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Abstract

Raman spectroscopy is successfully used for the reliable classification of complex biological samples. Much effort concentrates on
the accurate prediction of known categories for highly relevant tasks in a wide area of applications such as cancer detection and
bacteria recognition. However, the resulting recognition systems cannot always be directly used in practice since unseen samples
might not belong to classes present in the training set. Our work aims to tackle this problem of novelty detection using a recently
proposed approach based on Gaussian processes. By learning novelty scores for a large bacteria Raman dataset comprising 50
different strains, we analyze the behavior of this method on an independent dataset which includes known as well as unknown
categories. Our experiment reveals that Gaussian processes can be successfully applied to the task of finding unknown bacterial
strains, leading to superior results compared to state-of-the-art methods such as Gaussian mixture models and Support Vector Data
Description.
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1. Introduction

Over the last years, the identification of biological mate-
rial such as microorganisms and tissue samples received a high
amount of attention. A large set of techniques [1, 2] was de-
veloped to access as much information as possible from sam-
ples. Among these, vibrational techniques [3, 4, 5] such as In-
frared [3] and Raman spectroscopy [6] showed to be especially
suitable for many applications due to their non-destructive and
fast methodology [7, 8]. Moreover, it has been shown that
very reliable recognition results can be obtained without time-
consuming cultivation steps, since it is possible to extract infor-
mative spectra from single cells [9, 10, 11, 12].

Due to these advantages, Raman spectroscopy is a wide-
spread tool for a variety of tasks such as food control [8], can-
cer detection [13, 14, 15] and the identification of microorgan-
isms [9, 11]. Equipped with powerful multivariate data anal-
ysis methods, accurate recognition rates can be achieved [11,
12, 16]. Apart from these encouraging results, the applicabil-
ity of many recently proposed recognition systems to practical
scenarios may be questioned. This is mainly due to the fact
that experimental settings often implicitly require that test ex-
amples belong to (at least) one category already encountered in
the training step (i.e. contained in the training database). Partic-
ularly for applications such as pathogen identification [17, 18,
19, 20] or general bacteria classification [11, 12, 21], this con-
straint can usually not be guaranteed a priori. Thus, additional
data treatment is needed which justifies the assignment to one

of a few known classes. Otherwise the classification decision is
erroneous and can lead to a severely misleading analysis. This
kind of outlier detection is also important if a classification sys-
tem learns bacteria categories iteratively.

In the following work, Raman spectra obtained from single
cells rather than bulk spectra are used since they enable a fast
analysis and fit to the demands of practical applications. This
setting requires sophisticated machine learning algorithms due
to the higher variability of the data.

Related Work. In the literature, the task of detecting samples
from previously unseen categories is known as novelty detec-
tion or one-class classification [22]. A popular approach for
tackling this problem is to use generative models, where a prob-
ability distribution of the training data is modeled. For ex-
ample Schmid et al. [11] use a generative Gaussian Mixture
Model [23, 24] (GMM) for detecting novel bacterial Raman
spectra. In contrast, Dundar et al. [25] propose to model each
category with a single Gaussian distribution and to simulate
a number of unknown categories by sampling from a Gaus-
sian prior estimated from all known classes. This idea is re-
lated to the general idea of one-class classification by generat-
ing counter-examples [26, 27]. Their approach is applied to the
recognition of bacterial cultures using optical-scattering meth-
ods [28] and tries to tackle the same basic problem as studied
in this paper.

We recently introduced a non–parametric method [12] based
on the Gaussian processes (GP) framework [29] which has shown
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to be applicable for a variety of one-class and novelty detection
tasks in the area of visual object recognition [12]. The pro-
posed method does not make any restrictive assumptions about
the shape of the class distribution as assumed for Gaussian mix-
ture models. This allows building flexible models for data with
large intra-class variation, such as Raman spectra. Our method
is highly related to the Support Vector Data Description [30, 31]
which proved to be applicable for various one-class classifica-
tion problems [32, 33, 34].

Our Contribution. This work aims to introduce GP-based nov-
elty detection proposed in [12] for Raman spectroscopic ap-
plications. We additionally want to highlight the importance
of taking into account previously unseen classes, a scenario
prevalent in many real-world applications. By studying a bac-
teria recognition problem, we investigate the suitability of dif-
ferent novelty detection approaches: GMM and Parzen estima-
tion [23], simulating outlier categories [25], SVDD [31] and
GP-based methods [12]. A comparison with established ap-
proaches reveals that novelty detection based on GP regression
can be successfully applied in our setting.

Outline. The paper is structured as follows. The theory of
methods used for generating novelty scores is shortly explained
in Sect. 2. The experimental setup as well as implementation
details are provided in Sect. 4, while results are discussed in
Sect. 5. A summary of our findings and directions for future
work conclude the paper.

2. Novelty Detection with Gaussian processes

The following section concentrates on GP-based novelty
detection, which were recently proposed [12]. Before we ex-
plain the utilization of GP for one-class classification, we will
first take a short look on Bayesian and especially GP regression.
Details and proofs about those fundamental techniques can be
found in the textbook of Rasmussen and Williams [29].

2.1. Gaussian Process Regression

Regression analysis deals with the problem of finding a re-
lationship between some input variables X and output variables
Y, given a finite training sample (X, y) ∈ Xn × Yn. A standard
assumption in various regression frameworks is that outputs are
generated by a function f : X → Y and an additional noise
process ε (measurement error, label error etc.), i.e.

y(x) = f (x) + ε, (1)

where one often constrains f to be member of a special para-
metric family (e.g. linear functions). Hence, regression boils
down to estimating the parameters of the function by minimiz-
ing some loss function on the given training data.

In Bayesian regression, a probabilistic point of view is fol-
lowed. Instead of assuming a specific parametric family for f ,
it is assumed that the function itself is drawn from a probability
distribution. This approach allows introducing and propagating
uncertainties with respect to the given training data.
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Figure 1: One-dimensional toy example for GP regression with isotropic SE-
kernel (θ = (1, 0.1)T , σ2

n = 0.001). Training points (crosses) are well fitted by
the GP mean µ∗ (solid line). The 95%-confidence interval µ∗ ± 1.96σ∗ (spaced
lines) illustrates the uncertainty of the prediction.

GP regression is a special case of Bayesian regression where
f is assumed to be distributed according to a GP prior. Such a
prior, which can be seen as a normal (i.e. Gaussian) distribu-
tion over functions, is solely specified by a mean function m(x)
and a positive definite covariance function κ(x, x′). Hence, we
assume

f (X) ∼ N(m(X), κ(X,X)) (2)

for any finite collection of random variables X ∈ Xn.
The outstanding role of GP regression can be explained by

its closed-form prediction for previously unseen inputs x∗ ∈ X.
By assuming Gaussian noise, i.e. ε ∼ N(0, σ2

n) and a zero-mean
(m=0) GP prior, it can be shown [35] that outputs y∗ = y(x∗) are
again normally distributed, i.e. y∗ ∼ N(µ∗, σ2

∗):

µ∗ = kT
∗

(
K + σ2

nI
)−1

y (3)

σ2
∗ = k∗∗ − kT

∗

(
K + σ2

nI
)−1

k∗ + σ2
n , (4)

where µ∗ and σ2
∗ denote mean and variance of p(y∗|x∗,X, y), re-

spectively, and the shorthands K = κ(X,X), k∗ = κ(X, x∗), and
k∗∗ = κ(x∗,X) are used for the sake of readability. A common
covariance function widely used for regression and classifica-
tion is the isotropic squared-exponential (SE) kernel

κSE(x, x′) = θ2
1 · exp

− 1
2θ2

2

· ||x − x′||2
 . (5)

An example of GP regression applied to a one-dimensional toy
example can be seen in Figure 1. A straightforward way to use
GP regression for binary classification is to use binary labels y ∈
{−1, 1}, which is also called label regression. Other possibilities
are Laplace approximation and Expectation propagation which
can cope with non-Gaussian noise [29].

2.2. Extension to Novelty Detection
We recently showed that GP regression can also be used

for the general task of novelty detection or one-class classifica-
tion [12], although labels y ∈ Yn are usually not associated to
data X ∈ Xn.
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Figure 2: Principles for novelty detection with GP regression. Posterior GP moments for a one-dimensional toy example using isotropic SE-kernel (θ = (1, 0.067)T ,
σ2

n = 0.01) are visualized (see Figure 1).

Figure 3: Novelty detection scores in two dimensions. Negative GP posterior mean −µ∗ (middle) and variance σ2
∗ (right) are shown for an artificial training data set

(left), where both scores are visualized via a heat map (samples from hot regions are more likely to be novel than those from cold regions).

The approach of [12] proceeds in augmenting all observed
data (positive class) with positive class labels y = 1 and per-
forming label regression using a zero-mean GP prior1. As can
be seen in Figure 2 for a one-dimensional toy example, this
combination leads to high values of µ∗ (close to one) in the
vicinity of the training data and low values (close to zero) far
away from the observations. Alternatively, the uncertainty in
our estimate represented by σ2

∗ increases when being far away
from the training samples and nearly vanishes when being close
to observations X.

These properties enable the use of GP posterior moments (3)
and (4) for novelty detection, where −µ∗ and σ2

∗ can be uti-
lized as scores which measure the novelty of a new sample
x∗. The behavior of both scores can be seen in Figure 3 for
a two-dimensional toy example, where regions far away from
the training data are likely to contain novel samples.

As highlighted in [12], this approach has some shortcom-
ings, since the parameters of the model (i.e. the hyperparame-
ters of the covariance function κ) cannot be estimated automat-
ically. This comes from the fact that only one class is given
in the training set and parameter optimization techniques such

1In general, it can be shown that a constant label y > 0 in combination
with a zero-mean GP prior suffices to yield reasonable estimates, preserving
the ordering of scores.

as maximum marginal likelihood [29] overadapt to the train-
ing data (leading to constant functions y(x∗) = 1 which are not
useful here).

When dealing with Raman spectra datasets which comprise
at least two strains (or species or genera), we can circumvent
the problem of parameter estimation in the one-class setting
by using estimates derived from binary (or multi-class) sepa-
ration between strains. These estimates can then be used either
directly for novelty detection or as a starting point for param-
eter search techniques such as consistency-based model selec-
tion [36].

2.3. Novelty Detection using a One-Vs-All Classifier

It is important to point out that, for the majority of Raman
spectroscopic tasks, training datasets comprise labeled spectra
from several known classes rather than one single set of spec-
tra labeled as “known”. This additional knowledge allows to
employ an alternative novelty detection strategy which directly
utilizes a multi-class classifier [37, 38].

For this task, we use a GP multi-class classifier which is
based on binary one-vs-all tasks. In this approach, each bi-
nary task separates one class from all remaining categories and
previously unseen spectra from known categories are usually
identified with the class which has the highest predictive proba-
bility. Since the predictive probabilities of each binary task are
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low for spectra of novel categories, the probabilities can be di-
rectly seen as a set of one-class classification scores (one score
for each known class). Section 4.4 explains how to combine
all those scores to a single decision about the novelty of a new
example.

3. State-of-the-art Methods for Comparison

3.1. Support Vector Data Description

One straightforward method to estimate a novelty score is
to enclose all training data with a sphere. The score for new
points is produced by computing the distance to the sphere’s
center. SVDD [30, 39, 31] follows this approach by finding the
minimal enclosing sphere which surrounds the data. Formu-
lated as a quadratic program, it is further possible to allow for
noisy measurements by discarding a certain fraction of training
points. The amount of neglected training points can be speci-
fied by the outlier fraction parameter ν ∈ [0, 1) (where ν = 0
is a sloppy abbreviation for the standard formulation that does
not take any noisy measurements into account). The fact that
all computations involved in the sphere estimation can be ex-
pressed as inner products enables the use of arbitrary kernel
functions [40] such as (5).

3.2. Gaussian Mixture Models

Novelty detection is tightly coupled with density estima-
tion, since regions with high density (with respect to a given set
of strains) are unlikely to contain novel strains and vice versa.
Gaussian mixture models [23, 24] (GMM) are popular methods
for density estimation which describe the training data as a su-
perposition of scaled normal distributions. The scaling param-
eters as well as the moments of the normal distributions can be
estimated using an iterative algorithm derived from the general
Expectation-Maximization [41] principle. The number of clus-
ters k can be determined by cross-validation on the training set.
Since GMMs suffer from the curse of dimensionality [23, 24],
high-dimensional data often needs to be transformed to a low-
dimensional subspace. To obtain a suitable dimensionality of
the subspace, cross-validation can again be used. As discussed
in Schmid et al. [11], different strategies for novelty detection
with GMMs can be followed.

3.3. Parzen Density Estimation

Following the same reasoning as for GMMs, other methods
for density estimation can also be utilized for novelty detection.
Parzen density estimation [42, 23, 24] is a non-parametric tech-
nique (i.e. the number of parameters scales with the number
of training examples) which models the density as a superposi-
tion of kernel functions. Placing the kernel function κ(·, ·) over
each training example xi, one arrives at a smoothed histogram
p(x∗) = n−1 ∑n

i=1 κ(xi, x∗). If the kernel itself is a density, the
Parzen estimate is also a properly normalized probability den-
sity. A commonly used kernel is the normal distribution, i.e.
κ(x, x′) = N(x′|0,Σ), where covariance matrix Σ is the cru-
cial bandwidth parameter of the kernel. The selection of suit-
able bandwidth parameters is a non-trivial problem, where often

cross-validation and ad-hoc strategies are exploited [43]. One
well-known ad-hoc method for one-dimensional data is Silver-
man’s rule of thumb [44]. Using assumptions of normally dis-
tributed data, approximate estimates σ̃2

i to the optimal Gaussian
bandwidth parameter Σ = diag(σ2

i ) can be easily computed by
σ̃2

i = 1.06 · σ̂2
i n−

2
5 , where σ̂2

i denotes the unbiased estimate of
the data variance in component i of the input vectors.

3.4. Simulation of Missing Classes

One alternative approach proposed by Dundar et al. [25] is
to explicitly simulate potential classes that are not part of the
training set. Following the assumption that all classes can be
described by a normal distribution with a pooled covariance
function, a fixed number M of classes is created by sampling
from a class prior distribution. The parameters of the class prior
are simply estimated using the means of all given categories. A
new test sample is categorized as new if it can be best explained
by one of the simulated classes. Since the same covariance pa-
rameter is assumed for all categories, this boils down to a Near-
est Neighbor classification using the means of all known and
simulated classes. One major drawback of this approach is its
random character, since simulated classes are generated accord-
ing to random draws from the class prior. As mentioned by the
authors [25], this also implies that a subspace reduction of the
data should be performed in order to avoid sampling in high
dimensional spaces.

4. Experiments

4.1. Raman Spectra Datasets

The current study is based on two datasets, measured by a
micro-Raman setup (HR LabRam invers, Jobin-Yvon-Horiba,
Bensheim, Germany). The spectrometer has an entrance slit of
100 µm, has a focal length of 800 mm, and is equipped with a
300-lines/mm grating. As excitation wavelengths the 532-nm
line of a frequency doubled Nd:YAG laser (Coherent Compass,
Dieburg, Germany) with a laser power of approx. 2.4 mW in-
cident on the sample were used. The Raman scattered light
was detected by a CCD camera operating at 220 K. A Leica
PLFluoar 100× objective (NA 0.75) focused the laser light onto
the samples (≈0.7 µm focus diameter). The spectrometer was
calibrated each day prior to measuring (using titanium diox-
ide). All cells were recorded from fused silica plates with an
integration time of 60 s. The first (large) Raman spectra dataset
DL contains 5743 spectra from 10 different bacterial species
(cf. Tab. 1) and 50 strains. The strains were chosen accord-
ing to their occurrence in clean-room environments. The mi-
croorganisms were purchased from the German Collection of
Microorganisms and Cell cultures (DSMZ, Braunschweig, Ger-
many) and from the Institute for Infectious Biology at the Uni-
versity of Würzburg. The employed cultivation media consisted
of NA (nutrition agar), S-1-NA (standard 1 nutrition agar), CA
(corynebacterium agar) and CASO (trypticase soy yeast extract
medium). The microorganisms were cultured under varying
conditions with respect to nutrient medium, growing time and
temperature. In addition, an independent test setDI , consisting
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Table 1: Large dataset DL comprising 50 “known” strains from 10 different
species.

genus species strain #examples

Bacillus

megaterium DSM90 94

pumilus

DSM27 65
DSM2893 57
DSM354 56
DSM355 78
DSM361 119
DSM766 70
DSM8786 74

sphaericus
DSM28 71
DSM396 98
DSM488 73

subtilis

DSM10 85
DSM1087 94
DSM347 103
DSM618 85
DSM6399 80
DSM6889 80
DSM9565 88

Escherichia coli

DSM1058 68
DSM2769 108
DSM423 103
DSM429 90
DSM498 86
DSM499 83
DSM613 94

Micrococcus
luteus

DSM142340 99
DSM14235 92
DSM1605 90
DSM1790 82
DSM20030 124
DSM348 82
DSM46257 92

lylae DSM20315 102
DSM20318 84

Staphylococcus

cohnii

DSM20260 137
DSM20261 82
DSM20262 79
DSM6669 120
DSM6718 124
DSM6719 123

epidermidis

195Isolat 85
2682Isolat 203
ATTC12218 139
ATTC35984 833
DSM1798 177
DSM20042 171
DSM3269 130
DSM3270 146

warneri DSM20036 125
DSM20316 120∑

= 5743

of 16 known strains (present inDL) and 6 unknown strains was
recorded. Please note that the independent dataset DI is equal
to the one used in [11, 45]. Our large dataset DL however is
more complex, since the original training database in [11] in-
cludes only 29 bacterial strains from 9 species.

The composition of the large dataset DL and independent
datasetDI is listed in Table 1 and Table 2, respectively.

4.2. Spectral Pre-processing
Both datasets DL and DI are pre-processed by performing

local quadratic interpolation to obtain Raman intensities on a
fixed (integer) wavenumber grid. All Raman signals are then
cropped to the integer wavenumber range I = [540, 3350] cm−1

which is covered by all spectra. In order to suppress spike noise
introduced by cosmic radiation, a running median filter is em-
ployed. For numerical stability, all spectra are further normal-
ized to unit length.

Table 2: Independent dataset DI comprising 299 Raman spectra (130 samples
from 16 known strains and 169 samples from 6 unknown strains).

genus species strain #examples known
inDL

Bacillus sphaericus DSM28 8 X
DSM396 7 X

subtilis DSM347 8 X

Escherichia coli

DSM1058 20 X
DSM423 7 X
DSM426 24 ×

DSM498 7 X
DSM5208 26 ×

Lactobacillus acidophilus DSM9126 25 ×

Micrococcus luteus DSM3906 45 ×

DSM20030 6 X

lylae DSM20315 5 X
DSM20318 5 X

Staphylococcus

cohnii

DSM20260 7 X
DSM6669 8 X
DSM6718 5 X
DSM6719 5 X

epidermidis 195 Isolat 20 X
ATTC35984 7 X

warneri DSM20036 5 X

hominis BCD2684 21 ×

Streptococcus thermophilus DSM20617 28 ×∑
= 299

4.3. Implementation Details
All experiments concerning novelty detection were done in

Matlab using our code for one-class classification with GP re-
gression [12] which can be downloaded at our homepage2. For
parameter estimation we used the Matlab code3 of Rasmussen
et al. provided alongside their text book [29]. As in [46], the
multi-class problem was tackled in one-vs-all fashion using a
binary GP classifier with Laplace approximation and cumula-
tive Gaussian likelihood. The parameter of the covariance func-
tion were estimated by maximizing marginal likelihood using
the Conjugate Gradient optimizer minimize with 10 iterations
for each binary one-vs-all problem. The additive noise com-
ponent was set to a small value σ2

n = 0.01 to avoid numeri-
cal instabilities. SVDD was realized using Matlab’s quadprog
function. For GP regression and classification, as well as for
SVDD, we used the isotropic SE-kernel (5) in all our experi-
ments. Kernel parameters θ1 and θ2 are obtained by the one-
vs-all classifier described in Sect. 2.3. For SVDD, different
values for outlier fraction parameter ν ∈ {0, . . . , 0.9} were in-
vestigated. For the GMM, we followed the approach of Schmid
et al. [11] using Principle Component Analysis (PCA) as sub-
space reduction method and a full covariance matrix which is
pooled over all strains. The number d of PCA components
as well as the number k of normal distributions in the model
were obtained by 10-fold cross-validation. Maximizing the av-
erage recognition rate on a 5 × 5-grid (d ∈ {10, 20, 30, 50, 80}
and k ∈ {5, 10, 20, 30, 50}), the optimum for our dataset was
found to be d = 30 and k = 30. The approach of [25] was

2available at http://www.inf-cv.uni-jena.de/kemmler
3accessible at http://www.gaussianprocess.org/gpml/code/matlab/doc/
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Table 3: Results of Novelty Detection using multiple labels (cf. 5.1), where DL was utilized for training and DI for testing. The average recognition rate (ARR)
is also given as an unbiased performance measure of the novelty detection results. Methods used: Gaussian process regression mean and variance (GPR-M, GPR-
V) [12], Support Vector Data Description (SVDD) [31], Gaussian Mixture Model (GMM), Parzen Density Estimation (Parzen), one-vs.-all GP classifier (OVA),
sampling technique of [25] (MLS).

GPR-V GPR-M SVDD GMM Parzen OVA MLS [25]

correctly recognized as
novel (sensitivity)

169 (100%) 27 (16.0%) 2 (1.2%) 96 (56.8%) 169 (100%) 129 (76.3%) 112.7 (67.0%)

correctly recognized as
known (specificity)

89 (68.5%) 125 (96.2%) 130 (100%) 117 (90.0%) 80 (61.5%) 73 (56.2%) 87.76 (67.5%)

average recognition rate 84.2% 56.1% 50.3% 73.4% 80.8% 66.2% 67.1%

re-implemented in Matlab and analyzed for a varying num-
ber M ∈ {10, 100, 500, 1000, 5000, 10000, 50000} of simulated
classes. Because of the randomized nature of the algorithm due
to sampling, we always average over 100 runs. As in GMMs,
we projected the Raman spectra onto the first d = 30 PCA com-
ponents. The latter step is also done for Parzen density esti-
mation. Using a normal density with diagonal covariance as
kernel, Silverman’s rule of thumb was used for estimating the
bandwidth parameters for each dimension independently.

4.4. Novelty Decision Process

If not stated otherwise, novelty detection scores are com-
puted for each single class separately. This is done to allow
a fair comparison of all tested methods since the one-vs-all ap-
proach (cf. Sect. 2.3) inherently uses this class-centered method-
ology. Schmid et al. [11] also noted that this approach might be
beneficial since treating the whole dataset as one class can be
difficult due to high variability of the underlying strains. For es-
timating the class-specific inlier/outlier boundary, one threshold
needs to be determined for each strain. In order to enable a di-
rect comparison to Schmid et al. [11], we follow their strategy
which is based on a pre-defined expected outlier ratio and which
is similar to the usage of the outlier fraction ν in the SVDD ap-
proach (cf. Sect. 3.1): For each class, novelty scores are com-
puted on the training data and the corresponding threshold is
set equal to the 5-percentile of those values. This strategy arti-
ficially treats 5% of the training data as novelty. In our setting,
we hence end up with 50 thresholds, one for each strain. For
a test sample all 50 strain-dependent novelty scores are com-
puted. Based on the learned thresholds, a decision is made
whether this test sample is novel or not. Only if the test sample
is treated as novelty by all strains, e.g. by using our GP novelty
scores, it is declared as novel with respect to the whole dataset.

5. Results and Discussion

In the following, we compare the different approaches to
novelty detection from Sect. 2 and highlight benefits and short-
comings of the respective methods. We also analyze whether
the independent description of classes as proposed in [11] is
necessary in our application. We end with a discussion of pa-
rameter estimation in non-parametric models for novelty detec-
tion.

10 100 500 1000 5000 10000 50000

0.5

0.55

0.6

0.65

0.7

0.75

av
er

ag
e 

re
co

gn
iti

on
 r

at
e

number of samples

Figure 4: Novelty detection based on Maximum Likelihood with a varying
number M of simulated outlier categories (MLS). The number of samples from
the class prior is a critical parameter (optimum found at M=1000), where under-
or oversampling leads to inferior performance.

5.1. The Multiple-Label Case
In this section, we assume that all classes are treated sepa-

rately and hence multiple labels are given. For Gaussian mix-
ture models, Parzen density estimators, SVDD as well as for GP
regression, a set of scores and thresholds are computed as out-
lined in Sect. 4.4. The approach using simulated classes (MLS)
from Sect. 3.4 does not require thresholds since outlying classes
are directly modeled. All methods are trained on the large Ra-
man spectra dataset DL and tested on the independent dataset
DI . The number of correctly recognized novelties and known
spectra are presented in Table 3 along with the resulting average
recognition rate (with respect to class “novel” and “known”).

The results clearly indicate that GP regression is suitable for
the task of novel detection in a bacterial context. The variance
of the predictive distribution (GPR-V) outperformed all other
tested approaches. While all samples from unknown strains are
correctly detected, only 41 out of 130 known spectra (31.5%)
are erroneously treated as novel which yields an average recog-
nition rate of 84.2%. A comparable performance is obtained
using Parzen density estimation with a higher misclassifica-
tion rate of 39.5% for known spectra. Medium quality perfor-
mances were obtained using GMMs, the simulated class ap-
proach (MLS) and the one-vs-all GP classifier (OVA). Please
note that the performance for MLS heavily depends on the num-
ber M of samples drawn from the class prior. Moreover, as can
be seen in Figure 4, larger values of M do not directly lead

6



Table 4: Results of Novelty Detection using a single positive class which comprises all training data.
GPR-V Parzen GMM (k=30) GMM (k=100) GMM (k=500) GMM (k=1500)

correctly recognized as
novel (sensitivity)

160 (94.7%) 149 (88.2%) 13 (7.7%) 32 (18.9%) 57 (33.7%) 63 (37.3%)

correctly recognized as
known (specificity)

101 (77.7%) 107 (82.3%) 128 (98.5%) 129 (99.2%) 128 (98.5%) 128 (98.5%)

average recognition rate 86.2% 85.2% 53.1% 59.1% 66.1% 67.9%

to better decision functions. This behavior can be explained
by the fact that known classes are eventually suppressed when
more and more samples are drawn from the class prior. Since a
suitable method for estimating M is not known to us, we hence-
forth refer to the best performance in order to allow for a fair
(or rather optimistic) performance comparison with respect to
the remaining methods. The approach based on the mean of
the predictive probability from GP regression (GPR-M) as well
as SVDD (best performance obtained for ν = 0.1) completely
failed in our experiment, leading to recognition results which
are close to a random decision (56.1% and 50.3%, respectively).

5.2. The One-Class Case

Instead of assuming all class labels are known, we could
also treat the training spectra as if they were generated from a
single “known” class. This point of view however rules out the
comparison to methods which explicitly incorporate the multi-
label information such as one-vs-all classifiers and the approach
which simulates unknown classes (where the unbiased sample
of the class priors’ covariance matrix is not defined for one
class). It is a priori reasonable to assume that the cancellation
of class label information might lead to poor results, since the
high variation of the whole data needs to be explained by a sin-
gle model, e.g. a mixture of Gaussians [11]. This argument
however only holds for parametric models, where the informa-
tion of the data is absorbed into a few parameters. Flexible non-
parametric methods such as Parzen density estimation, SVDD
and Gaussian processes are not likely to suffer from this prob-
lem. These models hence offer the possibility to solve the nov-
elty detection task in only one step requiring only one thresh-
old. This circumvents the merging step where a multitude of
class-dependent scores must be taken into account (and where
one badly estimated threshold parameter might lead to severe
consequences for the whole novelty detection task).

The results of novelty detection using this single-class point
of view are displayed in Table 4. For the sake of brevity, SVDD
and GPR-M are not listed because of their inferior behavior for
the multi-label case. As GP hyperparameters, we use the mean
θ of all class-dependent hyperparameters {θ1, . . . , θ50} obtained
via the OVA method. The results show that treating the dataset
as one class does not necessarily imply a drop in novelty de-
tection performance. On the contrary, even a slight increase in
average recognition result could be achieved for Parzen density
estimation (4.4%) and GPR-V (2%). As in the multi-label case,
these two approaches substantially outperform the GMM. The
parametric GMM is clearly worse in our experiments, although
we increased the number of latent clusters up to k = 1500 in
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Figure 5: Example ROC curve for GPR-V using θ.

order to account for a higher variability of the data.

5.3. Bandwidth Parameter Selection
As mentioned in the introduction of Parzen density estima-

tion, bandwidth parameter selection is a hard problem. In order
to estimate hyperparameters of the kernel or even the kernel
type itself, labeled training data is often required. This how-
ever, is not always available, especially in the one-class clas-
sification case. The choice of the kernel is indeed crucial as
can be seen in Figure 6, where the GP-based measures GPR-M
and GPR-V as well as SVDD (for ν = 0.1) are analyzed with
varying length scale parameter θ2. In order to allow a compact
performance comparison, we are resorting to receiver operat-
ing characteristic (ROC) curves, which illustrates the sensitivity
and (1-)specificity for all possible thresholds. As can be seen in
the ROC curve for GPR-V using parameter θ from the previous
section, the area under the roc curve (AUC) gives an estimate of
the expected performance of the method at hand (cf. Figure 5).
Varying the bandwidth parameter log θ2 ∈ [−10, 3], we can
clearly see that the performance changes drastically for both GP
sores and SVDD4. Moreover, it becomes apparent that GPR-M
and SVDD are suitable for novelty detection. This closer analy-
sis reveals that the estimate log θ2 = −1.6145 which was used in
previous settings is far away from the optimal value for GPR-M
and SVDD while it leads to successful predictions for GPR-V.

4For efficiency, a fast implementation from the LIBSVM [47] toolbox was
used to solve this larger problem
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Figure 6: Dependence of hyperparameter selection upon novelty detection per-
formance for SVDD and GP regression scores. The estimated parameter θ2 is
marked with a spaced vertical line.

6. Conclusions and Future Work

In this work, we proposed different strategies to tackle the
problem of novelty detection for Raman spectroscopy. Using
novelty scores derived from state-of-the-art techniques such as
Gaussian mixture models, Support Vector Data Description and
Gaussian processes, we discussed the power and pitfalls of all
methods. For a highly variable bacterial Raman spectra dataset,
Gaussian process based scores [12] showed superior perfor-
mance to all other tested methods.

This paper highlights the difficult task of novelty detection
for many real-world applications. Categorization without out-
lier detection is especially in chemometrics a risky procedure,
e.g. if samples are contaminated or the training set is not well
selected. Integration of the GP-based scores presented in this
paper can be easily realized and leads to a more robust analysis.

Since the problem of novelty detection is far from being
solved, much work still needs to be done such as finding rea-
sonable values for kernel hyperparameters for non-parametric
techniques and useful decision thresholds. Current kernel func-
tions, such as the isotropic squared-exponential kernel, treat the
components of the Raman spectra independently, which seems
to be unreasonable with regard to the fact that the spectra cor-
respond to one-dimensional functions. Therefore, another open
question is whether we can develop kernel functions specially
designed for Raman spectroscopy. The study in this paper only
focused on detecting novelties with respect to the strain level.
In practical applications it might be beneficial to determine dif-
ferent levels of granularity, e.g. novelty with respect to strains,
species and genera. Our novelty detection using Gaussian pro-
cesses can also be applied to those settings where hierarchical
information is used to gain a better understanding concerning
the type of novelty detected.
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