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Abstract—Since depth measuring devices for real-world
scenarios became available in the recent past, the use of 3d
data now comes more in focus of human action recognition.
Due to the increased amount of data it seems to be advisable
to model the trajectory of every landmark in the context of all
other landmarks which is commonly done by dimensionality
reduction techniques like PCA. In this paper we present an
approach to directly use the subspaces (i.e. their basis vectors)
for extracting features and classification of actions instead of
projecting the landmark data themselves. This yields a fixed-
length description of action sequences disregarding the number
of provided frames. We give a comparison of various global
techniques for dimensionality reduction and analyze their
suitability for our proposed scheme. Experiments performed on
the CMU Motion Capture dataset show promising recognition
rates as well as robustness in the presence of noise and incorrect
detection of landmarks.

Keywords-Human Action Recognition; Manifold Learning;
Dimensionality Reduction; PCA; Kernel PCA; Isomap; Spec-
tral Regression

I. INTRODUCTION AND RELATED WORK

The recognition and analysis of actions and motions
performed by humans became one of the most promising
fields in computer vision research and lead to a wide
variety of research topics. This family of problems aims
to automatically determine human activities based on sensor
observations and serves for a wide range of applications,
e.g. human-machine interaction, surveillance, security and
entertainment.

Since the complexity of classification tasks grows with the
dimensionality of the input data, manifold learning techniques
are commonly used to reduce the number of valid dimensions
by finding an application-specific optimal projection to a
lower-dimensional target space which might be more suitable
for separating data clusters.

The usability of Principle Component Analysis (PCA) and
Independent Component Analysis (ICA) on motion silhouettes
was previously compared [1], [2]. Furthermore, Locality
Preserving Projections (LPP) were utilized in combination
with a special Hausdorff distance measure on silhouettes [3].
Other techniques for dimensionality reduction like Locality
Sensitive Discriminative Analysis (LSDA) and Local Spatio-
Temporal Discriminant Embedding (LSTDE) were compared

in [4], while Tensor PCA was employed for reducing the
dimensionality of the parameter space in [5].

In the field of 3d human action recognition, far less work
exist. The approach in [6] employs Laplacian Eigenmaps
to recognize human actions from 3d points delivered by
full-body ToF scans. Hierarchical Gaussian Process Latent
Variable Modeling (H-GPLVM) combined with Conditional
Random Fields (CRF) was used to classify actions from CMU
Motion Capture data in [7].

Most of the approaches mentioned above attempt to
use dimensionality reduction to project the data points
into a more feasible target coordinate system with lower
dimensionality and perform classification on these projected
data. In contrast, we propose to use the target coordinate
system bases themselves to extract features, similar to [8].
Following this scheme, any sequence of an arbitrary action
can be represented by a small set of basis vectors and
an mean shape which is independent from the number of
frames. This allows to reduce computational time as well
as memory needed for the classification data. In Sec. II we
present an overview about various global dimensionality
reduction techniques. Our proposed scheme for representation
and classification of actions in 3d data will be presented in
Sec. III. Experiments performed on the CMU MoCap dataset
gave promising results compared to others (Sec. IV).

II. GLOBAL APPROACHES FOR DIMENSIONALITY
REDUCTION

Dimensionality reduction is widely used for recognition of
shapes and actions. Most approaches employ the embedded
data points to find a representation with lower dimensionality.
In contrast, we propose to use the projection parameters
themselves for classification, as described in the following.

Using a hierarchical model as in [9], any arbitrary skeleton
configuration at time step 1 ≤ t ≤ Nf can be parameterized
as a vector of landmarks lt =

(
(x, y, z)t1, . . . , (x, y, z)

t
Nj

)
∈

R3·Nj , while Nj is the number of joints in the model. To
enforce stationarity, the actor’s skeleton is normalized in an
anatomically correct fashion by setting the global rotation
(θt1, θ

t
2, θ

t
3) and translation (xt1, y

t
1, z

t
1) to zero. Combining all
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Figure 1: The first three motion components of a walking
action (a) and their corresponding eigenvectors (b). Colors
indicate the weighting of the eigenvectors added to the mean
shape (black: wtk = −2λ2k, blue: wtk = 0, red: wtk = 2λ2k).
Note the anti-symmetric motion directions of the limbs in
the first two components and the symmetric one in the third
component.

zero-mean skeleton configurations at every time step yields
the matrix

L =

 l1 − lµ
...

lNf − lµ

 ∈ RNf×3·Nj , lµ =
1

Nf

Nf∑
i=1

li. (1)

Although the sequences have a varying number of frames Nf,
we aim to find a representation of fixed length. This section
presents a selection of algorithms to estimate global linear
transformations in order to reduce the dimensionality of our
data and capture their variances.

Principal Component Analysis (PCA). PCA aims to
find a low-dimensional representation for all data points X
which preserves the maximum amount of variance of the
original data. For this purpose, a linear basis transformation T
to maximize the variances in every coordinate direction is es-
timated by solving the eigenproblem cov(X−Xµ)T = λT
for the kev largest eigenvalues. Performing PCA on matrix
(1) yields the matrix PL =

(
vL
1 |· · · |vL

3Nj

)
∈ R3Nj×3Nj

of eigenvectors sorted descendingly according to their cor-
responding eigenvalues (cf. Fig. 1 and Tab. I). Every new
skeleton configuration l′ can then be expressed by a linear
combination l′ = lµ +PLbl′ of the eigenvectors in the data
matrix columns and the frame-specific shape parameters bl′

(i.e. the motion components) added to the constant mean
shape lµ.

Probablistic PCA (P-PCA). While the computational
complexity of PCA grows cubically with the data dimension-
ality, approximative approaches were derived. Probabilistic
PCA, for example, gives an EM-based reformulation of the
standard PCA [10].

Kernel PCA (K-PCA). Instead of calculating the
eigenvectors of the data covariance matrix, the Kernel PCA
approach analyzes the kernel matrix K = {k}i,j , ki,j =
κ(xi,xj) with kernel function κ(·, ·) [11]. Widely used

Table I: Comparison of the mean shapes and the first three
eigenvectors of the action classes in our dataset. Note that
similar actions have similar higher-order eigenvectors.

Action lµ vL
1 vL

2 vL
3
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kernel functions are for instance

κgauss(x,y) = exp
(
−|x−y|2/2σ2

)
(Gaussian RBF), (2)

κpoly(x,y) =
(
x>y

)d
(polynomial), (3)

κpoly+(x,y) =
(
x>y + 1

)d
(polynomial+). (4)

Using the linear kernel κlinear(x,y) = x>y yields the
standard PCA.

Isometric Feature Mapping (Isomap). In addition to
maximizing the variances along the coordinate axes, the
preservation of local distances between data points yields
another optimization criterion. The Multidimensional Scaling
(MDS) approach optimizes the stress function φ(X) =∑

i,j (|xi − xj | − |yi − yj |)
2 using Euclidean distances be-

tween the data points [12]. While this approach tends to
produce short-circuits between layered data points (cf. dashed
line in Fig. 2a), the Isometric Feature Mapping algorithm [13]
minimizes geodesic distances between points along their
underlying manifold (cf. solid line in Fig. 2a). The Isomap
algorithm first builds a neighborhood graph, where every data
point is connected by weighted edges with its knb nearest
neighbors or all neighboring points within a specified margin
εnb (cf. Fig. 2b) weighted by the local Euclidean distances.
The sum of weights along the shortest path (e.g. obtained by
Dijkstra’s algorithm) equals the geodesic distance between
two points within the manifold. This approach can be
regarded as an instance of Kernel PCA using the kernel
matrix K = 1

2HD2H, H = IN − 1
N 1n1

>
n , where D2 is

the matrix of squared pairwise geodesic point distances.
Neighborhood Preserving Embedding (NPE). In con-

trast to global linear techniques mentioned above, a variety
of local nonlinear approaches exist. Local Linear Embedding
(LLE) works similar to Isomap, but aims to solely preserve
local geometric properties by approximating every data point
by a linear combination of its knb nearest neighbors [14].
While this method estimates individual transforms for every
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Figure 2: (a) While MDS optimizes the Euclidean distances
between data points (straight dashed line), Isomap employs
the geodesic distance along the underlying manifold (solid
line). (b) Approximation of geodesic distance by shortest
path in the neighborhood graph. (Figures obtained from [13])
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Figure 3: Evolution of PCA eigenvalues for different action
classes. Eigenvalues are decreasing massively up to the
third component, while they remain static for higher-order
components.

data point, it does not fit in our proposed scheme. To
overcome this problem we use Neighborhood Preserving
Embedding to linearly approximate LLE by minimizing its
underlying cost function [15].

Spectral Regression (SR). The computational com-
plexity of eigen-decomposition grows cubically with the
amount of data. Hence, the Spectral Regression framework
reformulates the subspace learning problem as a two-step
approach, namely graph embedding of the input data and
regression for learning the parameters of projection func-
tions [16]. Following this formulation, solely a small set of
regularized least-square problems has to be solved, which
runs with linear complexity. The smoothness of the parameter
regression is controlled by adjusting the parameter αreg. Since
other graph embedding approaches (e.g. NPE or LPP) can
be fit into this framework, SR was proven to approximate
their results with high accuracy.

III. EMPLOYING PROJECTION SPACES FOR
CLASSIFICATION

A. Discriminability of Basis Vectors

When performing dimensionality reduction like PCA on
sequential data L, the result shows the most important
directions of variance in the data. The eigenvectors vL

k

corresponding to the largest eigenvalues λLk are supposed
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Figure 4: Variance covering facilities of our proposed
representation scheme. Note that in most cases 90% of
variance can be modeled by using 2− 3 basis vectors.

to encode most of the information, while the eigenvectors
corresponding to the smaller eigenvalues model only minor
changes in the data as well as noise. As already shown in
Tab. I, the higher-order eigenvectors of similar action classes
share a common appearance, while they behave contrary for
different action classes.

Fig. 3 depicts the evolution of the eigenvalues for all action
classes in our dataset. After a rapid descent up to the third
principal component, the eigenvalues converged strongly
towards zero. Beyond a certain number of components, there
was no substantial contribution to the data. This argues for a
well determined ordering of the first few eigenvectors while
higher order eigenvectors may be permuted.

As depicted in Fig. 4, in most of the cases two to three
eigenvectors are sufficient to cover 90% of the variances
occurred during perfoming an exemplary action sequence.
Solely the action classes with high variances in all directions
need more discriminability, which can be handled by using
a larger amount of eigenvectors.

Since the amount of represented variance within the
landmark sequences decreases massively according to the
evolution of the corresponding eigenvalues, the number of
basis vectors can be restricted to achieve a substantial reduc-
tion of dimensionality. In Fig. 5 the Euclidean backprojection
errors

εaction(l
′) =

∥∥(l′ · P̃Laction

)
· P̃
>
Laction − l′

∥∥
2

(5)

of a hopp sequence obtained by projecting every frame into
the reduced eigenspace Vaction and back to Euclidean space
R3 are displayed. While the projection into a related basis
system like jump cause small errors, unrelated projections
result in noticeable larger errors.

B. Feature Vector Design

The observations described in the previous section justify
the assumption that the mean vector together with the first
basis vectors obtained by the approaches described before
contain all information about the variance within an action
sequence. Due to the discriminative properties of the basis
vectors obtained by the methods proposed before it becomes



Table II: Action classes selected from CMU MoCap dataset used in our experiments.
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Figure 5: Back projection errors obtained by transforming
a hopp sequence from Euclidean space into action-specific
eigenspaces and back to Euclidean space.

evident to use them for classification of action sequences
instead of employing the projected sequences themselves as
proposed for other approaches. Hence, we design a feature
vector yL′ =

(
l′µ, e

L′

1 , . . . , eL
′

kbv

)
by combining the mean

shape l′µ and the first kbv basis vectors ei (e.g. the first
eigenvectors vL

i obtained by PCA). In order to overcome the
ambiguity of the basis vector’s signs, we enforce the maximal
component to be positive. The main advantages of this
representation scheme is the independence of the sequence
lengths on the one hand as well as the low computational
time needed to obtain these basis vectors on the other
hand. For simplicity, we used the k Nearest Neighbor (k-
NN) framework for classification and Euclidean distances
d(ytest,ytarget) = ‖ytest − ytarget‖2.

In Fig. 6 one can see that in a first experiment the highest
recognition rate is obtained by using kbv = 3 basis vectors.
Due to this observation as well as those displayed in Fig. 3
and Fig. 4 we fixed this parameter in further experiments.

IV. EXPERIMENTS

In order to evaluate the proposed methods, we selected
eight different actions from the CMU MoCap dataset per-
formed by different actors, as shown in more detail in Tab. II.
While we chose common actions with slightly different
executions like walk, run, march and sneak or hopp
and jump, we also took complex motions like salsa and
golf into account.
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Figure 6: Effect of increasing the number of basis vectors
used for building the feature vector on recognition rates
obtained by k-NN classification.

A. Performance Comparison

We achieved results for the different projection techniques
as shown in Tab. III by exhaustive leave-one-out tests. The
K-PCA approach with polynomial kernel performed best,
followed by the polynomial+ kernel. The Gaussian-kernelized
PCA as well as the probabilistic PCA and Isomap yield results
similar to the standard PCA algorithm while NPE performed
worst. Since SP is designed to approximate graph embedding
techniques, it performs similar to Isomap. The parameters
used in these experiments were optimized to obtain best
results. Due to these observations, we concentrate on K-PCA
for further evaluation.

The confusion matrix shown in Tab. IV depicts the result
of the K-PCA experiment using the polynomial kernel in
more detail. All action classes were recognized correctly in
more than 80% of the cases, while 5 classes gave recognition
rates of nearly 100%. Solely the action class run has been
confused with the semantically related classes walk and
sneak due to their similar variations during execution.

The algorithms were implemented in Matlab. We obtained
average run times of 30 ms for both feature extraction and
testing performed on a standard desktop computer (Intel(R)
Core(TM)2 Quad CPU Q9300 running with 2.50 GHz and
8 GB of RAM). Hence, the usage of standard techniques for
dimensionality reduction makes our approach suitable for
real-time applications.

B. Robustness to Noise

In real-world applications the input data for action clas-
sification are not ideal. Hence we modeled the influence



5 10 15 20
0.88

0.9

0.92

0.94

Gaussian noise σ2
gauss

O
ve
ra
ll
re
co
g
n
.
ra
te

3

(a)

2 4 6 8 10 12 14 16 18 20
0.88

0.9

0.92

0.94

Gaussian noise σ2
gauss

O
ve
ra
ll
re
co
g
n
.
ra
te

Gaussian Kernel κgauss
Polynomial Kernel κpoly

4

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Amount of Salt-and-Pepper noise p

O
ve
ra
ll
re
co
g
n
.
ra
te

κlinear, not filtered
κlinear, hmedian = 3
κlinear, hmedian = 5

5

(c)

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Amount of Salt-and-Pepper noise p

O
ve
ra
ll
re
co
g
n
.
ra
te

κgauss
κgauss, hmedian = 5
κpoly
κpoly, hmedian = 5

6

(d)

Figure 7: Influence of (a),(b) zero-mean Gaussian noise and (c),(d) Salt-and-Pepper noise to the recognition rates. In order to
reduce the performance drop in (c),(d) a temporal median filter of size hmedian was applied on the data as a preprocessing
step.

Table III: Recognition rates obtained while using different
techniques for dimensionality reduction.

Method Parameters Recognition Rates

Average Overall

PCA — 89.85% 92.45%

P-PCA s = 50 88.06% 91.19%

K-PCA gauss σ = 0.0005 87.11% 90.57%
poly d = 9 92.07% 94.34%
poly+ d = 5 91.18% 93.71%

Isomap knb = 7 84.75% 90.60%

NPE knb = 15 74.32% 78.52%

Spectral Regression αreg = 0.0065 84.74% 90.60%

of additive, zero-mean normally distributed and uncorre-
lated Salt-and-Pepper noise to quantitatively evaluate the
robustness of our approach and compared the results of the
standard PCA with K-PCA using the polynomial kernel.
As can be seen in Fig. 7a and b, Gaussian noise added
to the input data did affect the classification results just
slightly for both PCA as well as K-PCA. In order to find the
principal components, noise added to the data only affects the
eigenvectors corresponding to the smaller eigenvalues, while
the inherent and consistent information of movement over
time is still captured by the eigenvectors corresponding to the
larger eigenvalues. A similar behavior can be observed in the
case of adding uncorrelated Salt-and-Pepper noise to input
data. As shown in Fig. 7c, while the recognition rates were

Table IV: Confusion matrix of exhausting leave-one-out test
using Kernel PCA features with polynomial kernel κpoly.

Training Testing
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walking 100 0 0 0 0 0 0 0

running 22 78 0 11 0 0 0 0

marching 3 0 97 0 0 4 0 0

sneaking 0 0 0 100 0 0 0 0

hopping 13 7 0 0 80 0 0 0

jumping 0 0 7 7 0 86 0 0

golfing 0 0 0 0 0 0 100 0

salsa 0 0 3 0 0 0 0 97

decreasing with the amount of added noise, median filters
applied along the time dimension were able to drastically
reduce these effects. In case of PCA, an amount of 60%
Salt-and-Pepper noise can be compensated by a 5-frame
median filter which only results in a small decrease in the
recognition rates, whereas K-PCA seems to be more sensitive
to Salt-and-Pepper noise. However, 5-frame median filtering
still compensates up to 40% of uncorrelated outliers in the
data without a substantial loss of accuracy.

C. Comparison to other Work

Although human action recognition was widely investi-
gated for 2d data, there is less work concerning the case of



having access to 3d data. A similar approach to classify
human actions in 3d data was followed in [7], but they
selected less action classes from the CMU MoCap dataset.
While they distinguish only 3 action classes with variations in
execution, recognition rates of 98.29% were obtained without
taking the presence of noise into account. In [17], the same
database has been used to create artificial 2d views and
evaluating several distance metrics on the landmark points
without modeling the shape at all. They observed recognition
rates of about 90.5% in average when combining all their
camera views for training and testing. The approach of [18]
employed homography constraints and lead to an overall
recognition rate of about 92%. Compared to those results,
our approach performs similarly on the same data even in
the presence of noise.

V. SUMMARY AND OUTLOOK

We proposed a scheme to represent and classify human
action sequences basing on dimensionality reducing projec-
tions. In contrast to other approaches, our approach employs
the target coordinate system to represent the main directions
of variance within a sequence of landmarks. For finding
those projections we compared the usability of different
techniques (i.e. PCA, P-PCA, K-PCA, Isomap, NPE and SR).
It was pointed out that polynomial-kernelized PCA improves
the linear PCA noticeably in experiments performed on the
CMU MoCap dataset. We have also shown our approach’s
robustness in the presence of different kinds of noise. As
our approach only uses linear operations and a fixed-length
representation of the input data, it is able to perform in real-
time. We also successfully applied our approach to various
shape descriptors for 3d point clouds obtained by surface
reconstruction from multi-view recordings.

To improve our results, the parameter vector bl′ could be
used to build a self-similarity matrix instead of using the Eu-
clidean landmark distances as proposed by [17]. Using recent
real-time motion capture approaches [19], data delivered by
depth imaging devices (e.g. Kinect) can directly be fed to
our approach.

REFERENCES

[1] A. Bottino, M. De Simone, and A. Laurentini, “Recognizing
human motion using eigensequences,” WSCG, vol. 15, 2007.

[2] M. Yamazaki, Y.-W. Yen-Wei Chen, and G. Xu, “Human
action recognition using independent component analysis,” in
Int. Symp. on Intel. Techn. in Comp. Games and Simul., Shiga,
Japan, 2007.

[3] L. Wang and D. Suter, “Learning and matching of dynamic
shape manifolds for human action recognition,” TIP, vol. 16,
no. 6, pp. 1646–1661, 2007.

[4] K. Jia and D.-Y. Yeung, “Human action recognition using local
spatio-temporal discriminant embedding,” in CVPR, 2008, pp.
1–8.

[5] M.-F. Sun, S.-J. Wang, X.-H. Liu, C.-C. Jia, and C.-G. Zhou,
“Human action recognition using tensor principal component
analysis,” in IEEE Int. Conf. on Comp. Science and Inf. Techn.,
Chengdu, China, 2011, pp. 487–491.

[6] L. A. Schwarz, D. Mateus, and N. Navab, “Recognizing
multiple human activities and tracking full-body pose in
unconstrained environments,” Pattern Recognition, vol. 45,
no. 1, pp. 11–23, 2012.

[7] L. Han, X. Wu, W. Liang, G. Hou, and Y. Jia, “Discriminative
human action recognition in the learned hierarchical manifold
space,” IVC, vol. 28, no. 5, pp. 836–849, 2010, best of
Automatic Face and Gesture Recognition 2008.

[8] C. W. Anderson and J. A. Bratman, “Translating thoughts
into actions by finding patterns in brainwaves,” in 14th Yale
Workshop on Adaptive and Learning Systems, 2008, pp. 1–6.

[9] M. Körner, D. Haase, and J. Denzler, “Scale-independent
spatio-temporal statistical shape representations for 3d human
action recognition,” in ICPRAM, vol. 1, 2012, pp. 288–294.

[10] M. E. Tipping and C. M. Bishop, “Probabilistic principal
component analysis,” Journal of the Royal Statistical Society.
Series B (Statistical Methodology), vol. 61, no. 3, pp. 611–622,
1999.

[11] B. Schölkopf, A. J. Smola, and K.-R. Müller, “Kernel principal
component analysis,” in ICANN, vol. 1327. Springer, 1997,
pp. 583–588.

[12] T. F. Cox and M. Cox, Multidimensional Scaling, 2nd ed.
UK: Chapman and Hall/CRC, 2000.

[13] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, “A global
geometric framework for nonlinear dimensionality reduction,”
Science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[14] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality
reduction by locally linear embedding,” Science, vol. 290,
no. 5500, pp. 2323–2326, 2000.

[15] X. He, D. Cai, S. Yan, and H.-J. Zhang, “Neighborhood
preserving embedding,” in ICCV, vol. 2, 2005, pp. 1208–1213.

[16] D. Cai, X. He, and J. Han, “Spectral regression for efficient
regularized subspace learning,” in ICCV, 2007, pp. 1–8.

[17] I. Junejo, E. Dexter, I. Laptev, and P. Perez, “View-independent
action recognition from temporal self-similarities,” TPAMI,
vol. 33, no. 1, pp. 172–185, 2011.

[18] Y. Shen, N. Ashraf, and H. Foroosh, “Action recognition based
on homography constraints,” in ICPR, 2008, pp. 1–4.

[19] J. Shotton, A. W. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake, “Real-time human pose
recognition in parts from single depth images,” in CVPR, 2011,
pp. 1297–1304.


