The

conditional distribution of the latent word-topic association,

p(φm,n = k |X,α, γ, η, θ,H) ∝

(n¬m,nm,k +αθk) ·
n¬m,nk,t + η

n¬m,nk + V · η
,

(3)

can be used for sampling, where nm,k, nk,t, and nk represent
count statistics of the word-topic associations, topic-document
associations, and the topic-wise word counts, respectively. The
superscript ¬m,n indicates that the present word xm,n is to
be excluded from these statistics and V is the size of the
dictionary. The term containing count statistics in the Eq. (3)
shows that the probability that a new word is assigned to a topic
is proportional to the number of words already assigned to the
topic. This shows the clustering property of the HDPs. The term
with the hyperparameters α, γ, and η defines the probability
that a new topic will be formed. Hence, these hyperparameters,
especially η, can be used to control the number of topics the
model extracts from the video.

In an unsupervised situation, suitable hyperparameter values
may not be known in advance. HDPs provide a way to sample
these parameters within the iterations as

η ∼ Dir(n1, . . . , nk, γ) . (4)

For more a more detailed description of HDPs and sampling
schemes for the remaining hyperparameters, α and γ, we refer
to the work of Teh et al. [10] and Heinrich [13].

HDPs have some important properties which can be useful
in our case:

i) HDPs are independent of the actual data representation.
This makes the framework easily adaptable to a variety
of application situations, like changes in the number
of views, feature extraction procedures etc.

ii) Further, they are independent of the distances in
feature spaces. This is basically due to the fact that
they see different words and not the distances between
them. This gives a huge advantage when we think of
scalability in terms of number of action classes. Then,
the ability of the system to distinguish actions from
one-another is limited only by the representation and
not by the model.

iii) The implementational extensions of sampling pro-
cedures proposed by Wang and Blei [14] and Yao
et al. [15], which provide modified inference proce-
dures for HDPs, enable us to apply HDPs for online
learning scenarios.

These desirable properties make HDPs an invaluable tool for
unsupervised action extraction.

III. TEMPORAL SELF-SIMILARITY MAPS

When using multiple cameras or a combination of other
kinds of sensors, their data have to be aggregated in order to
make use of their information gain. Most often, reconstruction-
based methods are applied to tackle this problem. Nevertheless,
these methods are very time and space consuming and require
a very accurate calibration, otherwise they may lose or even
hallucinate information.

In order to overcome this problem, we make use of the
concept of temporal self-similarity, as proposed by Körner et al.



(a) Camera 0 (b) Camera 3

Figure 2: Two SSMs obtained for a robot dog performing
an stand_kickright action captured from different view-
points. Action primitives induce similar local structures in
the corresponding SSM even under changes of viewpoint,
illumination, or image quality. [9]

[9]. They suggest to encode changes of dynamic systems by
constructing so-called Temporal Self-Similarity Maps (SSM)

S I1:N
f,d = [d(f(Ii), f(Ij))]i,j ∈ RN×N , (5)

where each matrix element represent the frame-wise difference
d(·, ·) of low-level features f(·) extracted from individual
frames of an input image sequence I1:N = {I1, . . . , IN}.

As can be seen in Fig. 2, particular atomic actions induce
specific pattern structures within these SSMs. It has been shown
that SSM are very robust under viewpoint changes.

Furthermore, the specific invariants of the underlying
low-level features f(·)—e.g. intensity values, Histograms of
Oriented Gradients (HOG), or truncated Fourier descriptors
[9]—are preserved while constructing SSMs. Therefore, one can
assume, that the particular local structures of SSMs are specific
for certain action primitives. In order to exploit this observation,
high-level features are extracted from the SSM. Körner et al. [9]
proposed to use SIFT descriptors [16] extracted along the main
diagonal in order to obtain a temporal-scale invariant description
of these structures. Converting this collection of individual
descriptors extracted from distinct view-specific SSMs into a
joint Bag of Self-Similarity Words (BoW) representation leads
to a single fixed-size feature vector describing the whole action
observed by multiple cameras.

IV. UNSUPERVISED MULTI-VIEW ACTION LEARNING

As proposed by Körner et al. [9], multi-view SSM features
extracted following the scheme presented in Sect. III can be
used for view-independent or multi-view action recognition.
In order to tackle the problem of action perception, we use
these features together with the HDP framework introduced in
Sect. II to create an unsupervised online learning system, as
visualized in Fig. 3.

In our framework, we first compute Fourier descriptors
for each frame, which magnitudes are then used to construct
temporal SSMs as described in Sect. III. As we have seen before,
temporal SSMs can be a very good representation for multi-
view video data. But when used directly to form a dictionary
and a Bag of Self-Similarity Words representation, owing to
the large dimensionality of the feature-space, they often result
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Figure 3: Complete outline of the approach for unsupervised
online action perception in multi-view settings.

in a huge vocabulary size and result in over-fitting by the
HDP model. Furthermore, effects of noise can be a serious
problem in such situations. To overcome these problems, we
use a further higher level of representation, i.e, use of an extra
clustering step to merge visual features into prototypes which
form the entries in the dictionary. Here, the goal is to represent
related feature vectors like those that are close to each other
in the feature space as one entry in the dictionary.

Similar to the approach used by Körner et al. [9], this
can be achieved by Gaussian Mixture Models (GMM) [17] or
other clustering approaches like k-means. The advantage of
using GMM for clustering is in their ability to suppress noisy
features and also to produce a rather compact, yet discriminative
representation of the data.

Once the dictionary is formed and Bag of Self-Similarity
Words histograms are extracted, the HDP modeling step is
applied. The inference algorithm follows as described in Sect. II.
The result is a mapping of actions to words present in each
of the histograms. Then, for each histogram, we see the most
probable action through voting among the words belonging to
the histogram. This gives us the actions presented in each clip.

For an online learning setup, we can simply add another
clip and instead of re-running the whole inference step, we
only infer for the new clip (similar to Yao et al. [15]), and see
which of the learned actions is present in the clip and if a new
action is discovered, it is added to the list of known actions.

V. EXPERIMENTAL EVALUATION

A. Dataset

In order to evaluate the performance of our proposed frame-
work, we performed various experiments on the JAR-AIBO
multi-view dataset [18], which was designed for benchmarking
model-free action recognition systems.

The recording details, as described by the creators of the
dataset, are as follows. Six interconnected and synchronized
VGA cameras were equally distributed around a rectangular
scene. 56 actions performed by SONY ERS-7 AIBO robot dogs
where recorded 7 to 10 times per action, resulting in 526 labeled
clips in total for each view. For studying the effects of view
changes and to see the improvements made by increasing the
number of views on the performances of algorithms, various
combinations of the available cameras have been considered.
Thus, in our experiments we used i) all views individually, ii) all
20 possible combinations of 3 views, and iii) the combination
of all 6 views.

Fig. 4 shows some sample images from the dataset. As
can be seen, the color impressions as well as the illumination



Figure 4: Example images from the dataset. Each column
represents one camera view, each row show one Aibo ac-
tion exemplar frame (sit_greeting, sit_scootright,
sit_stretch, sit_yes, stand_dance).

conditions vary between the cameras. Additionally, the bodies of
the recorded robot dogs are nearly untextured and specular. This,
added with the relatively large number of actions compared to
other datasets, make it challenging a dataset to work with. The
challenge is further compounded by the fact that the actions are
actually combinations of pose and atomic actions. For example,
lie_wave and stand_wave are regarded as two different
actions, while in feature spaces they are generally placed very
close together. We will next see some specific details on how
we represent this data for use in the HDP model.

B. Experimental Setup

In order to create the test data for our experiments, we
followed the suggestions made by Körner et al. [9]. We
created SSMs using truncated Fourier descriptors as low-level
features and normalized cross-correlation as similarity measure.
Thereafter, we extracted 128-dimensional SIFT descriptors for
all view-specific SSMs. These descriptors obtained for all views
were further transformed into a joint 512-dimensional Bag of
Self-Similarity Words representation using the GMM clustering
scheme. The image processing part of our experiments was
implemented in C++ using the OPENCV and NICE1 libraries
for feature extraction and classification purposes, respectively,
while the HDP modeling was realized in MATLAB using
the standard toolboxes. We performed our experiments on
a standard desktop computer equipped with a INTEL(R)
CORE(TM) I7 960 CPU running at 3.2 GHz and 24 GB of
RAM. For each activity extraction experiment with 500 Gibbs
iterations for the HDP model, we needed about 40 minutes to
process 526 clips, each approximately of 10 to 12 seconds.

For evaluation, we associated the topics extracted by the
HDPs to the ground truth labels by voting among the topics. As
the dataset includes 56 pose-action combinations, the evaluation
was done as in the case of a 56-class classification problem,

1Git repository: https://github.com/cvjena/nice-core.git
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Figure 5: Influence of varying the value of the hyperparameter
η on (a) the number of topics extracted from the data presented
to the HDP and (b) the clustering accuracy. While the number
of topics grows almost linearly (up to η = 8.0) with increasing
value of η, the resulting classification accuracy saturates beyond
a certain point, as the model starts to overfit the presented data.

with the topic-label associations treated as classification results.
Then, we used the accuracy measure to evaluate performance,
due to its intuitiveness and as the ground truth labels give the
optimum description of the scene.

C. Results

We tested our approach wrt. four main aspects and goals:
i) the overall accuracy of the system, tested against the ground-
truth, ii) the view independence of temporal SSMs, iii) to study
the gain in multi-view activity perception as against monocular
perception, and finally iv) to see how increasing the number
of views improves performance.

1) First Experiment—Overall Accuracy: To demonstrate
the accuracy of the action extraction, we used the joint BoW
histograms of all 6 views. Furthermore, due to the element
of randomness in the Bayesian inference step, we repeated
each experiment 10 times and compiled the results. To study
the effects of the hyperparameter η, we varied the values and
observed the clustering accuracy based on the overall number
of topics (i.e,actions) that were extracted correctly.

Intuitively, the number of topics extracted by the HDP
would directly affect the action classification accuracy. Here,
too small a number would under-represent the actions presented
by the data, which causes joining of similar actions into one.
On the other hand, a too large number of topics would result
in over-fitting, which leads to consequent errors, as differences

https://github.com/cvjena/nice-core.git
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Figure 6: Relationship between the number of topics extracted
from the data and the clustering accuracy. The colors of the
data points correspond to the shading in Fig. 5. After a linear
growth until a certain number of topics, the model does not
benefit from introducing more action topics.

in execution of actions would be taken into account. One
could expect that for good performance, the number of topics
extracted should be close to, or even slightly larger, than the
actual number of actions. When evaluating our experiments, we
found that this is indeed the case, as can bee seen in Fig. 6. In
more detail, Fig. 5(a) shows the accuracy, and Fig. 5(b) shows
the variation in the number of actions, as the hyperparameter
η is varied from 2.5 to 9.5. The accuracy of our approach is
up to 60% when η is set to 7.0 or 9.0. To put this result in
perspective, state-of-the-art supervised learning methods using
Gaussian Process (GP) classification [19] achieve accuracies
up to 87.8%, as reported in [9].

We can further note that, as the number of extracted actions
crosses the actual number of actions, the accuracy improves
significantly. Thereafter, the change is minimal. The reason
is that, in HDPs, the number of actions extracted does not
increase indefinitely based on larger values of η. Beyond a
certain point (here, η = 8.0), the hyperparameter has little effect
on the number of actions, as the hyperparameter itself gets
resampled depending on the data. This makes our framework
almost parameter-free.

2) Second Experiment—View Changes: Another interesting
aspect is to see the merits of our representation in terms of
robustness to view changes. For this, we considered joint BoW
histograms using all possible combinations of three views each,
which results in 20 combinations. Again, the experiments were
conducted 10 times for each view-combination, while the value
of the hyperparameter η was fixed at 7.0. Fig. 7(a) and Fig. 7(b)
show our results. The accuracies are similar over almost all
view combinations, showing that irrespective of the views
used, the algorithm performs on the same level. The few cases
when the results vary correspond to the view combinations
that covered the field either poorly or very well. This shows
that temporal SSMs are a good representation of multi-view
video data without the need for camera calibration or 3D
reconstruction.

3) Third Experiment—Monocular Perception: Next, we
study the case of monocular vision. For this purpose we
individually considered each of the 6 views and compared
the results. Fig. 8(a) and Fig. 8(b) show the accuracy and
number of actions for the individual views. We again set the
hyperparameter η to 7.0 and repeated the experiments 10 times.
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Figure 7: Results of experiments individually performed on
all 20 possible 3-fold subsets of available camera views and
fixed hyperparameter η = 7.0. Since the ambiguities of actions
increases with less observing cameras, the number of topics
extracted by the HDP grows and results in inferior accuracies.
Note that the number of topics is in general constant for all
3-fold subsets.

Clearly, some views are better suited to observe some subtle
movements, and the overall performance is worse than the
previous multi-view cases. The number of actions follows the
same pattern.

4) Fourth Experiment—From One View to Six Views: Finally,
we compare the clustering accuracy as we increase the number
of views. This is to verify that the additional information,
that the new views provide, help our system to make better
decisions regarding activities. Fig. 9 shows the performance of
the algorithm as the number of views are increased. As we go
from 1 view to 2 views, the improvement in area coverage is not
very large, whereas, going from 2 to 3 views, the additional view
provides much better coverage, and the boost in performance
is quite sharp. As the number of views is further increased, the
redundancy increases, making improvement steps smaller.

VI. CONCLUSION AND SUMMARY

We presented a novel approach combining the HDP models
with the temporal SSMs to perform unsupervised multi-view
action recognition, with online learning possibilities. It was
evaluated using the challenging and extensive JAR-Aibo dataset
and the results presented in the last section validated the
performance and applicability of our approach. Evaluating it as
a normal 56-class problem, we achieved accuracy rates up to
60%. Also, we showed the view-point independent nature of
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Figure 8: Results of experiments performed on individual
camera views and fixed hyperparameter η = 7.0. (a) As
articulated actions observed from single cameras show the
highest amount of ambiguities and self-occlusions, the number
of topics extracted from the presented data is maximal in
this case. (b) Consequently, the classification accuracy drops
significantly.
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Figure 9: Improvement in performance when increasing the
number of observing camera views. While using three cameras
results in a significant gain of the accuracy, adding more
cameras in general does not affect the recognition rates, as the
amount of redundancy is increased.

our representation, as accuracy and number of actions extracted
remained quite uniform across view-point changes. Furthermore,
for 526 clips, we obtained runtimes of just 40 minutes, showing
that an optimized implementation can easily yield real-time
performance.

One of the shortcomings of the present state of implementa-
tion is, that in the case of complex videos with multiple actions

happening, the basic global feature extraction will not suffice.
For such a case, we can extend our framework to detect each
foreground object through motion based segmentation and then
compute SSMs for each object individually. Also, some changes
could be made in the framework to include some supervision,
so that if a few videos with labels or camera calibration data
are available, we should be able to use them. A possible way
of doing this could be to use a refinement step after the HDP
model has completed the inference step.
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