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Abstract

Detecting instances of unknown categories is an important task for a multitude of problems such as object recognition,
event detection, and defect localization. This article investigates the use of Gaussian process (GP) priors for this area
of research. Focusing on the task of one-class classification, we analyze different measures derived from GP regression
and approximate GP classification. We also study important theoretical connections to other approaches and discuss
their underlying assumptions.

Experiments are performed using a large number of datasets and different image kernel functions. Our findings
show that our approaches can outperform the well-known support vector data description approach indicating the high
potential of Gaussian processes for one-class classification. Furthermore, we show the suitability of our methods in the
area of attribute prediction, defect localization, bacteria recognition, and background subtraction. These applications
and experiments highlight the easy applicability of our method as well as its state-of-the-art performance compared
to established methods.
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1. Introduction

Many machine learning tasks in real-world applications have to deal with a large set of examples from a single
class (positive examples) and only few or zero learning examples from a counter class (negative examples). Learning
a classifier in such situations is known as one-class classification (OCC), novelty detection, outlier detection and also
strongly related to density estimation. These scenarios arise due to the difficulty of obtaining training examples for
rare cases, such as images of defects in defect localization tasks [18] or data from non-healthy patients in medical
applications [49]. In these cases, one-class classification (OCC) allows for describing the distribution of positive
examples and to treat negative examples as outliers, which can be detected without explicitly learning their corre-
sponding model. Another motivation to use OCC is the difficulty of describing a background or counter class. This
problem of finding an appropriate unbiased set of representatives exists for example in the area of object detection or
content based image retrieval [8, 27]. However, it is also a common problem in defect localization tasks, where using
only a small number of defective examples likely leads to a strongly biased classifier.

Earlier work concentrates on density estimation with parametric generative models such as single normal dis-
tributions or Gaussian mixture models [51, 3, 36]. These methods often make assumptions about the nature of the
underlying distribution. Kernel methods like one-class Support Vector Machines (1-SVM, Schölkopf et al. [43]) or
the highly related Support Vector Data Description (SVDD, Tax and Duin [53]), offer to circumvent such assump-
tions in the original space of feature vectors by using the kernel trick. These methods inherit provable generalization
properties from learning theory [43] and can handle even infinite dimensional feature spaces.
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In this article, we propose OCC approaches that are based on Gaussian process (GP) priors. Machine learning with
GP priors allows for formulating kernel-based learning in a Bayesian framework [38] and has proved to be competitive
with SVM-based classifiers for binary and multi-class categorization of images [22]. Nevertheless, their use for OCC
scenarios has mostly been studied in the case of proper density estimation [1], which requires sophisticated Markov
chain monte carlo (MCMC) techniques to obtain a properly normalized density.

We derive several new OCC methods from the GP framework and show their theoretical connections to existing
approaches. Furthermore, we investigate the suitability of approximate GP inference methods for one-class classifi-
cation, such as Laplace approximation (LA) or expectation propagation (EP) [38], and analyze the influence of kernel
hyperparameters on the resulting classification performance. The proposed approaches achieve state-of-the-art per-
formance and are easy to implement (only a few lines in MATLAB). Our experimental analysis not only covers an
in-depth analysis and comparison to previous work but also experiments with a wide range of applications. We apply
our method to visual object recognition, attribute prediction, defect localization, bacteria recognition, and background
subtraction in video sequences, which clearly demonstrates the suitability of our method for different kinds of datasets
and task characteristics.

This article is based on our previous work on OCC with Gaussian processes [23]. In addition to including exper-
imental findings from large-scale object categorization and other challenging applications (wire rope analysis [40],
bacteria recognition [24], background subtraction), several new theoretical connections to related methods are drawn.

This paper is structured as follows: First, we briefly review previous work in the area of one-class classification in
Sect. 2. This is followed by introducing the reader to the GP framework and its use for regression and classification
in Sect. 3. Building on these fundamentals, Sect. 4 explains our one-class classification methods as well as their
theoretical connections to previous work. An experimental analysis in Sect. 5 with image categorization tasks provides
further insights into the methods behavior compared to related approaches. In Sect. 6, we show the applicability of
our methods to a wide range of possible applications. A summary of our findings and a discussion of future research
directions conclude the paper.

2. Short Overview of Related Work

In the following, we briefly review previous work done in the area of one-class classification. A detailed compar-
ison of our approach to other methods is given in Sect. 4.

Over the past years, several approaches have been proposed for novelty detection. Trivially, density estimation
techniques such as Parzen windowing [2] can be used to achieve this goal. Apart from this, many machine learning
techniques have been adapted to the task of one-class classification. One popular strategy is to enclose the provided
training data by, e.g., a hypersphere [52] or the convex hull [5], and to measure the distance to the estimated boundary.
Especially the support vector data description approach of Tax and Duin [52], which is equivalent to the 1-SVM of
Schölkopf et al. [43] for stationary kernels, achieves in many cases state-of-the-art performance. Raetsch et al. [37]
showed how to translate 1-SVM into a boosting approach with a comparable performance. In contrast, Smola et al.
[46] estimate novelty relative to another reference set, which is assumed to be given.

Subspace projection methods such as principal component analysis [51] and its kernelized counterpart [19], where
the negative re-projection error is employed as a membership score, are also successfully used for one-class classifi-
cation. Other methods directly make use of the local neighborhood structure of the data. Tax and Duin [50] estimate a
measure of local density by computing nearest neighbor ratios. Alternatively, Juszczak et al. [21] propose to compute
a minimum spanning tree of the data and use the distance to this tree structure as a novelty score. Other approaches
for one-class classification include the information theoretic method of Filippone and Sanguinetti [15] as well as the
boundary adaptation technique of Guo et al. [17].

The approach of Roth [41] uses a kernel fisher discriminant (KFD) classifier to perform one-class classification.
We show that their approach is to a large part a special case of our framework. Kim and Lee [26] presents a clustering
approach indirectly using a GP prior and the predictive variance. In contrast to Kim and Lee [26], we present several
new novelty scores derived from the GP framework and analyze their differences.

For further literature on existing one-class classification techniques and their applications, we refer the interested
reader to the PhD thesis of Tax [51] and the comprehensive survey of Chandola et al. [7].

When speaking of one-class classification, we will always refer to the case where absolutely no novelties are
available at training time. This is in contrast to other approaches, where a certain amount of information is available,
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e.g., unlabeled data [58] for training or a separate validation set containing novelties [9]. This restriction is common
in a lot of applications, like for wire-rope defect detection (Sect. 6.1), where even data with a few unlabeled defects is
hard to obtain for realistic settings.

3. Classification with Gaussian Processes

This section gives a brief introduction to GP classification. Since classification is motivated from non-parametric
Bayesian regression, we first briefly introduce the regression case with real-valued outputs y ∈ R, before we discuss
approximate methods for GP classification with binary labels y ∈ {−1, 1}.

3.1. The Regression Case

The regression problem aims at finding a mapping from input spaceX to output space R using labeled training data
X = [x1, . . . , xn] ∈ Xn, y = [y1, . . . , yn]T ∈ Rn. In the following, it is assumed that an output y is generated by a latent
function f : X → R and additive noise ε, i.e., y = f (x) + ε. Rather than restricting f to a certain parametric family of
functions, we only assume that the function is drawn from a specific probability distribution p(f|X). This allows for a
Bayesian treatment of our problem, i.e., we infer the probability of output y∗ given a new input x∗ and old observations[
X, y

]
by integrating out the corresponding non-observed function values f∗ = f (x∗) and f =

[
f (x1), . . . , f (xn)

]T :

p(y∗|X, y, x∗) =

∫
R

p( f∗|X, y, x∗) p(y∗| f∗) d f∗ , (1)

p( f∗|X, y, x∗) =

∫
Rn

p( f∗|X, f, x∗) p(f|X, y) df . (2)

The central assumption in GP regression is a Gaussian process prior over latent functions f , which we write by
f ∼ GP(m, κ). A Gaussian process can be thought of as a generalization of multivariate Gaussian distributions to
infinite dimensionality. The latent function f is said to be distributed according to a Gaussian process, if and only
if every finite subset of function values is jointly normally distributed. Therefore, the function values f obey the
following model:

f|X ∼ N(m(X), κ(X,X)) (3)

This distribution is solely specified by the mean function m(·) and covariance function κ(·, ·). If we further assume that
the additive noise ε is modeled by a zero-mean Gaussian distribution, i.e.,

p(y| f (x)) = N(y| f (x), σ2
n) , (4)

we are able to solve the integrals in closed form. This is derived in detail in Rasmussen and Williams [38] and in
this article we only present the result of this derivation. Using a zero-mean GP, the predictive distribution (2) is again
Gaussian [38] with moments

µ∗ = kT
∗

(
K + σ2

n · I
)−1

y (5)

σ2
∗ = k∗∗ − kT

∗

(
K + σ2

n · I
)−1

k∗ (6)

using abbreviations K = κ(X,X), k∗ = κ(X, x∗), and k∗∗ = κ(x∗, x∗). Furthermore, we use I to denote the n× n identity
matrix. Since we assume i.i.d. Gaussian noise, this also implies that y∗ = f∗ + ε as a sum of independent Gaussian
random variables is normally distributed with mean µ∗ and variance σ2

∗ + σ2
n.

3.2. From Regression to Classification

The goal in binary GP classification is to model a function predicting a confidence for each class y ∈ {−1, 1}, given
a feature vector x. In order to make probabilistic inference about the output given a training set, we can directly apply
the Bayesian formalism from eq. (1) and (2). However, the key problem is that the assumption of Gaussian noise no
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Figure 1: GP regression using a zero-mean GP prior in a one-dimensional OCC setting. The predictive distribution is visualized via its mean and
corresponding confidence interval (scaled variances), where training points are marked as crosses.

longer holds, since the output space is discrete. We could either ignore this issue and perform regression on our labels,
or we could use a more appropriate likelihood such as the cumulative Gaussian

p(y| f ) =
1
√

2π

∫ y f

−∞

exp
(
−

1
2

z2
)

dz (7)

The disadvantage of the latter procedure is that our predictive distribution (2) is no longer a normal distribution. To
overcome this issue, we follow the standard approach to approximate the posterior p(f|X, y) with a normal distribu-
tion p̂(f|X, y). Two well-known approaches, which are also used in this work, are Laplace approximation (LA) and
expectation propagation (EP). The interested reader is referred to Rasmussen and Williams [38].

For the final prediction step, approximations p̂(f|X, y) are used to solve (1). Using both Gaussian approximations
to the posterior (2) and cumulative Gaussian likelihoods p(y| f ), it can be shown that the predictive distribution (1) is
also equal to a cumulative Gaussian and can thus be evaluated in closed form [38].

4. One-class Classification with Gaussian Process Priors

In this section, we derive one-class scores from the predictive distribution of Gaussian process regression, show
connections to existing machine learning methods and briefly discuss the issue of automatic hyperparameter tuning.

4.1. From the Predictive Distribution to One-class Scores
On a first glance when considering GP techniques for one-class classification, we are faced with two problems:

First, GP approaches are discriminative techniques to tackle the problem of classification [38]. This follows from
eq. (1) where the conditional density p(y∗|X, y, x∗) is modeled. Using discriminative classification techniques directly
for one-class classification is a non-trivial task, due to the fact that the density of the input data is not taken into
account. A second problem is that applying regression technique directly to labels y = 1, mostly results in a constant
regression function, because the solution fits to the data and has a low model complexity.

Nevertheless, utilizing a properly chosen Gaussian process prior enables us to derive useful membership scores for
OCC in a very intuitive manner. The main idea is to use a mean of the prior with a smaller value than our positive class
labels (e.g., y = 1), such as a zero mean. This restricts the space of probable latent functions to functions with values
gradually decreasing when being far away from observed points. In combination with choosing a smooth covariance
function, an important subset of latent functions is obtained which can be employed for OCC (see Figure 1).

This highlights that the predictive probability p(y∗ = 1|X, y, x∗) (Method P) can be utilized, in spite of being
a discriminative model. Due to the fact that the predictive probability is solely described by its first and second
order moments, it is natural to also investigate the power of predictive mean (Method M) and variance as alternative
membership scores. Their suitability is illustrated in Figure 1: The mean decreases for inputs distant from the training
data and can be directly utilized as an OCC measure. Due to the constant labels y = 1, the formula simplifies to:

µ∗ = kT
∗

(
K + σ2

nI
)−1

1 (8)
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Table 1: Different measures derived from the predictive distribution, which are suitable for OCC membership scores as explained in Sect. 4.1.
The letter enclosed in brackets is used for abbreviations in combination with the inference methods used (GP-Reg (label regression), Laplace
approximation (GP-LA), expectation propagation (GP-EP)). For example, the predictive mean together with the GP regression method is denoted
as GP-Reg-M.

Method Formula

M Mean (M) µ∗ = E(y∗|X, y, x∗)
V neg. Variance (V) −σ2

∗ = −V(y∗|X, y, x∗)
P Probability (P) p(y∗ = 1|X, y, x∗)
H Heuristic (H) µ∗ · σ

−1
∗

GP-Reg-M GP-Reg-V GP-Reg-P GP-Reg-HReg−M Reg−V Reg−P Reg−H

Figure 2: One-class classification using GP regression (GP-Reg) and measures listed in Table 1. All measures capture the distribution quite well.

where 1 denotes the n-dimensional vector containing only the value 1. In contrast to the predictive mean, the predictive
variance σ2

∗ is increasing, which suggests that the negative variance value can serve as an alternative criterion for
OCC (Method V). The latter concept is used in the context of clustering by Kim and Lee [26]. Additionally, Kapoor
et al. [22] propose the predictive mean divided by the standard deviation as a combined measure for describing the
uncertainty of the estimation (Method H). They applied this heuristic successfully in the field of active learning.

All variants, which are summarized in Table 1, are available for GP regression (GP-Reg) and approximate GP
classification with Laplace (GP-LA) approximation or expectation propagation (GP-EP). Note that Table 1 also con-
tains the abbreviation used in this paper for each of the methods presented. The different membership scores produced
by the proposed measures are visualized in Figure 2 using an artificial two-dimensional example.

In the following sections, we additionally motivate the use of the mean and variance of GP regression by highlight-
ing the strong relationship to Parzen estimation, normal density distributions, and several feature space interpretations.

4.2. Connections to other Methods
Relation to Unnormalized Density Estimation. The suitability of the predictive mean estimated by Gaussian process
regression (GP-Reg-M) for OCC can be most easily demonstrated when using the exponential kernel. In the special
case X = x, i.e., when the training set only contains a single example, the predictive mean score can be written as

µ∗ =
1

1 + σ2
n

exp
(
−‖x∗ − x‖2/(2σ2)

)
∝ N(x∗ | x, σ2) (9)

with noise variance σ2
n and hyperparameter σ, and can be thus interpreted as an unnormalized normal distribution

centered on x.
A more general connection, without the restriction to the exponential kernel and with an arbitrary number of

learning examples, can be derived by rewriting the predictive mean in the following manner:

µ∗ = kT
∗

(
K + σ2

nI
)−1

1 =

n∑
i=1

 n∑
j=1

(
K + σ2

nI
)−1

i j

 κ(xi, x∗) , (10)

which bears close resemblance with Parzen density estimation. In comparison to Parzen windowing, our predictive
mean is unnormalized and additionally provides a scaling of similarities κ(xi, x) between test and training examples
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based on the kernel matrix K and the assumed noise level σ2
n. For K = I and σn = 0, unnormalized Parzen windowing

is obtained. This shows that Parzen density estimation is a special case of our predictive mean approach, which
assumes that there are no correlations within the training set. Therefore, our approach is more flexible and allows for
easy incorporation of the existing correlations in the training set by modeling it with the same kernel function already
used for the correlations with a new test example.

Scaled Correlation in Kernel Feature Space. A different view on the Gaussian process mean can be derived from a
geometrical view in the reproducing kernel Hilbert space associated to covariance function κ(·, ·). Let Φ(·) : X → H
be the mapping from input space to the space H which is equipped with the inner product κ(x, x′) = Φ(x)TΦ(x).
Let further Φ = [Φ(x1), . . . , Φ(xn)] denote the matrix of mapped input vectors and define K = ΦTΦ and C =

ΦΦT as the inner product and the (scaled) second moment matrix of Φ, respectively. Note that C is defined over
mapped data points and should not be confused with K, the covariance matrix between latent function values f =

[ f (x1), . . . , f (xn)]T . Let us further define the regularized matrices Kreg = K + σ2
nI and Creg = C + σ2

nI. If both Kreg

and Creg are invertible, the following equivalence pointed out in Pȩkalska and Haasdonk [34] holds:

ΦK−1
reg = C−1

regΦ (11)

This property follows from noticing

ΦKreg = ΦΦTΦ + σ2
nΦ = CΦ + σ2

nΦ = CregΦ (12)

and multiplying with C−1
reg from the left and with K−1

reg from the right side. The predictive mean can hence be rewritten
as

µ∗ = kT
∗ K−1

reg1 = Φ(x∗)TΦ K−1
reg 1 = Φ(x∗)T C−1

regΦ 1 (13)

By further realizing that the data mean µΦ in H is given by µΦ = n−1Φ 1 = n−1 ∑n
i=1 Φ(xi), we can reformulate the

predictive mean as
kT
∗ K−1

reg1 ∝ Φ(x∗)T C−1
reg µΦ (14)

which is proportional (denoted with ∝) to a correlation of test data Φ(x∗) and the data mean µΦ in H scaled by the
inverse regularized data second moment matrix C−1

reg.
What do we learn from this observation? The interesting fact is that although the predictive mean was derived

from a probabilistic framework there is a clear geometrical interpretation when we go to feature space. The predictive
mean indirectly uses the distance to the data mean in terms of normalized correlation. Whereas, this geometrical
approach can be also applied directly in the input space, it is the kernel trick which turns these simple methods into
flexible non-linear ones. A very similar geometrical interpretation can also be derived for the predictive variance.

Normal Distribution in Feature Space. One approach to describe the data is to estimate a normal distribution in
feature space H induced via a mapping Φ : X → H . It has been shown by Pȩkalska and Haasdonk [34] that
computing the variance term in GP regression is equal to the Mahalanobis distance (to the data mean in feature space)
if the regularized (σn > 0) kernel-induced scaling matrix Σ = Φ̃(X)Φ̃(X)T + σ2

nI is used:

Φ̃(x)TΣ−1Φ̃(x) ∝ κ̃(x, x) − κ̃(x,X)
(̃
κ(X,X) + σ2

nI
)−1

κ̃(X, x) (15)

where the tilde indicates operations on zero-mean normalized data, i.e., Φ̃(x) = Φ(x) − n−1 ∑n
i=1 Φ(xi) and κ̃(x, x′) =

Φ̃(x)T Φ̃(x′). Since the GP variance argument from (6) does not utilize centered kernel matrices, we effectively use
the logarithm of the unnormalized zero-mean Gaussian which best describes the data.

Relation to One-class KFD. Our approach is also related to Roth [41], where a Fisher discriminant classifier is used.
In fact, his main underlying assumption is a normal distribution in feature space, which results in the use of the
Mahalanobis distance. This is equivalent to our predictive variance method as shown in the previous section for
centered kernels. Instead of directly deriving the necessary calculations in terms of kernel values, their derivation
takes a diversion and is motivated from kernel discriminant analysis. In contrast, our methods are directly derived
from the GP framework, which allows for developing several different novelty scores.
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Figure 3: Gaussian process mean and variance scores using kernel κ(x, x′) = exp(−||x − x′ ||2/(2σ2)), displayed along with negative log-likelihood
values for a one-dimensional toy example. Kernel parameters which lead to smoother functions are preferred by the maximum marginal likelihood
principle since both accurate and smooth functions are obtained. This is exemplified for hyperparameters logσ = {−3,−2,+1} from left to right in
decreasing order of complexity.

Furthermore, Roth [41] uses the quantiles of the χ2 distribution to select a suitable value for thresholding the
novelty score. What we learn from the derived connection to Roth [41] is therefore that we can also apply this
quantile technique in our case. Allowing for shifting the problem of adjusting the threshold for hard decisions to the
more intuitive problem of tuning a confidence level.

Consistency Properties. In our experiments in Sect. 5.3, we observe that when using a fixed hyperparameter and an
increasing number of training examples, the recognition performance can drop. At the first glance, this is counter-
intuitive, because the one-class classification should be consistent and the estimated distribution should converge to
the correct distribution with high probability for n → ∞. Therefore, the question arises under which conditions, we
can guarantee consistency.

Vert and Vert [56] show the consistency of a multitude of estimators with a similar underlying optimization prob-
lem as used in the one-class SVM formulation of Schölkopf et al. [43] equipped with a normalized exponential kernel:

minimize
f∈Hσ

1
n

n∑
i=1

ϕ(yi · f (xi)) + λ‖ f ‖2
Hσ

. (16)

where ϕ is an arbitrary convex loss function. The feature space induced by a normalized exponential kernel with
hyperparameter σ2 [56, p. 2] is denoted by Hσ and plays an important role in their results. The consistency is only
ensured if σ is decreasing for an increasing number of training examples. This condition is analogous to the consis-
tency requirements of the Parzen estimator [44], where σ2 is often referred to as bandwidth parameter. Optimization
problem (16) is not only a generalization of the one-class SVM problem of Schölkopf et al. [43] but also a gener-
alization of our one-class GP approach when using the predictive mean. This relationship can be seen by setting
ϕ(z) = (1 − z)2 and considering the alternative formulations of GP regression in [38, p. 144].

Therefore, the hyperparameter of the kernel function has to be set depending on the size of the training set. In case
of the exponential kernel, the parameter has to decrease with increasing n to ensure consistency.

Relationship to Least Squares SVM. Other loss functions can also be integrated, e.g., quadratic loss instead of hinge
loss, which leads to least-squares support vector machines (LS-SVM, [48]). It is interesting to note that LS-SVM
with a zero bias term is equivalent to using the predictive mean estimated by GP regression. This can be seen when
comparing the formulation in Rasmussen and Williams [38, p. 144] and the one in Suykens et al. [48]. Our extension
to one-class classification problems, therefore, directly corresponds to the work of Choi [10] in this special case.

4.3. About the Difficulty of Tuning Hyperparameters

In principle, Gaussian process regression and classification enable an automatic way of tuning the kernel hyper-
parameters. By providing derivatives of the covariance function with respect to used hyperparameters, gradient-based
optimization routines can be applied to maximize the marginal likelihood p(y | X, θ) or related objectives [38]. Al-
though our one-class classification approach is based on Gaussian process regression, using this feature will not be
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successful. This stems from the fact that only one class is available and the usual trade-off from regularized risk min-
imization practically no longer exists. In general, the overall goal in most machine learning approaches is to balance
both complexity and accuracy on the training dataset. In the case of our Gaussian process based scores, a function
f (x) = 1 would give a perfect data fit while being extremely smooth. Solvers based on maximizing data likelihood
hence run toward this extreme case (or more likely crash due to numerical instabilities of involved ill-posed kernel
matrices). Figure 3 demonstrates this behavior for predictive mean and variance scores.

To summarize, tuning hyperparameters for one-classification tasks is a difficult task in a general setting without
incorporating further model assumptions and should be done in an application-specific manner.

4.4. Computational Complexity

The main effort in computing our GP regression based one-class scores is associated to inverting kernel matrix K.
Instead of directly computing the inverse, a numerically more stable procedure is to solve the linear system Kv = w
with w = 1 and w = k∗ for GP-Reg-M and GP-Reg-V, respectively. Since K is positive definite by definition, its
Cholesky decomposition K = LLT can be used to solve the easier problems Lu = w and LT v = u via forward
and backward substitution. For both one-class scores, training time is hence bound by O(n3) due to calculating the
Cholesky decomposition, where n denotes the number of training examples. For GP-Reg-M, the test time amounts
to O(n), given by the evaluation of inner product µ∗ = kT

∗ v. On the other hand, GP-Reg-V scales quadratically in n,
since the proxy v in σ2

∗ = k∗∗ − kT
∗ v needs to be computed for each test example. Several speed-ups are possible but

go beyond the scope of the paper. A comparison of standard methods is given in Chalupka et al. [6] and a method that
exploits special kernel functions and can directly be used also for OCC has been very recently presented in Rodner
et al. [39].

The computational complexity is hence similar to the support vector data description approach of Tax and Duin
[52], which has an asymptotic of O(m2n) and O(m) for training and testing, respectively, where m denotes the number
of support vectors. The number of support vectors heavily depends on the hyperparameters of the kernel function as
shown in Tax and Duin [52].

5. Experimental Analysis for Visual Object Recognition Tasks

In this section, we empirically analyze the proposed approach and its variants for visual object recognition tasks,
which results in the following main outcomes:

1. For Caltech 101, a medium size object recognition database, OCC with the variance criterion estimated by
GP regression (GP-Reg-V) is significantly better than all other methods using the color image kernels and it
outperforms SVDD for various values of the outlier ratio ν (Sect. 5.2).

2. Approximate GP classification with LA and EP does not lead to a better OCC performance (Sect. 5.2).
3. The performance of the mean of GP regression (GP-Reg-M) varies for different categories and can even decrease

with an increasing amount of training data (Sect. 5.3).
4. Parameterized image kernels offer additional performance boosts with the disadvantage of additional parameter

tuning (Sect. 5.4).
5. Our OCC methods show comparable performance to state-of-the-art when evaluated on ImageNet, a large-scale

dataset for object recognition (Sect. 5.5)

5.1. Experimental Setup and Image Kernel Functions

Our evaluation of one-class classification with GP priors is based on binary image categorization problems. To
solve these problems, we utilize image-based kernel functions (image kernels) that rely on histogram representations
of the image. The first image kernel used is the pyramid of oriented gradients (PHoG) kernel presented by Bosch
et al. [4], which is based on gray-scale images only. The PHoG kernel computes histograms of gradient orientations
in different parts of the image. The combination of the histograms is then done by utilizing a weighted exponential
χ2-kernel.

The other image kernel, which we refer to as color kernel, uses the bag-of-features approach [30]. Each image
is represented as a set of local OpponentSIFT features (SIFT features for each of the channels in the opponent color
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Table 2: Mean AUC Performance of OCC methods, averaged over all 101 classes. Bold font is used when all remaining measures are significantly
outperformed. GP measures significantly superior to SVDDν (with optimal ν) are denoted in italic font.

GP-Reg-P GP-Reg-M GP-Reg-V GP-Reg-H GP-LA-P GP-EP-P

PHoG 0.696 0.693 0.692 0.696 0.684 0.683
Color 0.761 0.736 0.766 0.755 0.748 0.747

GP-LA-M GP-EP-M GP-LA-V GP-EP-V SVDD0.5 SVDD0.9

PHoG 0.684 0.683 0.686 0.685 0.690 0.685
Color 0.745 0.744 0.758 0.757 0.739 0.746

space as proposed by van de Sande et al. [54]) and all features are clustered during learning. For clustering, we adapt
the supervised algorithm of Moosmann et al. [33], which learns a random forest for all local features and uses the
leaf nodes to obtain a clustering of the input space. We extend this technique to cluster local features of a single
class by selecting a completely random feature and its median value in each inner node of the trees in the random
forest. Afterwards, the clustering is utilized to compute histograms, which can be directly used as single global image
descriptors.

Given global image descriptors, one could easily apply kernel functions such as an exponential kernel. The
disadvantage of this method is that these kernels do not incorporate the position of local features as an additional cue
for the presence of an object. Therefore, we use the spatial pyramid match kernel of Lazebnik et al. [30] to incorporate
coarse, absolute spatial information with a 2× 2 grid. Note that these kernel functions are not parameterized, i.e., they
do not depend on hyperparameters, in their original formulation. This restriction is discussed in Sect. 5.4.

For all experiments, except the analysis conducted in Sect. 5.5, the Caltech 101 database [14] is used, considering
all available 101 object categories. As performance measure we utilize the area under the ROC curve (AUC), which is
estimated by 50 random splits in training and testing data. In each case, a specific number of images from a selected
object category serves as training examples. Testing data consists of the remaining images from the category and all
images of the Caltech background category.

5.2. Evaluation of One-class Classification Methods

To assess the OCC performance, we use 15 randomly chosen examples for training. First of all, we average the
AUC over all classes and random repetitions to yield a final performance summary for each OCC method. Based
on this performance assessment scheme, we compare predictive probability (-P), mean (-M) and variance (-V) of
GP regression (GP-Reg) and GP classification using Laplace Approximation (GP-LA) or expectation propagation
(GP-EP), respectively. We additionally analyze the heuristic µ∗ · σ−1

∗ for GP regression (GP-Reg-H) and compare
with SVDD using outlier fraction ν ∈ {0.1, 0.2, . . . , 0.9} (SVDDν). The results for the PHoG and the color kernel are
displayed in Table 2, which, for the sake of readability, lists only best performing SVDD measures. Note that SVDD
is equivalent to the 1-SVM approach of Schölkopf et al. [43] in case of kernels with constant κ(x, x), which is the case
in our experiments due to normalized features. Furthermore, we also skip a comparison with the approach of [41],
due to the near equivalence with our GP-Reg-V measure as elaborated in Sect. 4.2.

It can be immediately seen that PHoG features are significantly inferior to color features. Therefore, experiments
in subsequent sections only deal with color-based image kernels. Although the average performance of all measures
are quite similar, SVDD is significantly outperformed for all tested ν (t-test, p ≤ 0.025) by at least two GP mea-
sures. The method of choice for our task is GP regression variance (GP-Reg-V), which significantly outperforms all
other methods using color features. Employing PHoG based image kernels, Reg-V also achieves at least comparable
performance to SVDD for any tested parameter ν.

Our results also highlight that making inference with cumulative Gaussian likelihoods does not generally improve
OCC, since LA and EP are consistently outperformed by GP regression measures GP-Reg-V and GP-Reg-P. Hence,
the proposed OCC measures do not benefit from the noise model of (7) (and corresponding approximations) that are
more suitable for classification from a theoretical perspective.
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Figure 4: Results for color feature based image kernels regarding classes Faces (Left) and Leopards (Right) with varying number of training
examples (using same legend).

5.3. Performance with an Increasing Number of Training Examples
To obtain an asymptotic performance behavior of all outlier detection methods, we repeat the experiments of

Sect. 5.2 with a densely varying number of training examples. As can be seen in Figure 4, the performance behavior
highly depends on the class. Classifying Faces, the performance increases with a higher number of training examples
in almost all cases. A totally different behavior, however, is observed for Leopards, where the averaged AUCs of
GP-Reg-M substantially decrease when more than 8 training examples are used. For small ν, SVDD also exhibits this
behavior in our experiments.

Note that the large dependency of the number n of training examples upon the performance can be related to
the property pointed out in Sect. 4.2. Convergence to a sensible one-class model is only ensured if the influence
of an example on its surrounding decreases with increasing n. Despite the fact that we do not use a parameterized
exponential kernel, oversmoothing effects can easily occur. This suggests to use a parameterized kernel alternative to
account for this fact, as is investigated in the subsequent section.

5.4. Influence of an Additional Smoothness Parameter
Estimating the correct smoothness of the predicted distribution is one of the major problems in one-class classifi-

cation and density estimation. This smoothness is often controlled by a parameterized kernel, such as an exponential
kernel with a given variance. In contrast, our used kernel functions are not parameterized and the decreasing perfor-
mance of the GP-Reg-M method in the last experiment might be due to this inflexibility.

For further investigation, we parameterize our image kernel function by transforming it into a distance:

d(x, x′) = κ(x, x) − 2κ(x, x′) + κ(x′, x′) , (17)

which is then plugged into a distance substitution kernel κβ [55]:

κβ(x, x′) = exp
(
−β · d(x, x′)

)
= exp

(
−β

(
κ(x, x) − 2κ(x, x′) + κ(x′, x′)

))
. (18)

This technique was inspired by the exponential kernel, where the Euclidean distance is used together with the ex-
ponential function. We perform experiments with κβ utilizing 100 training examples and a varying value of β. The
results for the categories Faces and Leopards are plotted in Figure 5.

Let us first have a look on the right plot and the results for Leopards. With a small value of β, the performance
is comparable to the unparameterized version (cf. Figure 4, right side). However, by increasing the parameter we
achieve a performance above 0.9 and superior to other methods, such as GP-Reg-V. This behavior differs significantly
from the influence of β on the performance of the task Faces, which decreases after a small maximum. Right after
the displayed points, we ran into severe numerical problems in both settings due to small kernel values below double
precision. We expect a similar gain in performance by tuning the scale parameter of the cumulative Gaussian noise
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Figure 5: Influence of an additional smoothness parameter β of a re-parameterized image kernel on the OCC performance for the categories Faces
(Left) and Leopards (Right).
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Figure 6: Results on the ImageNet dataset: averaged AUC values of 1 000 different one-class classification tasks.

model, but we skip this investigation to future research. This analysis shows that introducing an additional smoothness
hyperparameter offers a great potential, though efficient optimization using the training set is yet unsolved.

5.5. Large-scale Evaluation on ImageNet

In the following, we evaluate our methods on the ImageNet database [11] and in particular the ILSRC’10 selection.
This dataset contains 1 000 categories and 100 000 images for learning and 50 000 for testing1. Furthermore, we use
the bag-of-features representation available for this dataset. One-class classification experiments are performed in the
same manner as in previous experiments and the results of each of the 1 000 latent binary tasks are averaged. We use
100 examples and an exponential kernel κexp(x, x′) = exp(−||x − x′||2/(2σ2)) with hyperparameter σ2 = exp(−2) to
learn with our OCC methods.

The final results are shown in Figure 6 for each method. As can be seen, our method achieves comparable
performance to state-of-the-art methods. Using the Wilcoxon signed rank test, no significant difference was observed.

6. Further Applications beyond Visual Object Recognition

In the following section, we show the practical relevance of our work. There exists a great variety of OCC
problems in many different application areas. Usually, there is not enough data available to build up a representation
that covers all possible outcomes. There are two main problems, which result in OCC settings: (1) the collection of

1We use the public available validation dataset for testing.
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training data lacks information for specific classes or (2) the full diversity of possible observations is not known in
advance.

We investigate three typical but very different applications scenarios to prove the practical and broad applicability
of our OCC methods: At first, we consider a visual inspection scenario and perform defect detection on wires ropes
with help of our OCC techniques. In this case, only a small number of examples are available that show realistic
defects, but a large set of non-defective data can be easily obtained. This is a very challenging application, as these
defects are very small and inconspicuous. The application is one example for problem 1 mentioned above. Our
second application, which corresponds to problem 2, is taken from microbiology. In this case, one often needs to
distinguish between known microorganisms from the yet unknown without having any information about these novel
observations. The last application we present is attribute prediction, which is useful for many object recognition
problems and can be employed to be derive high-level features suitable for transfer learning [28] as well as object
detection [13].

6.1. Wire-rope Defect Detection
We apply our OCC approach to wire rope defect detection. Given a lot of data of intact rope, the goal is to perform

one-class classification to locate defects in the rope structure. We use two different rope datasets [35] acquired using
a system of four line cameras. ROPE1 has a length of approximately 1.3km and ROPE2 is 400m long. The resolution
of the line cameras is known to be 0.1 mm per camera line and each dataset was labeled by a human expert. Both rope
datasets are different in nature with respect to the complexity of the surface defects. Whereas ROPE1 contains easily
recognizable defects, defects contained in ROPE2 are often inconspicuous, small, and difficult to detect, even for a
human expert. We compare the results obtained with GP-Reg-V, GP-Reg-M and SVDD to those previously published
by Platzer et al. [36], which uses a Gaussian mixture model (GMM) with m = 5 latent Gaussians. All methods
are trained on a defect-free rope region of 100 000 camera lines (10m rope, 5000 training examples). Evaluation
is performed on the remaining rope sequence, which contains all labeled defects. As features we used gradient
histograms, which were computed as described in Platzer et al. [36].

Note, that we do not utilize approximate inference techniques for GP classification, because they did not lead to a
performance benefit for OCC tasks as observed in previous experiments. For our experiments, we use the exponential
kernel κexp with a standard hyperparameter value of σ2 = exp (−2.5). The outlier fraction of SVDD is set to 0.1, since
other choices did not lead to significant changes of the result of SVDD.

Evaluation The results obtained for all methods are displayed in Figure 7 using ROC curves with the area under the
ROC curve (AUC) given in the legend. Note, that the ROC curves are averaged over the results obtained for the four
individual camera views.

It is obvious that all three kernel-based OCC approaches, GP-Reg-M, GP-Reg-V, and SVDD, clearly outperform
the classical GMM strategy proposed by Platzer et al. [36]. Additionally, the AUC values suggest that the GP-based
OCC approaches offer a slightly better performance than SVDD. GP-Reg-M achieves the best results and is also faster
than GP-Reg-V during testing. Please note, that approaches which exploit the special structure of wire ropes achieve
higher recognition results [35]. However, our OCC approach is not tailored to this special application scenario and
can be applied to every defect localization task, as it does not depend on the features used.

6.2. Recognition of Novel Bacteria
In this application, we apply our OCC techniques to microbe identification based on Raman spectroscopy [42]. In

this case, the large biodiversity of microorganisms prevents from building up a representative database, which covers
all possible outcomes. The task of novelty detection can be easily cast as an OCC problem by identifying all known
categories from the database as one positive super-class. Please also note that the negative class is always empty.

Our OCC approach is applied on a bacteria database containing 5 652 examples stemming from 50 different
strains/classes. The microorganisms are described by a one-dimensional spectrum that covers the biochemical state
of the sample at hand (see Figure 8). This response signal is sampled and quantized, which results in input vectors of
fixed lengths.

For testing, an independent dataset comprising 130 spectra from 16 known and 169 spectra from 6 unknown strains
is used. All spectra were pre-processed by using a median filter for cosmic spike elimination, baseline correction via
iterative polynomial fitting [31], and unit length normalization.
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We compare our approach to GMMs [42], SVDD, and Parzen. For the kernel-based algorithms, the exponential
kernel κexp was used. As pointed out in Sect. 4.3, hyperparameter tuning in an OCC settings is ill-posed. Therefore,
we follow Lampert et al. [28] and set the length-scale parameter σ heuristically to the median of all pairwise distances
between training points. In addition to Parzen density estimation using these settings, we also employ a normal
distribution kernel with diagonal covariance matrix, i.e., κdiag(x, x′) = N(x|x′, diag(σ2

1, . . . , σ
2
d)), whose bandwidth

parameters are tuned using Silverman’s rule of thumb [45] separately in each dimension. For the latter approach and
the GMM, the data is projected to the first d = 30 principal components for the sake of numerical stability.

Evaluation As is common practice in this domain, we use recognition rates based on sensitivity (true positive rate)
and specificity (true negative rate) to assess all methods. To arrive at a crisp decision, threshold values were obtained
using the 5-percentile of available training data scores. Note that this procedure artificially treats 5% of the training
data as unknown, which is reminiscent of the outlier fraction ν = 0.05 in SVDD.

Table 3 illustrates the performance of all tested methods. It is apparent that the decision boundary modeled by
GP-Reg-V achieves the best trade-off between sensitivity and specificity with an average recognition rate of 76.5%.
Both SVDD and GMM were tested for varying hyperparameters (ν ∈ {0.1, . . . , 0.9}, m ∈ {30, 100, 500, 1500}), where
the best performances are displayed in Table 3. Both variants of Parzen density estimation failed to properly identify
novel spectra, due to over- and underfitting effects.

A more closer look reveals that the low recognition rate of Parzen and SVDD is due to inappropriate hyperpa-
rameter σ estimated by the median heuristic. Except for GP-Reg-V, which is more robust to hyperparameter changes,
the estimated hyperparameter generally seems to be unsuitable for the task of novelty detection. Figure 9 demon-
strates this finding by varying the bandwidth parameter σ in a logarithmic domain, where additionally threshold-free
AUC values are used for this analysis. It is clear that the estimated hyperparameter logσ = −1.8138 is far away
from an optimum for most of the tested OCC approaches. It becomes also apparent that a very good novelty detec-
tion performance for all methods can be achieved around logσ ≈ −3.5. However, this does not necessarily imply
an improvement in terms of average recognition rate. This effect can be attributed to the interdependence between
hyperparameter σ and the threshold-parameter used for realizing a hard novelty decision.

6.3. Attribute Prediction

In the last application, we apply our GP-Reg-V OCC method to the task of attribute prediction, which has shown
to be useful for deriving high-level features for many visual recognition tasks [13, 28]. One possible scenario is the

14



Table 3: Results of novelty detection using a single positive class which comprises all training data.

method specificity sensitivity ARR (%)
GPR-M 73 (43.2%) 108 (83.1%) 63.1
GPR-V 130 (76.9%) 99 (76.2%) 76.5
SVDD0.1 28 (16.6%) 129 (99.2%) 57.9
Parzen 18 (10.7%) 127 (97.7%) 54.2
Parzen (κdiag) 169 (100.0%) 0 (0.0%) 50.0
GMM (m = 100) 59 (34.9%) 130 (100.0%) 67.5
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Figure 9: The effect of hyperparameter tuning upon kernel-based novelty detection methods using κexp. The estimated log-hyperparameter (vertical
spaced line) logσ is generally unsuitable for most tested kernel-based techniques. Comparably good AUC values for all considered methods can
be achieved at logσ ≈ −3.5. However, please note that this does not imply good performance in terms of average recognition results. This figure
is best viewed in color.

estimation of a membership score for a specific (sub-)category. In our experiment, we used the Caltech database to
estimate the membership score for the special sub-category windsor chair. We compared the results of GP-Reg-V
against those obtained with SVDD. The results of GP-Reg-M are similar and therefore skipped in the following. We
trained our GP methods and SVDD using 30 images of a type of chair called windsor chair, which has a characteristic
wooden backrest. The performance is tested on all remaining windsor chairs and images of the category chairs.
Results are illustrated in Figure 10 with the best and last ranked images. The qualitative results are similar, but the
AUC values clearly show that GP-Reg-V is superior.

6.4. Background Subtraction

One-class classification can be also easily applied to background subtraction. To show this ability, we used image
sequences provided by Elgammal et al. [12] and Monnet et al. [32] (similar to the setting used in Huang et al. [20])
and learned a GP-Reg-M classifier for each pixel by using normalized RGB values and the exponential kernel with
fixed hyperparameters. For a given test image, each classifier gives us a novelty score, where a low value indicates
that the pixel is likely not belonging to the background. To obtain a binary segmentation, which divides the image into
foreground and background regions, we automatically determine a global threshold by analyzing the leave-one-out
estimates [38, Section 5] in each pixel similar to the technique used in Sect. 6.2. Due to the large set of training
examples, we use the 0.2%-percentile as a threshold.

Some example results can be seen in Figure 11. The results for Parzen and GMM have been obtained from Huang
et al. [20]. Although we are not tuning anything to the task of background subtraction and only RGB values in each
pixel are considered independently without any post-processing, the results are less noisy than the ones obtained
with GMM and Parzen, as well as more accurate than the method of Monnet et al. [32]. For an efficient real-time
application, the work of Rodner et al. [39] and Freytag et al. [16] can be considered, which allows a fast speed-up in
the case of histogram intersection kernels and also fast incremental updates.
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Figure 10: Results obtained by training different OCC methods for windsor chair and separating against chair: the three best ranked images (all of
them are characteristic windsor chairs) and the three last ranked images with corresponding output values.

6.5. Summary of the Presented Applications
In order to properly evaluate and compare our proposed Gaussian process OCC scores, several challenging prob-

lems, ranging from object recognition, industrial computer vision, to bacteria recognition, and background subtraction,
were studied. For all experiments, our GP based OCC methods GP-Reg-M and GP-Reg-V lead to results comparable
or even superior to those obtained with state-of-the-art techniques such as SVDD or Parzen density estimation. This
clearly shows that the derived OCC measures are applicable to a wide range of possible application scenarios. Our
experiments also revealed that neither GP-Reg-M nor GP-Reg-V are to be preferred over the other in general, as their
performances are highly application dependent. As becomes explicit in Figure 5 and Figure 9, this finding is tightly
coupled with the inherent ill-posed problem of how hyperparameters are chosen.

7. Conclusions and Further Work

We have presented an approach for one-class classification (OCC) with Gaussian process (GP) priors and studied
the suitability of different measures, such as mean and variance of the predictive distribution. The GP framework
allows us to use different approximation methods to handle the underlying classification problem. From empirical
evidence, Gaussian process label regression seems to be the method of choice. Moreover, based on the derived
measures, relationships to several other well-known OCC methods are revealed. For example, it could be shown that
the Parzen estimator is a specialization of one of our methods, which can be obtained when ignoring the correlations
between training examples.

Our approach was tested on various novelty detection problems from challenging domains such as wire-rope
failure detection and bacteria recognition. The obtained results clearly verified the suitability of Gaussian process
based measures for the tasks at hand. While there is no clear winner for all experiments, Gaussian process regression
based OCC scores always provided comparable or superior performances to other state-of-the-art techniques such
as support vector data description or Parzen density estimation. Our work can be interesting for developers as well
as machine learners. Whereas the latter group benefits from the connections we draw to other methods, developers
can directly use our method without significant implementation overhead and use our analysis to see the effect of
hyperparameters as well as the performance for a various set of applications.

Due to the ill-posed nature of the problem as a latent binary classification task (i.e., only training examples from
a single class are provided), the choice of appropriate kernel hyperparameters still remains a problematic task. Au-
tomatic tuning based on maximizing the marginal training data likelihood, a standard model selection strategy for
GP regression and classification, fails in the OCC setting due to the absence of a trade-off between functional fit
and regularity. Future work should therefore concentrate on devising kernel hyperparameter tuning strategies that are
applicable for one-class Gaussian process scores.

For convenience, we always considered homoscedastic Gaussian noise as the underlying noise process in our
experiments. While heteroscedasticity is certainly more suited in many applications, existing work on heteroscedastic
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Figure 11: Background subtraction in video sequences using one-class classification: visual comparison of the obtained segmentations for the
RainCar sequence of [12] and the OceanPerson sequence of [32].

Gaussian processes will not be applicable since they rely on automatic hyperparameter tuning strategies to infer the
unknown variances [25, 29]. While we do not see a way out of this dilemma, we believe that domain-dependent
knowledge may serve as a starting point to embed data-dependent uncertainty into the inference process. We also plan
to apply our methods in the area of novelty detection for scene understanding [57].
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[27] Lai, C., Tax, D. M. J., Duin, R. P. W., Pȩkalska, E., Paclı́k, P., 2002. On combining one-class classifiers for image database retrieval. In:

Proceedings of the Third International Workshop on Multiple Classifier Systems. pp. 212–221.
[28] Lampert, C. H., Nickisch, H., Harmeling, S., 2009. Learning to detect unseen object classes by between-class attribute transfer. In: Proceed-

ings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09). pp. 951–958.
[29] Lázaro-Gredilla, M., Titsias, M. K., 2011. Variational heteroscedastic gaussian process regression. In: Proceedings of the 28th International

Conference on Machine Learning. pp. 841–848.
[30] Lazebnik, S., Schmid, C., Ponce, J., 2006. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In:

Proceedings of the 2006 IEEE Conf. on Computer Vision and Pattern Recognition. pp. 2169–2178.
[31] Lieber, C. A., Mahadevan-Jansen, A., 2003. Automated method for subtraction of fluorescence from biological raman spectra. Applied

Spectroscopy 57, 1363–1367.
[32] Monnet, A., Mittal, A., Paragios, N., Ramesh, Y., 2003. Background modeling and subtraction of dynamic scenes. In: International Confer-

ence on Computer Vision.
[33] Moosmann, F., Triggs, B., Jurie, F., 2006. Fast discriminative visual codebooks using randomized clustering forests. In: NIPS. pp. 985–992.
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