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Abstract—Fine-grained classification is a recognition task where subtle differences distinguish between dif-
ferent classes. To tackle this classification problem, part-based classification methods are mostly used. Part-
based methods learn an algorithm to detect parts of the observed object and extract local part features for the
detected part regions. In this paper we show that not all extracted part features are always useful for the clas-
sification. Furthermore, given a part selection algorithm that actively selects parts for the classification we
estimate the upper bound for the fine-grained recognition performance. This upper bound lies way above the
current state-of-the-art recognition performances which shows the need for such an active part selection
method. Though we do not present such an active part selection algorithm in this work, we propose a novel
method that is required by active part selection and enables sequential part-based classification. This method
uses a support vector machine (SVM) ensemble and allows to classify an image based on arbitrary number of
part features. Additionally, the training time of our method does not increase with the amount of possible part
features. This fact allows to extend the SVM ensemble with an active part selection component that operates
on a large amount of part feature proposals without suffering from increasing training time.
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1. INTRODUCTION

With the growing digitalization the amount of dig-
ital images rapidly increases. Consequentially, the
need for precise automatic classification of these
images was never so present. The newest hardware and
software developments in the field of computer vision
solve challenges from the last decades with ease and
new challenges with more sophisticated tasks are cre-
ated. It can be noticed on the latest benchmark data-
sets for object recognition like CUB-200-2011 [14].
This dataset consists of bird images from 200 species.
The large number of different species and the fact that
some species are only characterized by subtle differ-
ences in their appearance create a need for novel clas-
sification approaches. Therefore, fine-grained algo-
rithms get more and more attention.

The classical way of extracting features from the
entire image achieves remarkable results [6], but most
related works [4, 5, 8, 11] on fine-grained image clas-
sification use a part-based approach. The main idea is
to combine the global feature with additional part fea-
tures extracted from different locations of the image.
Based on the extracted part features and the global
feature the image is classified.
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One of the drawbacks of considering all existing
part features is that in some cases the features
extracted to distinguish different classes do not con-
tribute to the classification decision. Furthermore,
the additional information in form of these part fea-
tures often leads to an increased training complexity,
since all features are considered regardless of their
impact on the classification result. A possible solu-
tion is a part selection component which actively
selects the part features for the classification process
with the objective to increase the classification per-
formance. This is similar to former research on opti-
mal sensor data selection with the help of a sequential
decision process [3].

An active part selection component requires a clas-
sifier that is capable of processing an arbitrary number
of part features. Hence, we suggest in this work a
sequential classification method that observes the part
features one after another and classifies them. Addi-
tionally, since the classifier takes only one part feature
as input, its training time does not increase with the
number of existing part features. This allows to train a
classifier on a large amount of part features. Since the
active part selection component is not the focus of this
work, we simulate the part selection by computing the
classification results for all possible part feature com-
binations. With this simulation we show that given
such a selection component the upper bound of the
suggested method’s recognition performance lies far
above the current state-of-the-art part-based classifi-
cation approaches.
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Fig. 1. Two SVM bagging methods. (a) In the original bag-
ging algorithm each SVM trains on a random subset of
training samples. In case of part-based approach for fine-
grained recognition a sample consists of all part features.
(b) We suggest to train each SVM on all samples, but to
select a random part feature for each sample.

The sequential classification is realized with an
SVM ensemble, more specifically SVM bagging [2].
Works like [7, 15] have already used SVM ensembles to
either improve the classification performance or
decrease the training complexity. These approaches as
well as the original bagging algorithm train the single
classifiers on a random subset of samples. In contrast,
we suggest to train a single SVM classifier on all train-
ing samples, but randomly select a single part feature
for each sample, as shown in Fig. 1.

The resulting ensemble of weak classifiers performs
a classification on a single part feature, creating a clas-
sification decision for each classifier in the ensemble.
In the end, the ensemble decisions for one part feature
are aggregated to a single decision. Furthermore, the
classification based on a part feature combination can
be performed iteratively by observing one part feature
after each other. This also allows each combination to
have a different and also arbitrary number of part fea-
tures.

2. RELATED WORK
2.1. Part-Based Fine-Grained Recognition

Most of the part based fine-grained recognition
methods [4, 5, 8, 11] fit a part detection model, which
identifies part locations. At these locations, part fea-
tures are extracted and the object is classified based on
these features.

Works like [5, 11] use a constellation or pose based
approach. The authors estimate relative positions of
some part proposals and find best groupings based on
the training images. Based on these groupings, which
defines the part model, the positions are estimated
and used for feature extraction.
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Jaderberg et al. [4] and Liu et al. [8] on the other
hand train multiple parallel networks. Each of these
networks operates on one part and either transforms it
[4] or extracts features around its position [8]. Simi-
larly, Zheng et al. [16] trains a multi-attention network
and extracts attentions based on the attentions. These
methods are trained end-to-end.

All of these methods perform a passive part selec-
tion since the parts are either selected based on the
location information [5, 11] or totally independent
from each other [4, 8, 16]. In this work we suggest a
simulation of an active part feature selection compo-
nent that computes the decisions based on prior
knowledge about the observed image. Additionally, all
of the mentioned methods have not investigated the
upper bound recognition performance of their part-
based approaches.

An active part selection component could be real-
ized with recurrent attention models (RAMs) [1, 9,
10]. RAMs are iterative attention models that predict
positions where the system should extract features
next based on previously seen information. This infor-
mation can be seen as prior knowledge, but all our
experiments with RAMs so far could not outperform
the previously mentioned state-of-the-art methods.

2.2. SVM Bagging

Bagging predictors were introduced by Breiman
[2]. It is a “method for generating multiple versions of
a predictor and using these to get an aggregated pre-
dictor.” In the original paper a single predictor was
trained on a random subset of the training data, as
shown in Fig. 1a. The performance of such resulting
classifier is mediocre, but if the prediction results are
aggregated, for instance with a majority voting, then
such an classifier ensemble is able to outperform a sin-
gle classifier trained on the whole training dataset.

Wang et al. [15] illustrate also some empirical
results on using SVMs as base classifier. In their work
the authors were able to show some minor advantages
of SVM bagging compared to regular SVMs and other
classifiers. Linghu et al. [7] have used in their work
SVM ensembles to reduce the training complexity and
improve the recognition performance of their system.
Additionally, they have evaluated different aggregation
methods for the ensemble decisions.

3. METHOD
3. 1. Part Feature Extraction

Our part feature extraction builds on the work of
Simon et al. [11]. As shown in Fig. 2, the authors esti-
mate a part constellation model in unsupervised man-
ner with the help of gradient maps of a pre-trained
CNN. Then, they sort the part locations by their fit-
ting score to the constellation model. Finally, the best
ten part locations are selected and another pre-trained
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Constellation model estimation by Simon et al. [11]: With the
help of the first pre-trained CNN part proposals in form of
activation maps [12] are extracted. Based on these proposals a
constellation model is estimated
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Based on the constellation model features are extracted on the
best matching locations.

Fig. 2. Part feature extraction method. First the constellation model is estimated and based on this model part features are

extracted (square: head, circle: leg, triangle: wing).

CNN extracts the part features on these locations. The
extraction is performed on two different scales, result-
ing in 20 part features. These part features are concat-
enated together with the global feature to one single
feature vector and a single SVM is trained.

3.2. SVM Ensemble Training

In this work, we consider the part features as dis-
tinct features, since we assume that not all present part
features impact the classification result in a positive
way. In order to allow an active part selection, the
fine-grained classifier has to be able to handle chang-
ing number of part features as input. Hence, we pro-
pose an ensemble of SVMs as a sequential classifier.

We utilize the bagging algorithm [2], but instead of
randomly selecting a subset of training samples, we
select for each sample a random part feature, as illus-
trated in Fig. 1. After an arbitrary amount of SVMs has
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been trained, the aggregated ensemble decision for a
single part feature is computed by a majority voting
over the ensemble classifiers.

Next, we define how to compute a prediction for a
given part feature combination (f) = (£, f;... /).
Given such part feature combination and an classifier

k we perform a maximum likelihood estimation under
the uniform prior assumption:

Cest = argl;nax pk(c|<f>t) (1)
= argmax [ | pe(el ) )
¢ x=l
= argmaleog pele| fo)- 3)
¢ x=l

This way of class estimation for a specific part fea-
ture combination allows compute the decisions in the
Vol. 28
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Table 1. Comparison of our work with other part-based
methods on the CUB-200-2011 dataset

Method Accuracy, % |No. of parts
Simon et al. [11] 81.0 21
Krause et al. [5] 82.0 31
Jaderberg et al. [4] 84.1 4
Liu et al. [8] 84.3
Zheng et al. [16] 86.5 5
Ground truth parts 77.6 16
Random part selection 77.3+0.2 4
(GT parts)
Best overall 79.810.1 510.2
combination " o | 874401 |2.12+0.03
(GT parts)
persample| 92.8+0.1 3.9+0.02
All parts (single scale) 77.4% 11
Random part selection 774+0.3 4
Ours (single scale)
Best overall 79.1£0.1 5310.6
(Cs(i)nmgl;ei:nsactail?er; per class 85.4+01 |1.97£0.02
persample| 89.4+0.1 (3.77+0.09
All parts 78.4 21
Random part selection 78.2+0.2 4
Best overall 80.8£0.1 9.310.7
combination ™o Glass | 87.2+£02 [2.06+0.02
persample| 92.1+0.2 |3.74+£0.07

form of class probabilities for each part feature sepa-
rately and fuse these decisions. It also allows the usage
of the SVM ensemble presented in this work as a clas-
sifier k£, because the input of the SVM ensembile is a
single part feature.

3.3. Part Feature Combination Analysis

The second part of the work analyzes the resulting
classifier ensemble. Therefore, we check how well the
ensemble performs when it classifies the images based
on all part features as well as only on a specific subset
of the part features. As already mentioned before, we
simulate the active part selection component by com-
puting the classification results for all possible part
feature combinations. Since we use 20 part features,

we compute the predictions for 2% = 1048576 part
feature combinations. With these combinations we are
able to estimate the upper bound for the recognition
performance for these part features. First, we select
the best combination for all training samples, then
best combinations for each class and finally for each
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single sample separately. This way we simulate three
different active part selection methods. The first one
can be constructed without any prior knowledge about
the observed image. The later two methods would use
a prior information about the given image in form of a
class distribution or any other sample related informa-
tion.

4. EXPERIMENTS AND RESULTS

In our experiments we used the CUB-200-2011
[14] dataset. The SVM ensemble consists of 48 classi-
fiers. The number of the classifiers can be chosen arbi-
trary. In our case, 48 SVMs could be trained in parallel
most efficiently on our testing machine, a dual-socket
server with two Intel Xeon E5-2650 v4 processors.
Further investigation may also be needed to check the
impact of this hyperparameter on the classification
performance.

The experiments were repeated ten times to observe
the variance of the approach. Every test run took seven
hours for training the classifier ensemble and comput-
ing predictions for all possible part feature combina-
tions.

As mentioned before, we are using the ten part
locations matching best the constellation model of
Simon et al. [11]. On these location we extract the part
features with a VGG19 [13] network from the last pre-
classification fully connected layer ( fc7). This results
in a single feature having the dimensionality of 4096.
Like Simon et al. [11], we extract the features from the
locations on two different scales, which yields 20 part
features. In our experiments we also consider a setup
with a single scale, namely only ten part features. Fur-
thermore, in order to observe how good our method
works with perfectly selected parts, we considered a
setup with ground truth parts.

The results of the mentioned setups can be seen in
Table 1. First, we compare our baseline results where
all parts were selected with the reference work of
Simon et al. [11]. Here, the original work clearly yields
better performance. Same observation can be seen if
we select one combination that performed best for all
samples or if we randomly select four arbitrary parts.
The original strategy of using all part features still per-
forms slightly better. However, the selected combina-
tion contains less than half of the additional informa-
tion, namely only nine part features instead of all 21
(20 part and one global feature).

If we go further and select the best combination for
each class or for each sample separately, then we can
clearly outperform not only the reference work of
Simon et al., but also other part-based approaches.
The best combinations achieve state-of-the-art per-
formances not only on the more comprehensive two-
scale setup, but also in the single scale scenario.
Thereby, at most only four parts are selected from the
given 21, 16, or 11. It is important to notice that the
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Extracted parts with the
constellation model of Simon et al.

Example from the
CUB-200-2011 dataset.

Fig. 3. Example of an incorrectly classified image, if all of
the parts are selected. If only the marked (light gray) parts
are selected, the classification becomes correct.

additional scale does not impact the mean number of
selected parts, but the performance. Hence, we con-
clude that the extraction scale is as important as the
active part selection.

Furthermore, in the setup with ground truth parts,
we can also observe a performance improvement. As
expected, the results with these parts are the best.
Nevertheless, similar to the previous setups, the
amount of selected parts drops to roughly four. Again,
this argues in favor of an active part selection, even if
the part detector is already perfect.

Additionally, we have visualized how extracted
parts may distract the classifier. In Fig. 3 a sample
from the CUB-200-2011 [14] dataset is shown on the
left (Fig. 3a). On the right, Fig. 3b illustrates the parts
that were extracted with the constellation model of
Simon et al. [11]. The first two rows are the ten parts
extracted with the one scale and the last two rows are
extracted with the second scale. In this particular
example, if all of the parts are selected, the image is
classified incorrectly. The prediction becomes correct
if only the marked parts are selected.

This qualitative result shows how active part selec-
tion can improve the classification by leaving out non-
informative parts. It illustrates that the unsupervised
part extraction algorithm used in this work is not per-
fect. Some of the extracted parts do not even cover the
observed object (second row, first and fourth column)
or only cover a the object marginally (second column).
On the other hand, the parts leading to the correct
prediction mostly cover the object. The final under-
standing why these parts lead to a correct decision and
how to select them automatically is an open research
objective.

CONCLUSIONS

In this work we presented a novel approach for
sequential fine-grained classification. The sequential
classifier is an ensemble of SVMs implementing the
bagging algorithm. In contrast to previous works on
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bagging algorithm, we used random part features
instead of a random sample subset for the training of
the ensemble. The advantage of the presented algo-
rithm is the independence of the SVM ensemble from
the number of the observed part features.

To compare our approach with other part-based
fine-grained classification methods, we simulated an
active part feature selection component. The simula-
tion was achieved by computing the classification
result for all possible part feature combinations. After-
wards, best combinations were estimated for all sam-
ples, for each class and for each sample separately.
These best combinations represent an upper bound
recognition performance given specific part features.

Based on the part features of Simon et al. [11] we
showed that the upper bound recognition perfor-
mance is way above the current state-of-the-art
results. This leads to the conclusion that an active part
feature selection component is the best way to improve
the fine-grained classification.
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