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Abstract—Convolutional Neural Networks (CNNs) are able to
reliably classify objects in images if they are clearly visible and
only slightly affected by small occlusions. However, heavy occlu-
sions can strongly deteriorate the performance of CNNs, which is
critical for tasks where correct identification is paramount. For
many real-world applications, images are taken in unconstrained
environments under suboptimal conditions, where occluded ob-
jects are inevitable. We propose a novel data augmentation
method called Inverted Cutout, which can be used for training a
CNN by showing only small patches of the images. Together with
this augmentation method, we present several ways of making the
network robust against occlusion. On the one hand, we utilize a
spatial aggregation module without modifying the base network
and on the other hand, we achieve occlusion-robustness with
appropriate fine-tuning in conjunction with Inverted Cutout. In
our experiments, we compare two different aggregation modules
and two loss functions on the Occluded-Vehicles and Occluded-
COCO-Vehicles datasets, showing that our approach outperforms
existing state-of-the-art methods for object categorization under
varying levels of occlusion.

I. INTRODUCTION

Image classification plays a considerable role in many
applications today and presents the basis of many other more
complex tasks like segmentation and detection. While Con-
volutional Neural Networks (CNNs) can nowadays reliably
categorize objects in images, there still exist special cases
which have yet to be solved. One such case is classification
under occlusion. This task is essential in several fields, such
as automotive technology, where correct object recognition
even under unfavorable conditions is crucial. Moreover, when
applying classification algorithms in the wild, the objects in
the images often are only partially visible due to circumstantial
occlusion. Such cases show the ubiquity of occlusion and,
therefore, the importance of occlusion-robustness of convo-
lutional neural networks, which are still the most prevalent
approach in object recognition.

Kortylewski et al. [1] showed that CNNs are not robust to
occlusion and presented several approaches [2], [1] to tackle
this problem. Their primary approach is a generative one, using
clustering methods to detect object parts and using this infor-
mation to generate a possible classification with Compositional
Models. While effective, the approach of Kortylewski et al.
relies on rather complex techniques requiring more intricate

Fig. 1: The basic processing concept of our approach: a
network backbone in conjunction with a spatial aggregation
module is trained using only cut-out parts of the image to
improve occlusion-robustness in the network.

strategies to train. Moreover, extending the aforementioned
approach to new problems is also hard due to this complexity.

In this work, we investigate a novel data augmentation
method called Inverted Cutout, which enables training a net-
work in standard discriminative fashion to achieve occlusion-
robustness. The intuition behind this augmentation method is
that the network merely sees a small part of the image at a
time and relates this information to the class of the complete
image. In contrast to the original Cutout [3] method, with
which small parts of the image are masked out, Inverted Cutout
leads to better generalization due to the stronger focus on
smaller areas and their semantic meaning. We investigate this
data augmentation method regarding two aspects: making the
network robust against occlusion without the need of fine-
tuning the base network and making it robust by including
fine-tuning. Especially for the former, we investigate two fea-
ture aggregation methods. The first one utilizes global average
pooling and is thus location-unaware; the second method, in
contrast, is a convolutional layer aggregating features in a
location-aware manner. The basic processing concept of our
method is also shown in Figure 1. Our approach is evaluated
on two datasets containing images of 12 classes of vehicles
and furniture under partial occlusion.



Contributions: Our contributions in this work are as
follows: we introduce a novel data augmentation method that
is able to make networks robust against occlusion by standard
discriminative classification training. We analyze this method
in detail and shed light on possible extensions of the base
network, i.e., aggregation modules, which enable occlusion-
robustness without fine-tuning the network.

II. RELATED WORK

Occlusion in Classification: Kortylewski et al. [2] de-
veloped a method, which utilizes a compositional model in
combination with CNN features to predict the object class in
occluded images. This approach has later been improved to
be differentiable and, thus, end-to-end trainable [1]. Compo-
sitional models are generative models and have to be trained
using multiple losses in conjunction with maximum-likelihood
estimation. In contrast to their method, our approach is purely
discriminative, much simpler to implement, directly combin-
able with standard CNNs, and does not require any additional
loss terms other than a classification loss for training.

Moreover, several data augmentation techniques were pro-
posed in the last years [3], [4], which introduced artificial
occlusion in the training process. However, Kortylewski et
al. [1] show that these augmentations alone only add limited
robustness against partial occlusion to the network. We argue
that this happens due to the network focusing more on the
occluded areas and how to interpret them instead of focusing
on the visible object parts and utilizing them to generate a
conclusive classification decision.

Xiao et al. [5] presented a convolutional network architec-
ture with an attention mechanism, which masks out occluded
features in the network to improve its robustness against oc-
clusion. However, Kortylewski et al. [1] also showed that this
network does not perform well in the case of real occlusions.

In addition, there are approaches that investigate dropping
out parts of feature maps or images based on high activations
[6] or attention [7], [8], which work similar to Cutout by
masking out specifically selected image regions. In contrast to
the latter two, our data augmentation approach is model-free
making it much cheaper to compute. Moreover, with Inverted
Cutout we investigate paying attention only to a small patch
of the image instead of the complete image besides a small
cropped out patch as in the three aforementioned approaches
and Cutout [3].

Occlusion in Segmentation: In addition to occlusion in
classification, there also exist several approaches concerned
with occlusion cases in instance segmentation, also referred to
as amodal instance segmentation. Several recent approaches
in this area do not require any amodal segmentation data
for model training, but utilize standard instance segmenta-
tion annotations. Zhan et al. [9] apply several regularizing
losses to two U-Net-like architectures [10], one of which
receives an instance segmentation mask as input and outputs
the respective amodal mask. The second network utilizes
this mask to complete the partially occluded object. Ling et
al. [11] propose a similar framework. However, they apply

Fig. 2: An example of the difference between Cutout [3] (top)
augmentation and our Inverted Cutout augmentation (bottom).

a variational autoencoder to generate a selection of possible
amodal masks.

While the underlying task, i.e., object recognition under
occlusion, is similar, the abovementioned methods necessarily
require segmentation annotations as training data and are not
easily extendable to classification. As segmentation annota-
tions are not available in the case of occlusion during classifi-
cation, we require another approach to tackle classification of
occluded objects. Our proposed approach fills this gap, while
being easier to implement and significantly simpler to train
compared to other methods.

III. OUR APPROACH

In this section, we introduce our approach, which comprises
two parts. The first part is the Inverted Cutout augmenta-
tion, which can be used to train a CNN towards occlusion-
robustness. The second part is the aggregation module, which
can be used on top of the network backbone and can be used to
improve a network’s occlusion-robustness without fine-tuning
the original network itself.

A. Inverted Cutout Augmentation

For training our model, we developed a novel data aug-
mentation we refer to as Inverted Cutout or IC in short. As
the name suggests, it is based on the popular Cutout [3]
data augmentation method, which has been shown to improve
generalization of CNNs. While with standard Cutout, a patch
is being erased from the image, with Inverted Cutout, we do
the opposite: we cut out a part of the image, which we keep for
training while erasing the rest of the image, as seen in Figure 2.
The likely reason for this is that, when using Cutout or training
on the image as a whole, the model learns co-occurring object
components in the remaining image parts and the classification
decision depends on these co-occuring components during
inference. This is problematic for components being spatially
far away from each other, e.g., on the left and right border
of the object, because real occlusions during inference are
then likely to cover only one of these components making the
learned co-occurence useless for classifying the object. With
IC, the network is forced to predict the object class using
only the small image patch that is left, leading to the network



focusing primarily on the few isolated object parts being
visible in the image to identify the class, which leads to a better
generalization of the network. Regarding co-occuring object
components, the network can then only exploit constellations
of components that are nearby with respect to their spatial
position in the image and which have a higher likelihood of
being jointly visible in case of occlusion.

While training with Inverted Cutout, we use differing sizes
of square patches that are cut out from the images. The size of
the patches is sampled in a range of a predetermined minimum
and maximum value for each image in the batch.

It should also be noted that our Inverted Cutout approach
significantly differs from cropping and resizing the images, as
with IC the scale and location of the cut out image parts are
preserved. This is not the case for resized crops, which would,
hence, drastically deteriorate network performance. Moreover,
while not done in this work, Inverted Cutout can potentially be
applied multiple times on the same image to generate multiple
cutouts in a single training step. This would essentially create
multiple “windows” showing small image regions in the same
training step, which is not possible by cropping.

B. Spatial Aggregation Modules

As mentioned above, we investigate the usage of two dif-
ferent but simple spatial aggregation modules, whose purpose
is to summarize the features extracted by a backbone in a
single feature vector that is used for classification. The basic
processing steps are shown in Figure 3. Both modules follow
the depicted scheme and use an initial 1×1 convolutional layer
with ReLU-nonlinearity, which we refer to as the transform
layer. This transform layer is applied directly to the features
extracted by the backbone and improves network performance
especially when training only the aggregation module by
increasing its modeling capacity.

The first aggregation module, later on referred to as AGAP,
utilizes the common global average pooling (GAP) method as
used, for example, in the ResNet50 architecture [12], to aggre-
gate the features from the transform layer into a single vector,
which results in a location-unaware feature aggregation. This
feature vector is then processed by a fully-connected layer
followed by the classification layer.

In the second aggregation module, referred to as AFC, the
transform layer is followed by a single large convolutional
layer, which has a kernel size equal to the size of its input
feature map. Therefore, this layer can be seen as equivalent
to applying a fully-connected layer on a flattened feature
map. This type of layer results in a location-aware feature
aggregation, in which the location of each input feature still
plays a role in contrast to global average pooling. For the
latter, each location is weighted equally, while for the large
convolutional layer a different weighting can be learned at
each input location. The output of this convolutional layer is
also a single feature vector, which is used as an input to the
subsequent classifier. We aim at comparing both modules in
order to observe the differences between location-unaware and
location-aware aggregation when applied to occluded objects.

IV. EXPERIMENTAL RESULTS

Our experiments were done on the same two datasets
utilized in [1]: the Occluded-Vehicles dataset based on Pas-
cal3D+ [13] and the Occluded-COCO-Vehicles dataset, which
was introduced in [1] and is based on MS-COCO [14]. In
the following, we give brief introductions to both datasets,
describe our experimental setup, and then report our results
by comparing our approach with state-of-the-art methods.

A. Datasets

Pascal3D+: The Pascal3D+ Occluded-Vehicles dataset
was introduced in [15] and later extended in [2]. The dataset
features images of occluded objects from 12 classes with four
differing occlusion levels and four kinds of artificial occlusion.
The occlusion levels and their respective approximate occlu-
sion percentages are L0 (0%), L1 (20-40%), L2 (40-60%), and
L3 (60-80%). The types of occlusion featured in the dataset
are: inserted objects (o), boxes of white color (w), boxes
containing random noise (n), and boxes containing textures
(t). Several example images are shown in Figure 4. It should
be noted that the training set does not contain any occlusions,
but contains all 12 classes, while the test set comprises merely
6 classes of vehicles under the aforementioned different types
of occlusion.

MS-COCO: As the occlusions in the Pascal3D+-based
Occluded-Vehicles dataset are added artificially, it is also
necessary to evaluate the performance of occlusion-robustness
models in a more realistic occlusion scenario. For this purpose,
the Occluded-COCO-Vehicles dataset [1] contains images with
natural occlusions, thus enabling an evaluation that is more
related to a real-world application. The dataset comprises
the same classes and occlusion levels as the previous one.
Moreover, it contains 2036 training images without occlusion
(L0), as well as 2036 test images without occlusion (L0), 768
with occlusion level L1, 306 with level L2, and 73 with level
L3 occlusions. Two example images from this datasets can be
found in Figure 5.

B. Setup

In our experiment, we utilize a VGG-16 network [16] pre-
trained on ImageNet [17] as a backbone similar to [1]. As
also done in [1], features from this backbone are extracted by
concatenating the outputs of the fourth and fifth convolutional
block, referred to as block p4 and p5. We have chosen the same
network architecture and the same feature representation as in
[1] to allow for a fair comparison of the results.

During the training process, we initially train the aggrega-
tion module alone for a fixed number of epochs with the back-
bone being frozen. While we also evaluate the results from this
training process, we afterwards fine-tune the complete network
and evaluate the results of the networks a second time in order
to observe the influence of fine-tuning the whole network. For
training, we utilize the AdamW optimizer [18], [19] with a
weight decay equal to 1e-4 as well as different learning rates
and training durations based on the dataset and setup. The
corresponding values are shown in Table I.



Fig. 3: An overview of our proposed architecture with an additional spatial aggregation module that is trained towards occlusion-
robustness with our proposed Inverted Cutout data augmentation strategy. The aggregation module comprises two layers: a
transform layer and an aggregation layer.

Fig. 4: Example images from the Occluded-Images Pascal3D+
dataset with several different levels and kinds of occlusion.
From top-left to bottom-right: 0% occlusion (L0), 20-40%
white box occlusion (L1), 40-60% texture occlusion (L2), 60-
80% object occlusion (L3).

Fig. 5: Example images from the Occluded-COCO-Images
dataset with different levels of occlusion. Left: 20-40% oc-
clusion (L1); right: 40-60% occlusion (L2).

TABLE I: The hyperparameters used in the training process
of the networks. * denotes hyperparameters used during fine-
tuning of the network, AGAP denotes the aggregation module
with global average pooling, and AFC the module with kernel
size equal to the input feature map. CCE and BCE denote
the Categorical (Softmax) and Binary Cross Entropy losses,
respectively.

Dataset Agg. Loss LR EP LR* EP*

Pascal3D+
AGAP

CCE 1e-3 90 1e-5 90
BCE 1e-2 90 1e-4 90

AFC
CCE 1e-4 90 1e-4 90
BCE 1e-4 90 1e-5 90

MSCOCO
AGAP

CCE 1e-2 180 1e-4 90
BCE 1e-2 180 1e-4 90

AFC
CCE 1e-4 180 1e-4 90
BCE 1e-4 180 1e-4 90

For our Inverted Cutout augmentation, we first resize images
to 224×224 pixels, aggregate them to batches of size 24, then
sample the cutouts for each image as squares with side lengths
of at least 16 and at most 128 pixels and apply them to each
image in the batch. Independent of the setup, the learning
rate is decreased by a factor of 10 after 2

3 and 8
9 of the total

number of epochs, respectively. This is done during training
of the aggregation modules as well as during fine-tuning.

The transform layer, which receives the output of the
backbone as input, has a depth of 512, and the following
aggregation layer generates 256 features. Aside from our
IC augmentations, we only use horizontal flipping as data
augmentation. All experiments below are averaged over four
repetitions.

C. Results

In this section, we analyze the results of our experiments.
As mentioned above, we evaluate the results after training our
new module alone and after fine-tuning it in conjunction with
the rest of the network on the respective dataset. We compare
the performance of our IC method with the identical setups
that do not employ this augmentation method. Moreover,
we compare our results with those of previous methods as
shown in [1], including the state-of-the-art method CompNet-
Multi proposed by Kortylewski et al. [1]. We also investigate
the difference between training with the standard Softmax
Categorical Cross Entropy loss (CCE loss) and with the Binary
Cross Entropy loss (BCE loss) utilizing the sigmoid activation,
which is usually used in binary classification or multi-label
classification. It should be noted that during training we
only utilize images without occlusions, which are merely
augmented with artificial occlusions when using IC. Hence,
the network never sees any realistic occlusions during training.

Pascal3D+: The results for the Pascal3D+ Occluded
Vehicles dataset can be seen in Table II. First and foremost,
we can see a significant improvement in the accuracy when
using Inverted Cutout compared to the ablations without
the new augmentation. Depending on the setup, the results
improve by at least 10.5% up to 21.3%. This shows that
our novel augmentation method can be highly beneficial for
classifying occluded objects. Moreover, we see that the fully-



TABLE II: The accuracies (in %) of our method in comparison with previously introduced methods on the Pascal3D+
Occluded-Vehicles dataset. The values of methods used for comparison have been taken from [1]. * marks the results received
after fine-tuning the whole network. The occlusion types are: w - white box occlusion, n - noise box occlusion, t - texture
occlusion, o - occlusion by segmented objects. CCE and BCE denote the Categorical (Softmax) and Binary Cross Entropy loss,
respectively. AGAP and AFC denote the aggregation module with global average pooling and the one utilizing a convolutional
layer, respectively.

Occ. Area L0:
0% L1: 20-40% L2: 40-60% L3: 60-80% Mean

Occ. Type - w n t o w n t o w n t o
VGG [16] 99.2 96.9 97.0 96.5 93.8 92.0 90.3 89.9 79.6 67.9 62.1 59.5 62.2 83.6
CoD [2] 92.1 92.7 92.3 91.7 92.3 87.4 89.5 88.7 90.6 70.2 80.3 76.9 87.1 87.1
VGG+CoD [2] 98.3 96.8 95.9 96.2 94.4 91.2 91.8 91.3 91.4 71.6 80.7 77.3 87.2 89.5
TDAPNet [5] 99.3 98.4 98.6 98.5 97.4 96.1 97.5 96.6 91.6 82.1 88.1 82.7 79.8 92.8
CompNet-
Multi [1] 99.3 98.6 98.6 98.8 97.9 98.4 98.4 97.8 94.6 91.7 90.7 86.7 88.4 95.4

AGAP+CCE 99.5 97.5 97.4 97.1 92.9 90.3 88.2 88.3 68.7 58.2 47.2 46.6 47.1 78.4
AGAP+CCE* 99.5 97.6 97.5 97.3 93.1 90.5 88.9 88.9 69.2 59.3 48.5 47.3 47.4 78.9
AFC+CCE 99.7 97.9 98.0 98.0 95.2 93.2 92.7 91.4 80.4 61.8 56.2 51.9 60.8 82.9
AFC+CCE* 99.7 98.1 98.2 98.1 95.3 93.3 93.1 91.6 80.4 62.0 56.8 52.4 61.1 83.1
AGAP+BCE 98.5 93.7 92.7 92.6 84.9 83.2 80.4 79.0 59.9 49.3 43.4 41.2 41.8 72.4
AGAP+BCE* 99.2 96.8 97.1 97.0 94.5 90.0 91.0 90.6 83.2 62.9 64.6 61.4 68.4 84.3
AFC+BCE 99.8 98.7 98.5 98.7 97.0 95.4 94.7 94.1 83.6 66.4 60.9 59.5 61.4 85.3
AFC+BCE* 99.7 98.7 98.6 98.7 97.0 95.3 94.8 94.1 83.8 66.3 61.1 59.3 61.8 85.3
AGAP+CCE+IC 99.5 99.2 99.1 98.9 96.8 99.0 97.7 96.3 90.8 95.2 86.6 74.4 78.0 93.2
AGAP+CCE+IC* 99.7 99.4 99.3 99.0 97.8 99.2 98.3 96.9 92.8 96.4 87.0 75.4 82.3 94.1
AFC+CCE+IC 99.5 99.5 99.2 99.3 97.9 99.2 98.2 97.5 93.7 96.8 87.8 78.9 85.1 94.8
AFC+CCE+IC* 99.6 99.6 99.2 99.4 98.6 99.3 97.9 97.5 95.7 95.9 83.0 80.4 88.9 95.0
AGAP+BCE+IC 99.1 98.9 98.3 98.3 97.4 98.0 96.4 96.7 93.1 92.8 83.8 80.5 84.8 93.7
AGAP+BCE+IC* 99.7 99.6 99.4 99.4 98.9 99.2 98.4 98.1 96.9 95.8 87.4 85.4 92.1 96.2
AFC+BCE+IC 99.6 99.6 99.3 99.3 98.7 99.4 98.3 98.1 95.4 97.0 90.5 82.8 87.4 95.8
AFC+BCE+IC* 99.7 99.7 99.4 99.4 98.9 99.6 98.8 98.5 96.2 97.9 90.8 83.9 89.4 96.3

convolutional aggregation module (AFC) performs better in all
cases. The reason for this is that the network is also able
to consider the location of the features, which can also be
helpful for identification. This is especially true for occlusion
cases, in which multiple parts of the objects are occluded
and the network can nevertheless use the visible features and
their spatial positions to assign the correct object class to the
image. However, this is not possible in the case of global
average pooling, as the information of the location is lost due
to the pooling process. This advantage of the convolutional
aggregation module can be seen in the results with and without
Inverted Cutout, and it therefore seems to be advantageous
on every occasion. Interestingly, while using the Softmax
Categorical Cross Entropy loss works well, we found that the
Binary Cross Entropy loss actually works better in most cases
and improves the results by several percentage points even in
scenarios with more complex occlusions.

When looking at the difference between the runs during
which we only train the network head and the ones with
a fully fine-tuned network, we note that the improvement
is greater for the aggregation module with global average
pooling than for the fully-convolutional one. This also suggests
that the information about the feature locations plays a vital
role in identification under occlusion. The spatial information
can only be included by training with the fully-convolutional
aggregation block or by fine-tuning the complete network.
This, in turn, results in a generally better performance of
the fully-convolutional aggregation block even during training

of the block alone with only minor improvements in case of
additional network fine-tuning. At the same time, the pooling
module can only utilize spatial information by fine-tuning the
backbone, resulting in a more significant jump in performance
afterward.

In comparison to previous methods, we observe that inde-
pendent of the aggregation module, all approaches using our
proposed IC augmentation outperform the previous approaches
except for CompNet-Multi [1]. The top results received by
training the network using Softmax Cross Entropy, i.e., an
average accuracy of 94.8% and 95.0% before and after fine-
tuning the network with fully-convolutional module, perform
comparably to CompNet-Multi [1]. However, when using
Binary Cross Entropy loss during training, the same setup
outperforms CompNet-Multi by 0.4% and 0.9% for a fixed
backbone and a fine-tuned backbone, respectively. It should
also be noted that the fine-tuned network with GAP also
outperforms CompNet-Multi by 0.8%.

MS-COCO: The results of our experiments on the
Occluded-COCO-Vehicles dataset are shown in Table III.
Overall, on most occasions, the results are similar to those
on the previous dataset. This includes better results using
the Binary Cross Entropy loss compared to the Softmax
Categorical Cross Entropy loss, as well as the advantage of
the fully-convolutional aggregation block over the one with
GAP. However, AFC outperforms AGAP after training only the
aggregation blocks, whereas the situation is vice versa after
fine-tuning the complete network. This is likely caused by a



TABLE III: Results on the Occluded-COCO-Vehicles dataset,
comparing our approaches with previously introduced methods
based on classification accuracy (in %). The values of methods
used for comparison have been taken from [1]. * marks the
results received after fine-tuning the network. CCE and BCE
denote the Categorical (Softmax) and Binary Cross Entropy
losses, respectively. AGAP and AFC denote the aggregation
module with global average pooling and with a convolutional
layer, respectively.

Train Data MS-COCO
Occ. Area L0 L1 L2 L3 Avg
VGG [16] 99.1 88.7 78.8 63.0 82.4
VGG [16] + Cutout 99.3 90.9 87.5 75.3 88.3
TDAPNet [5] 99.4 88.8 87.9 69.9 86.5
CompNet-Multi [1] 99.4 95.3 90.9 86.3 93.0
AGAP+CCE 99.2 85.3 80.0 68.8 83.3
AGAP+CCE* 99.3 85.3 80.2 68.8 83.4
AFC+CCE 99.6 89.9 83.7 70.2 85.9
AFC+CCE* 99.6 90.2 84.2 72.3 86.6
AGAP+BCE 99.3 86.3 78.3 69.5 83.4
AGAP+BCE* 99.3 86.4 78.3 69.5 83.4
AFC+BCE 99.7 90.6 84.9 74.0 87.3
AFC+BCE* 99.7 90.7 85.5 74.3 87.5
AGAP+CCE+IC 99.1 90.6 87.2 87.0 91.0
AGAP+CCE+IC* 99.5 94.5 90.8 89.4 93.5
AFC+CCE+IC 99.4 94.2 90.0 82.9 91.6
AFC+CCE+IC* 99.4 94.7 90.8 84.2 92.3
AGAP+BCE+IC 99.1 89.4 88.0 86.0 90.6
AGAP+BCE+IC* 99.4 94.6 91.6 92.8 94.6
AFC+BCE+IC 99.4 94.1 92.0 86.3 93.0
AFC+BCE+IC* 99.5 95.4 92.1 88.7 93.9

different distribution of objects in the images, as the Occluded-
COCO-Vehicles dataset contains objects in natural occlusion
scenarios. Hence, the objects might more often be off-center.
At the same time, the fully-convolutional aggregation block
in our case favors the same object parts being at the same
locations in the image and this property is observed less
common in this dataset. Therefore, the greater focus on the
locations might be detrimental in this scenario. Nevertheless,
CompNet-Multi, as well as all other previous methods, are
outperformed by the fine-tuned networks trained with our
IC augmentation method, and comparable performances are
achieved without fine-tuning. Furthermore, it should be noted
that we also include the experiments done with the VGG
architecture [16] and standard Cutout [3] as performed by
Kortylewski et al. [1]. However, we find that the performance
gain with standard Cutout is far behind our new IC method.

To summarize, our experiments show that we can also
utilize a rather simple data augmentation technique, namely
Inverted Cutout, to make pre-trained networks robust against
occlusion and achieve new state-of-the-art results on both
evaluation datasets. It also drastically outperforms the classical
Cutout [3] method, which is shown in an ablation study in
the supplementary material. Moreover, ablations for different
IC parameters as well as ones for changes in the backbone
architecture can be found in the supplementary material as
well.

D. Technical Comparison with State-of-the-Art

As we mentioned above, the state-of-the-art approach for
classifying occluded objects, called CompNet-Multi by Ko-
rtylewski et al.[1], is a generative approach utilizing Com-
positional Neural Networks. As such, it has to be trained
using a maximum-likelihood estimation scheme with a four-
component loss function, as shown in [1]. In addition to
the weights for the individual loss terms, the method also
introduces further hyperparameters (like the number of mixture
components), which have to be optimized. All these aspects
make the method quite complex and possibly hard to apply
to new problems beyond the scope of its original applica-
tion. In contrast, our proposed method only utilizes a new
augmentation function, called Inverted Cutout, and simple
aggregation modules that can easily be applied to any network.
Hence, aside from the improvements regarding the quantitative
evaluation, our method is also more straightforward and can
easily be applied in new domains. Furthermore, by investi-
gating an aggregation block that summarizes features in a
fully-convolutional way without the usage of global average
pooling, as is usually done in segmentation tasks, we assume
that our method can also directly be applied in segmentation-
like tasks such as amodal segmentation [20] without extensive
modifications.

V. CONCLUSION

In this paper, we have introduced a novel data augmentation
method called Inverted Cutout (IC), which can be used to
make a pre-trained network robust against occlusion. In our
experiments, we have shown that the knowledge learned by
using IC can be applied in scenarios with different occlusion
types, including simple white block occlusion, texture and
noise occlusion, occlusion by inserted objects, as well as
realistic occlusion. Moreover, we have compared two different
feature aggregation blocks and have shown that it is not
even necessary to fine-tune the entire network to receive
good performance for classifying occluded objects, but the
right choice of the feature aggregation method can already
introduce high levels of occlusion-robustness into the network.
While a limitation of our approach is the training on tiny
objects, as they are likely often not contained at all in the IC
window, our experiments show that IC works well on normal-
sized to full-frame objects as contained in the datasets used.
By applying such aggregation blocks that are optimized by
training with our proposed IC augmentation method which
optionally also allows for fine-tuning the entire network, our
methods performed comparably or better than previous state-
of-the-art approaches, while at the same time being much
more straightforward, easier-to-implement and easier-to-train
compared to the competing approaches.
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