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Abstract: Since depth measuring devices for real-world scenarios became available in the recent past, the use of 3d data
now comes more in focus of human action recognition. We propose a scheme for representing human actions in
3d, which is designed to be invariant with respect to the actor’s scale, rotation, and translation. Our approach
employs Principal Component Analysis (PCA) as an exemplary technique from the domain of manifold learning.
To distinguish actions regarding their execution speed, we include temporal information into our modeling
scheme. Experiments performed on the CMU Motion Capture dataset shows promising recognition rates as
well as its robustness with respect to noise and incorrect detection of landmarks.

1 INTRODUCTION AND
RELATED WORK

In the last decades the recognition and analysis of ac-
tions and motions performed by humans have become
one of the most promising fields in computer vision
research and lead to a wide variety for research top-
ics in computer vision. This family of problems aims
to determine human activities automatically based on
several sensor observations. A wide range of indus-
trial as well as academic applications are based on this
research, e. g. the interaction between humans and ma-
chines, surveillance and security, entertainment, video
content retrieval as well as the research in medical and
life sciences.

In early years of scientific interest those methods
concentrated on the evaluation of 2d image sequences
delivered by gray value or color cameras (Gavrila,
1999; Turaga et al., 2008; Poppe, 2010). Due to
the massive amount of research those methods now
achieve very good results on the standard Weizmann
2d action recognition dataset (Gorelick et al., 2007).
Several of those approaches are based on the evalua-
tion of changes in silhouettes or the extraction of in-
terest point features in space-time volumes created by
subsequent video frames (Laptev, 2005; Dollar et al.,
2005). Furthermore the combination of shape and
optical flow is used for action recognition (Ke et al.,
2007).

In contrast to this huge amount of scientific work
concerning 2d images, 3d data was not yet used in a
remarkable quantity. However, the recent development

of depth measuring devices such as Time-of-Flight
(ToF) sensors or sensors based on the projection and
capturing of structured light patterns make 3d data
available in a fast and inexpensive way.

In this paper we present a spatio-temporal represen-
tation scheme for human actions given as sequences
of 3d landmark positions which models the spatial
variations in a contextual way and takes into account
the temporal coherence between subsequent frames
based on manifold learning techniques. After present-
ing our approach in Sec. 2 we show numerous experi-
ments evaluated on the CMU Motion Capture (MoCap)
dataset in Sec. 3. A summary and a brief outlook in
Sec. 4 conclude this paper.

2 Statistical Shape Representation

Manifold learning techniques are widely used for
classification tasks like face detection and emotion
recognition (Zhang et al., 2005). For action recogni-
tion from 2d video streams the usability of Principle
Component Analysis (PCA), and Independent Compo-
nent Analysis (ICA) on motion silhouettes have been
compared (Yamazaki et al., 2007). Locality Preserv-
ing Projections (LPP) were utilized in combination
with a special Hausdorff distance measure on silhou-
ettes (Wang and Suter, 2007). A comparison of further
techniques for dimensionality reduction like Locality
Sensitive Discriminative Analysis (LSDA) and Local
Spatio-Temporal Discriminant Embedding (LSTDE)
was presented in (Jia and Yeung, 2008). Tensor PCA



(a) (b)
Figure 1: (a) The skeleton model used in our approach with
31 joints affected by 62 degrees of freedom. (b) Data matrix
for action class walking indicating the sequential parameter
changes. The colors of the columns are corresponding to
the colors in the model while the intensities illustrate the
parameter values.

for reducing the dimensionality of the parameter space
was also investigated (Sun et al., 2011).

In the field of 3d action recognition far less work
exist. Laplacian Eigenmaps are recently used to rec-
ognize human actions from 3d points delivered by
full-body ToF scans (Schwarz et al., 2010; Schwarz
et al., 2012). Hierarchical Gaussian Process La-
tent Variable Modeling (H-GPLVM) combined with
Conditional Random Fields (CRF) was employed to
model relations between limbs action classification
from CMU MoCap data (Han et al., 2010).

For action recognition in 3d data a unique repre-
sentation is necessary, which needs to be invariant
against absolute landmark positions. While Active
Shape Models (ASM) (Cootes et al., 1995) are mas-
sively used in facial expression classification, their
main ideas are also suitable for the field of locomotion
analysis (Haase and Denzler, 2011).

In the following we use a basic idea of ASMs to
model and recognize human actions in 3d data.

2.1 Spatial Representation

Using a hierarchical skeleton model as shown in
Fig. 1(a), any arbitrary skeleton configuration at time
step 1 ≤ t ≤ Nf can be parameterized as a vector of
Euler angles θθθ

t =
(

θt
1, . . . ,θ

t
Nθ

)
∈ RNf , while Nθ is

the number of joint angles. These angles are indi-
cating the rotations of every limb wrt. the adjacent
joints in any room direction limited to its number of
Degrees of Freedom (DoF). E. g. , the neck joint has 3
DoF, because it can rotate in all coordinate directions,
while the elbow has only 2 DoF. The model used in
this paper consists of Nj = 31 joints which yields 59
DoF and an additional global displacement (x,y,z)t

1.
When using ASMs, normally as a first step the land-
mark sets have to be aligned in terms of rotation, scale
and translation using Procrustes analysis (Bookstein,
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Figure 2: The first three motion components of a walking
action (a) and their corresponding eigenvectors (b). Colors
indicate the weighting of the eigenvectors added to the mean
shape (black: wt

k = −2λ2
k , blue: wt

k = 0, red: wt
k = 2λ2

k).
Note the anti-symmetric motion directions of the limbs in
the first two components and the symmetric one in the third
component.

1997). This becomes obsolete in our scenario when
normalizing the actor’s skeleton in an anatomically cor-
rect fashion by setting the root rotation and translation
to θt

1 = θt
2 = θt

3 = xt
1 = yt

1 = zt
1 = 0, 1≤ t ≤ Nf.

While angular representations tend to be ambigu-
ous because of their periodical nature, joint rotations
are projected to 3d landmark positions

lllt = π
θθθ→lll

(
θθθ

t)= ((x,y,z)t
1, . . . ,(x,y,z)

t
Nj

)
∈ RNl , (1)

1 ≤ t ≤ Nf, using a projection function π
θθθ→lll

: RNθ 7→

RNl . To preserve scale invariance of our modeling, a
predefined skeleton model is used for projection each
time.

Combining all zero-mean skeleton configurations
at every available time step yields the matrix of land-
marks

LLL =

 lll1− lllµ
...

lllNf − lllµ

 ∈ RNf×Nl , lllµ =
1
Nf

Nf

∑
i=1

llli. (2)

Performing Principle Component Analysis (PCA) on
LLL will return its matrix

PPPLLL = (vvvLLL
1 |· · · |vvvLLL

Nl
) ∈ RNl×Nl (3)

of eigenvectors sorted according to their correspond-
ing eigenvalues λLLL

k descendingly representing the im-
portance of each data space direction. Using these
eigenvectors as basis vectors, every arbitrary skele-
ton configuration represented by a 3d landmark coor-
dinate set can be expressed as a linear combination
lll′ = lllµ +PPPLLLbbblll′ of the data matrix columns and the
frame-specific shape parameter vector bbblll′ added to the
constant mean shape lllµ.

Since the amount of represented variances of land-
mark sequences captured by the eigenvectors decreases
massively according to the evolution of their corre-
sponding eigenvalues, the number of columns in the



Table 1: Action classes selected from CMU MoCap dataset used in our experiments.
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Class walking running marching sneaking hopping jumping golfing salsa

Samples 38 28 14 15 14 9 11 30
Actors 9 9 4 5 4 3 2 2
Avg. frame number 1283 853 6426 4200 602 1325 8626 5224

eigenvector matrix PPPLLL can be restricted to achieve a
substantial reduction of dimensionality.

Fig. 2(a) shows the first three action components,
while Fig. 2(b) depicts the corresponding eigenvectors
of an action from class walking.

2.2 Integration of Temporal Context

While the previously described representation solely
models linear variations of skeleton joints, the tempo-
ral evolution of configurations might contribute helpful
information for the recognition and analysis of articu-
lated actions. For this reason, our model is extended
to include this temporal component.

In (Bosch et al., 2002) such a temporal modeling of
periodical actions was already used to model a beating
heart. This was pointed out to be a generalization of the
multi-view integration approach of (Lelieveldt et al.,
2003) and (Oost et al., 2006). Instead of considering
a skeleton configuration at a single time step t0 to
obtain the model parameters, they regard a series of
sequential time steps t0 < t1 < .. . < tk or alternatively
multiple views (o1,o2, . . . ,ok) at the same time step as
a single configuration.

Applied to our problem, the provided method mod-
els the temporal evolution of skeleton configurations
by appending subsequent input matrices horizontally:

lllt0→tkhist =
(
lllt0 , lllt1 , · · · , llltkhist

)
∈ R(khist+1)·Nl , (4)

LLLt0→tkhist =


lllt0 lllt1 · · · lllkhist

lllt1 lllt2 · · · llltkhist+1

...
...

. . .
...

llltNf−khist lllt(Nf−khist)+1 · · · llltNf


∈ R(khist+1)·Nl×(Nf−(khist+1)).

This approach allows us to distinguish between an
action and its reverse counterpart as well as to classify
the speed of execution.

3 EXPERIMENTS

3.1 Dataset

In order to evaluate the proposed methods, we have
chosen eight different actions performed by different
actors from the CMU MoCap dataset, as shown in
more detail in Tab. 1. While we have selected common
actions with slightly different executions like walking,
running, marching and sneaking or hopping and
jumping, we also took complex motions—salsa and
golfswinging—into account.

3.2 Discriminability of Eigenvector
Representation

When performing PCA on sequential data LLL, the re-
sult shows the most important directions of variance
in the data. For this reason, the eigenvectors vvvLLL

k corre-
sponding to the largest eigenvalues λLLL

k are supposed
to encode most of the information, while the eigen-
vectors corresponding to the lower eigenvalues model
only minor changes in the data as well as noise.

Fig. 3 depicts the evolution of the eigenvalues for
all action classes in our dataset. As can be seen, after a
strong descent up to the third principal component, the
eigenvalues converged strongly towards zero. After
a certain component, there was no substantial contri-
bution to the data, which became apparent at the 12th

eigenvalue, as indicated by the vertical line in Fig. 3.
As depicted in Tab. 2, in most the cases two to three
eigenvectors were sufficient to cover 90% of the vari-
ances occurred while execution of an action. Solely
the action classes with high variances in all directions
need more discriminability, which can be handled by
increasing the number of eigenvectors. This fact can
also be seen in Tab. 3, where the first three eigenvectors
vvvLLL

k are shown together with their mean shapes lllµ.
The back projection error εaction(lll′

′′) =

‖
(
lll′′′ ·PPPLLLaction

)
· PPP>

LLLaction − lll′′′‖2 obtained by trans-
forming an arbitrary skeleton configuration lll′′′ from



Table 2: Comparison of variance covering facilities of our
representation scheme. While the usage of two to three
eigenvectors allows to achieve 90% of the variances ob-
tained during simple actions, more dimensions are needed
to represent more complex actions.

Action Class Amount of variance

90% 95% 98%

walking 2 3 4
running 2 3 5
marching 3 5 8
sneaking 3 5 8
hopping 2 5 8
jumping 3 4 6
golfing 3 3 4
salsa 8 9 12
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Figure 3: Evolution of eigenvalues for different action
classes. Eigenvalues are decreasing massively up to the
third component, while they remain static for higher-order
components.

Euclidian space R3 into the reduced eigenspace
Vaction of a certain action class and back to Euclidian
space, where PPPLLLaction =

(
vvvLLLaction

1

∣∣∣· · · ∣∣∣vvvLLLaction

kev

)
is a

matrix containing the eigenvectors corresponding
to the first kev largest eigenvalues of LLLaction, give a
quantitative justification for this postulation, as can be
seen in Fig. 4. As a result, the ordering of remaining
eigenvectors is no longer meaningful. Therefore, they
are not considered in the following classification
purposes.

3.3 Feature Vector Design and
Classification

In order to distinguish action classes, features have
to be derived from the sequence of skeleton config-
urations. Using the representation described before,
feature vectors yyyLLL′ =

(
lll′µ,vvv

LLL′
1 , . . . ,vvvLLL′

kev

)
are extracted

from a series LLL′ of landmark vectors lll′ by concatenat-
ing its mean shape lll′µ and its eigenvectors correspond-
ing to the first kev eigenvalues.

Table 3: Comparison of the mean shapes and the first three
eigenvectors of the action classes in our dataset. Note that
similar actions have similar first eigenvectors and different
second or third eigenvectors while different actions can al-
ready be distinguished by their first eigenvectors.

Action
Class

Mean Shape Eigenvectors

lllµ vvvLLL
1 vvvLLL

2 vvvLLL
3
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Figure 4: Back projection errors obtained by transforming
skeleton configurations in every time step of a hopping se-
quence (thick line) from Euclidean space into action-specific
eigenspaces and back to Euclidean space. Small errors sug-
gest that the mapping is appropriate for the given action
representation, while high errors are indicating poor map-
ping facilities.

In Fig. 5(a) one can observe that the recognition
rate during classification had a maximum peak at
kev = 3, which argues for a high degree of discrim-
inability. This is emphasized by the vertical line in
Fig. 5(a). Without using any eigenvectors, only the
mean shape is taken into account during feature ex-
traction, which leads to lower discriminability. Using
more eigenvectors would cause a more exact recon-
struction of the skeleton configuration and therefore a
smaller discriminability due to the increased coverage
of variability.

For simplicity, we used the k Nearest Neighbor
(k-NN) framework for classification, which assigns a
class label to a feature vector employing an arbitrary
distance measure d(yyytest,yyytarget) between the feature
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neighbors for k-NN classification on recognition rates.

Table 4: Confusion matrix with overall recognition rates
obtained by exhausting leave-one-out test on our dataset.

Training Testing
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a

walking 100 0 0 0 0 0 0 0

running 33 56 0 11 0 0 0 0

marching 4 0 93 0 0 4 0 0

sneaking 0 0 0 100 0 0 0 0

hopping 13 7 0 0 80 0 0 0

jumping 0 0 7 7 0 86 0 0

golfing 0 0 0 0 0 0 100 0

salsa 0 0 3 0 0 0 0 97

vector yyytest and a representative prototype vector yyytarget.
In our experiments, we chose the Euclidean distance
d(yyytest,yyytarget) = ‖yyytest− yyytarget‖2.

As can be seen in Fig. 5(b), using k = 1 gave the
best recognition rate, while increasing the number of
neighbors caused apparent worse results as well as
higher computational time for classification.

Using this feature extraction scheme and the 1-NN
classifier, we were able to achieve results as shown
in the confusion matrix obtained by exhaustive leave-
one-out test in Tab. 4. As one can see, most of the
action classes in our dataset were recognized correctly
in more than 80% of the cases, while 4 classes gave
recognition rates of nearly 100%. Solely the action
class running has been confused with the semanti-
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Figure 6: Influence of increasing the strength of (a) zero-
mean gaussian noise and (b) Salt-and-Pepper noise to the
recognition rates. In order to reduce this performance drop
in (b), a temporal median filter of size hmedian was applied
on the data as a preprocessing step.

cally related classes walking and sneaking due to
their similar variations during execution.

3.4 Robustness to Noise

In real-world applications the input data for action
classification are not ideal. Hence we modeled the
influence of additive, zero-mean normally distributed,
and uncorrelated Salt-and-Pepper noise to quantita-
tively evaluate the robustness of our approach.

As can be seen in Fig. 6(a), adding Gaussian noise
to the input data did not negatively affect the classifi-
cation results. This might be explained by the mean
subtraction on the one hand and the usage of PCA on
the other hand during modeling. In order to find the
principal components, noise added to the data will only
affect the eigenvectors corresponding to the smaller
eigenvalues, while the inherent and consistent infor-
mation of movement over time is still captured by the
eigenvectors corresponding to the larger eigenvalues.

A similar behavior can be observed in the case
of adding uncorrelated Salt-and-Pepper noise to input
data. As can be seen in Fig. 6(b), while the recogni-
tion rates were decreasing with the amount of added
noise, simple median filters applied to the single chan-
nels along the time dimension were able to drastically
reduce these effects. It can be seen that an amount
of 70% Salt-and-Pepper noise can be handled by ap-
plying a 15-frame temporal median filter which only
results in a small decrease in the recognition rates.



Table 5: Effects of integrating temporal context into our
model. Since the model became more distinctive regarding
the execution speed of actions, integrating these temporal
information affected the recognition rates slightly.

Historical Offset ∆hist Number of History Frames khist

1 2 3 4

5 92.45 92.45 91.82 91.19
10 93.08 92.45 91.82 92.45
15 91.82 91.19 91.82 91.82
30 90.57 89.31 92.45 89.94

3.5 Comparison to other Work

Although human action recognition was widely in-
vestigated for 2d data, there is less work available
concerning the case of having access to 3d data. A
similar approach to classify human actions in 3d data
was taken in (Han et al., 2010), but they selected less
action classes from the CMU MoCap dataset. While
they distinguish only 3 action classes with small varia-
tions in execution, recognition rates of 98.29% were
obtained without taking the presence of noise into ac-
count. In (Junejo et al., 2011), the same database has
been used to create artificial 2d views and evaluating
several distance metrics on the landmark points with-
out modeling the shape at all. They observed recogni-
tion rates of about 90.5% in average when combining
all their camera views for training and testing. The
approach of (Shen et al., 2008) employed homography
constraints and lead to an overall recognition rate of
about 92% .

Compared to those results, our approach performs
similarly (92.45%) on the same data even in the pres-
ence of noise.

3.6 Use of Temporal Context

As mentioned in Sec. 2.2, we not only model the varia-
tions of landmark transitions during a fixed time period,
but also integrate the evolution of these movements by
incorporating the temporal context during an action
execution.

Tab. 5 shows that the integration of temporal infor-
mation into the action model affects the recognition
rates slightly. We tested several values for the number
of history frames khist integrated to the model as well
as the temporal offset ∆hist = (ti− ti−1),1≤ i≤ tkhist of
these frames. The observed behavior can be explained
by taking into account the variability of action execu-
tions within the dataset, where, for example, one actor
performs slower while another performs faster.

Although this fact is not requested in the given

scenario, it would allow us to distinguish actions re-
garding the execution speed which can be of inter-
est in further applications. For instance, the confu-
sion between action classes running and walking or
sneaking could be dissolved exploiting these tempo-
ral information.

4 SUMMARY AND OUTLOOK

We proposed a method for representing sequences of
human actions while integrating spatial and temporal
information into a combined model. This representa-
tion scheme was shown to be suitable for human action
classification applications. Experiments performed on
the CMU motion capturing dataset gave promising re-
sults which are able to compete with existing state of
the art approaches.

To overcome certain false classifications, a hierar-
chy of single binary classifiers can be built. One can
observe that similar motions are grouped into closer
subtrees, while diverging actions are located in distinct
subtrees.

Another field of research is the design of fea-
tures used for classification. Since closely related
classes tend to be confused, more sophisticated fea-
tures should help to overcome this behavior.

The parameter vector bbblll′ could be used to build
a self-similarity matrix instead of using the Euclid-
ian landmark distances as proposed by (Junejo et al.,
2011). More sophisticated distance measures like the
angular distance in the manifold space could benefit
the discriminability of the action classes.

For feeding real-world data to our approach, skele-
ton configurations can be extracted from frames pro-
vided by depth measuring camera devices such as Mi-
crosoft Kinect or PMD, which was recently shown to
be possible in real-time (Li et al., 2010; Shotton et al.,
2011). The combination of Active Shape Model based
landmark detection and our proposed action represen-
tation could also be promising.
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