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Abstract

One challenging area of research in analytical chemistry is concerned with the automatic identification of microor-
ganisms. Recent empirical studies show that Raman spectroscopy is suited for this task and enables an accurate
categorization of very similar genera, species and strains, even on the single cell level. This work focuses on the
problem of wavenumber selection for Raman spectroscopy using supervised classification techniques. In addition to
well-known supervised criteria employing state-of-the-art classifiers such as Boosting, Regularized Logistic Regres-
sion and Projection to Latent Structures Discriminant Analysis, new relevance measures are derived from Random
Decision Forests. We also investigate Automatic Relevance Determination (ARD) in Gaussian process classifiers,
using a Bagging paradigm, which has not been used before in Raman spectroscopic feature selection. In experiments,
we analyze a total number of 15 different relevance criteria which are applied on a large-scale database comprising
10 different species. In order to yield an unbiased performance estimate of each strategy, an additional indepen-
dent dataset (comprising 7 species and previously unseen latent strains) is analyzed using four different classification
techniques for performance assessment. Compared to unreduced Raman spectra, the majority of proposed feature
selection strategies leads to an increase in recognition rate (on species level) which suggest that the proposed mea-
sures are suitable for feature selection. The highest accuracy (97.8% overall recognition rate) is achieved using a
relevance criterion derived from ARD which highlights the potential of non-parametric Bayesian methods for Raman
spectroscopy.

Keywords: Raman spectroscopy, supervised feature selection, Gaussian processes, Automatic Relevance
Determination, Random Forests, bacteria recognition

1. Introduction

Bacteria, fungi, and other kinds of microorganisms
inhabit nearly any place on earth. Due to this fact, the
identification of such microbes is often desirable. Espe-
cially in crucial fields such as medical applications [2],
food sciences [3] or clean-room environments [4] as in
pharmaceutical industry, a reliable and fast method for
categorizing particles is needed. There is a whole as-
sortment of techniques which can be used to achieve a
differentiation between certain classes of microorgan-
isms, e.g. growth measurements under certain condi-
tions [5] or morphology-based microscopy [6]. While

the latter can be used on single-cell level, it is often
not possible to distinguish between similar categories
(e.g. bacterial strains). Assessing the ability to grow,
on the other hand, is a time-consuming process. How-
ever, many samples require real-time analyses on very
limited amounts of data which highlights the need for
methods which achieve both accuracy and sensitivity.
In recent years, several techniques such as mass spec-
troscopy, flow cytometry and fluorescence spectroscopy
[7, 5] were developed which achieve this goal.

One alternative are vibrational spectroscopic tech-
niques [8, 9, 10] such as Raman spectroscopy [11, 12]
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Figure 1: Simplified mechanism behind Raman spectroscopy. Light from a narrow-band laser beam irradiates the sample of interest. Shifts
in frequency (wavenumber) due to molecular vibrations [1] are then recorded by means of a Raman spectrometer. The frequency changes are
integrated over a specific time interval, generating a fingerprint-like signal that contains information of the molecular decomposition of the whole
sample.

which are increasingly used to detect or categorize mi-
croorganisms [13, 14, 15, 16], even on the single-cell
level [17, 4, 18]. This family of optical techniques aims
at measuring the vibration of molecules and generate a
fingerprint-like signature of the whole sample of inter-
est (c.f. Figure 1). Based on this encoding of the chem-
ical composition of the sample, the respective category
can be learned or predicted by employing state-of-the-
art classification techniques [19] such as Support Vector
Machines (SVMs) [20, 4, 21] or Gaussian process (GP)
classifiers [22, 23].

In many cases, the Raman spectra contain uninfor-
mative parts, i.e. regions which have no positive im-
pact on the categorization result and can thus be ne-
glected. Retaining only relevant parts of the spectrum
can be advantageous in different ways. First of all, the
reduction of features most often has a positive effect
on the time complexity of the classifier’s learning and
prediction phase. Second, since unimportant spectral
regions might contain arbitrary signal fluctuations, ex-
cluding the corresponding features might lead to a gain
in recognition performance. Third, knowledge about
the relevance of features also improves the interpretabil-
ity of the results. In Raman spectroscopy this may en-
able experts to draw conclusions about the importance
of chemical compounds [24] with respect to the catego-
rization task.

The determination of regions which are relevant for a
given classification task, however, would require solv-
ing a combinatorial optimization problem, since we
want to find the smallest subset I ⊆ F of features (di-
mensions) F = {1, . . . ,D} which maximizes a given
performance measure (with respect to a given training
and test dataset). To obtain the optimal subset I, an
exhaustive evaluation of 2D feature combinations is re-

quired which cannot be computed in reasonable time
for data points containing more than a few dozen fea-
tures. Since, unfortunately, the majority of application-
relevant tasks in Raman spectroscopy deals with spectra
containing at least a few hundred dimensions, heuristics
or approximations are needed in order to find important
features.

One major branch of feature reduction techniques
developed for vibrational spectroscopy circumvent the
problem of solving a combinatorial optimization prob-
lem by concentrating on a different objective. The most
popular criteria focus on extracting explanatory vari-
ables which contain high uncertainty or high correlation
with their respective response variables, e.g. by projec-
tion onto principle components [19] or using related fac-
tor models such as Projection to Latent Structures [25].
In general, these methods result in a transformation to
linear or non-linear subspaces. In spite of the fact that
impressive performance gains can be obtained by using
these procedures, the direct interpretability of the result
gets lost. On the other hand, these criteria are usually
related to regression tasks and are thus unsupervised,
i.e. they do not consider the underlying categories.
Prominent exceptions are Fisher’s Linear Discriminant
Analysis (FLDA) [19] and related methods [26] which
aim at finding a linear subspace which maximizes the
data variation between categories (while minimizing the
variation within categories). However, the correspond-
ing dimension reduction step for FLDA is also accom-
plished by projection onto a manifold which makes a
direct interpretation of features difficult.

There exists also a large set of supervised algorithms
which directly incorporate class-specific information
into the feature extraction process. In the literature,
classifiers are often used as black boxes in order to score
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a previously selected subset I. This so-called wrapper
approach does not eliminate the combinatorial prob-
lem, however, it is often encountered employing some
feature selection strategy for choosing possibly interest-
ing subsets, e.g. forward selection, backward elimina-
tion [27, 28] or genetic algorithms [29].

Other approaches directly utilize supervised learning
methods which are capable of generating scores which
indicate the relevance of features for the classification
task. E.g. linear SVMs with l1-norm regularization [30]
or linear SVMs employing an iterative reweighting ap-
proach [31] are used for extracting informative vari-
ables. Ensemble methods for classifier combination
such as Boosting [32] and Random Decision Forests
(RDFs) [33] are also successfully utilized for feature se-
lection [34] and relevance scoring [35, 36].

This work focuses on comparing different supervised
techniques which are able to infer relevant features.
Along with Regularized Logistic Regression [19] and
the ensemble methods RDF [33] and Boosting [32], we
also investigate the suitability of Automatic Relevance
Determination (ARD) [37] based on GP classifiers [22],
which to our knowledge has not been done before in the
context of feature selection in vibrational spectroscopy.
In addition to utilizing known scoring procedures for
RDFs [36], we further introduce new relevance criteria
based on this ensemble method.

This paper is structured as follows. Sect. 2 reviews
supervised classifiers along with possibilities to extract
relevant dimensions. All methods are compared based
on a Raman spectroscopic task in Sect. 3. A summary
and discussion to future work concludes this work.

2. Methods

The following section contains supervised classifica-
tion methods which are used in this work to infer rele-
vant features.

2.1. Ensemble classifiers
The result of a given classification task strongly de-

pends on the power of the underlying classifier. If a
given classifier C1 is not able to achieve a predefined
goal in terms of prediction accuracy, one often resort
to a classifier C2 which exhibits a higher flexibility or
generalization ability. One alternative strategy is to use
ensemble methods, i.e. to combine multiple classifiers
of type C1 in a certain way in order to increase the ex-
pected classification accuracy.

For the ensemble methods used in this paper, the
combined classifier type C1 was chosen to be a Deci-
sion Stump [38]. This simple, univariate classifier is

often used in this setting, since it is easy to implement,
allows for a fast optimization of parameters and can be
directly associated with features. The family of Deci-
sion Stump classifiers can be defined as

hθ,s,k(x) =

{
1 : s · xk > θ
−1 : otherwise (1)

with threshold parameter θ, polarity s, and index po-
sition k. This classifier separates the vector space at
threshold θ in two half-spaces parallel to the k-th co-
ordinate axis.

This Decision Stump is commonly used as weak clas-
sifier in two ensemble methods which are discussed in
the next sections: RDFs and AdaBoost.

2.2. AdaBoost
One straightforward way to combine a set of weak

classifiers h1, . . . , hT is to use a linear model:

h(x) =

T∑
i=1

αihi(x) (2)

where α denotes the vector of weights associated to the
respective weak classifiers (c.f. Figure 2). AdaBoost
is one representative of this family of ensemble meth-
ods which aims at optimizing an exponential loss on the
training data. LetD = (X, y) be the training set contain-
ing inputs X = {x1, . . . , xn} and corresponding outputs
y = {y1, . . . , yn}, then the exponential loss is given by

ε =

n∑
k=1

exp (−yk · h(xk)) (3)

In order to optimize this loss function, the standard (bi-
nary) AdaBoost algorithm sequentially adds one classi-
fier per round while updating a data distribution. The
adjusted distribution is then used to focus on samples
which are misclassified in the previous round and thus
allows to concentrate on seemingly harder data points.
It has been shown that this simple updating mechanisms
optimizes the objective in (3). For more detailed in-
sights into the algorithm and mathematical properties,
we refer to [32].

The standard AdaBoost algorithm can also be modi-
fied in order to allow for multiple classes. There is a va-
riety of different approaches [32] from which we used
AdaBoost.MH in our experiments. This variant con-
structs an internal one-vs-all problem which is straight-
forwardly solved using the standard AdaBoost formal-
ism described above. Although the prediction step for
the weak classifiers is accomplished independently, Ad-
aBoost.MH jointly learns one classifier parameter set
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Figure 2: Schematic illustration of AdaBoost using a list of weak clas-
sifiers h = (h1, . . . , hT ).

and one weight vector α for all binary subtasks. In order
to be able to infer the class of a given test example x∗, a
majority vote is generally used:

c∗ = argmax
c

h(c)(x) (4)

where h(c) denotes the classifier which separates class c
from the rest.

Using a Decision Stump as base classifier, Ad-
aBoost.MH iteratively selects one dimension per itera-
tion (shared by all binary subtasks) along with a weight
αi, i ≤ T . Since the selected features are ordered by
their ability to minimize the (adaptive) exponential loss,
one naı̈ve feature selection strategy using Boosting (B)
is to concentrate on the first D′ disjunctive features.
In this context, disjunctive means that we ignore weak
classifiers which contain a previously recorded feature.

2.3. Random Decision Forests
Instead of using a sum of weighted classifier out-

puts, a sequential feed-forward technique can also be
employed to build an ensemble classifier. So-called De-
cision Trees utilize a tree-based topology, where weak
classifiers are represented as nodes and connections be-
tween classifiers are encoded as edges.

Given a test data point x∗, the output is generated by
presenting x∗ to the root of the tree. This data point then
traverses the tree on a certain path which is given by the
decisions of the weak classifiers with respect to the pre-
sented data point. Since the edges are uni-directional,
the data point eventually reaches a leaf. Each leaf of
the tree contains a class distribution which denotes how
probable it is that data points from a given class reach
this leaf. This distribution then serves as output of
the ensemble classifier, given the presented data point
(c.f. Figure 3).

The structure of Decision Trees is learned in an itera-
tive manner. Beginning with the root, a weak classifier
is trained in order to optimize a given criterion. Gen-
erally, an impurity criterion such as the Gini Index or

...

Figure 3: A set of Decision Trees (a forest). A test vector x is pre-
sented at all roots within the forest, traverses the trees and ends up at
leaf nodes which are equipped with a class probability distribution.

Information Gain is minimized to achieve a good sepa-
ration between classes. In our work, we solely use the
Information Gain, which is defined as the difference of
information content before and after the classifier is in-
voked. The information content can be specified by the
entropy E(ν) with respect to node ν. Let pc(ν) be the
expected probability that class 1 ≤ c ≤ C occurs within
node ν, the entropy is defined as

E(ν) = −

C∑
c=1

pc(ν) log pc(ν) (5)

By employing binary classifiers, two children nodes will
result which are denoted by left node νl and right node
νr. The Information Gain achieved by performing the
according split at node ν can then be computed as

IG(ν) = E(ν) − ωlE(νl) + (1 − ωl)E(νr) (6)

where ωl denotes the probability that a data point ends
up in the left children node.

RDFs are a collection of Decision Trees, where each
tree is learned on a randomly drawn subset of data
points, a technique which is known as Bootstrap Ag-
gregation [39]. Standard RDFs [33] utilizes Decision
Stumps as weak classifiers which enables a second level
of randomization: Instead of searching for the right in-
dex k among all features, only a random subset of fea-
tures is taken into account. This randomization strate-
gies allows for a better generalization ability and bias
reduction [33]. A final output can be obtained by aver-
aging the results of all trees of the forest.

Since standard RDF implementations work with De-
cision Stumps as base classifier, each node is directly
associated with a feature. It is thus possible to associate
features with node properties. This is done by Rogers
et al. [35, 40], where the average information gain, aug-
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mented by a node complexity criterion, is used as fea-
ture relevance score. A similar approach is followed by
Menze et al. [36] for feature selection in the context of
vibrational spectroscopy, where the sum of Gini Index
values, averaged over all nodes and trees, serves as rel-
evance measure.

In this work, the following set of properties of the
RDF classifier is exploited in order to generate feature
relevance scores:

1. Counting (RDF-C). If a feature is selected within
a node, the evidence for relevance increases. The
resulting histogram (i.e. counts) over selected di-
mensions can hence be interpreted as importance
measure.

2. Information Gain (RDF-IG). As in [36], the rel-
evance of a selected feature is raised by a value
proportional to the information gain, since features
which are responsible for achieving pure children
nodes should receive appropriate rewards.

3. Inverse Depth (RDF-ID). Since nodes of lower
tree depth have both a high impact on the structure
of the tree and influence nodes in deeper stages,
the depth can be incorporated into a relevance mea-
sure, e.g. the relevance of a selected feature can be
raised proportional to the inverse depth.

4. Incoming Datapoints (RDF-IDP). The number of
data points which are effected by a node can vary
drastically. Selecting a feature which correctly sep-
arates only two training points, however, should be
weighted differently from features which effect a
large number of data points. We therefore propose
to increase the relevance measure proportional to
the number of incoming data points that are asso-
ciated to the node during construction.

5. Combinations. A combination of above measures
is also possible, e.g. a multiplication of criteria In-
formation Gain, Inverse Depth and Incoming Dat-
apoints (RDF-IG-ID-IDP).

2.4. Regularized Logistic Regression
As has been mentioned in the introduction, many al-

gorithms estimate feature relevance based on regres-
sion, where linear models are constructed in order to
predict certain output values. This unsupervised ap-
proach, however, neglects the class information given
by the problem at hand. A popular supervised analog
is logistic regression, where a logistic model (c.f. Fig-
ure 4) is employed to estimate the probability of belong-
ing to a certain class:

p(y = 1|x,ω) =
1

1 + exp
(
−ωT x

) (7)
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Figure 4: Logistic function on one-dimensional input space with vary-
ing parameters of ω ∈ {2, 10, 50}.

The parameter ω can be learned by means of Maximum
Likelihood optimization, i.e. assuming i.i.d. dataD:

ω = argmax
w

n∑
i=1

log p(yi|xi,w) (8)

This approach offers the possibility to directly access
the features in the input space, since a weight ωk is as-
sociated to the k-th feature. A value of ωk close to zero
would indicate a highly irrelevant feature and large val-
ues might indicate high relevance. It is not sure, how-
ever, that weight values have a high spread ranging from
zero to high values. This property can be encouraged
by placing a prior on the weight vector ω. If we expect
the weight vector to contain many values close to zero,
we can incorporate this knowledge into the optimization
routine, where we end up with a Maximum-A-Posteriori
optimization, i.e. ω = argmaxw log p(w|X, y). Using a
zero-mean Gaussian w ∼ N(0, λ−1I) with inverse vari-
ance λ > 0, this simplifies to

ω ∝ argmax
w

n∑
i=1

log p(yi|xi,w) − λ · ||w||2/2 (9)

which is a regularized version of the logistic regression,
also known as ridge logistic regression.

By tuning the inverse variance parameter λ, we can
adjust the impact of the regularization, i.e. large λ lead
to solutions where many values ωk are close to zero and
vice versa.

Using this Regularized Logistic Regression ap-
proach, we can score features by their associated weight
vectors. One approach is to mark features as relevant
which have nonzero weights or weights higher than a
small threshold ε (RLR-C). Since larger weights might
have a higher impact on the estimate, one could also use
the absolute values |wk | (RLR-W) as score for the k-th
feature. however, the latter approach would introduce a
bias, since the dimensions might contain different scal-
ings. To account for this fact, it is also possible to re-
weight this score by the average feature size, i.e. to use
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|wk/µk |, where µk = n−1 ∑n
i=1 xik and xik denotes the k-th

feature of vector xi (RLR-RW).
Since we have multiple classes in our settings, we

learn C different one-vs-all subtasks. The final score
is then computed by summing over all scores obtained
from the respective binary problems.

2.5. Gaussian Process Classifier

In the following section, the theory of GP classifi-
cation is described. Since the GP classifier is motivated
from Bayesian regression, we follow the usual approach
of first describing the regression case before discussing
necessary changes that allow for classification.

One of the simplest regression model is to assume
that outputs are generated by means of a linear model

y(x,ω) = Φ(x)Tω + ε, (10)

where Φ : X → H denotes some deterministic transfor-
mation of input arguments to some inner product space
and ε specifies a non-deterministic noise term.

The standard frequentist strategy of regression pro-
ceeds by tuning the parameters ω to minimize a loss
function between the predicted function y(xi,ω) and the
observed outcomes yi. However, this approach is prone
to overfitting, i.e. over-adaption to the training data.

Bayesian regression aims to avoid this shortcoming
by defining confidences for parameters ω according to
some prior belief. This uncertainty is used to integrate
out the nuisance parameter ω to obtain a prediction
which effectively combines infinitely many models.

2.5.1. Gaussian Process Regression
Instead of concentrating on the weights ω, we can

directly focus on the latent noise-free function f (x) =

Φ(x)Tω. The assumption in GP regression is that the la-
tent function f (·) is drawn from a GP prior. Such a prior,
which can be seen as a normal distribution over func-
tions, is solely specified by a mean function m(x) and a
positive definite covariance function κ(x, x′). Hence, we
assume

f (X) ∼ N(m(X), κ(X,X)) (11)

for any finite collection of random variables X.
The crucial step for predicting an output y∗ =

y(x∗) for a previously unseen data point x∗ is to infer
p( f∗|x∗,X, y), i.e. the distribution of the latent function
at point x∗ given the training data D = (X, y). By
assuming that outputs are independently generated ac-
cording to (10), this can be accomplished by solving the
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Figure 5: Example for GP regression with SE-kernel (θ =

(0.9195, 0.1742)T , σ2
n = 0.1158). Training points (crosses) are well

fitted by the GP mean µ∗ (solid line). The 95%-confidence interval
µ∗ ± 1.96σ∗ (spaced lines) illustrates the confidence of predicted val-
ues.

following integrals

p(y∗|X, y, x∗) =

∫
p( f∗|X, y, x∗) p(y∗| f∗) d f∗(12)

p( f∗|X, y, x∗) =

∫
p( f∗|X, f, x∗) p(f|X, y) df(13)

where f = f (X) = ( f (x1), . . . , f (xn))T and f∗ = f (x∗).
This is often not analytically computable, however, by
assuming a GP prior over latent functions and i.i.d.
Gaussian noise, i.e. ε ∼ N(0, σ2

n), both integrals turn
out to be normal distributions. Using a zero-mean GP
prior (i.e. m = 0), it can be shown that (13) has the
following moments [41]:

µ∗ = kT
∗

(
K + σ2

nI
)−1

f (14)

σ2
∗ = k∗∗ − kT

∗

(
K + σ2

nI
)−1

k∗ (15)

where µ∗ and σ2
∗ denote mean and variance of

p( f∗|x∗,X, y), respectively, and the shorthands K =

κ(X,X), k∗ = κ(X, x∗), and k∗∗ = κ(x∗, x∗) are used for
the sake of readability. Moreover, the distribution (12)
is also normally distributed with mean µ∗ and variance
σ2
∗ + σ2

n [22].

2.5.2. From Regression to Classification
The goal in GP classification is to model a function

which predicts a confidence for each class y ∈ {−1, 1},
given a feature vector x. Since the output space is dis-
crete, rather than continuous, it is not appropriate to as-
sume a Gaussian noise model. There are two common
strategies to tackle this issue. We could either ignore
the discrete nature of the problem and perform label re-
gression, or choose a more appropriate likelihood func-
tion which is suitable for classification. In the following
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work, the latter approach is adopted where a cumulative
Gaussian likelihood p(y| f (x)) = Φ(y f (x)) is utilized

Φ(y f (x)) = (2π)−
1
2

∫ y f (x)

−∞

exp
(
−z2/2

)
dz (16)

along with the assumption of conditional independence
for outputs y, given their respective latent function val-
ues f. This slightly change from Gaussian to cumulative
Gaussian likelihood has, however, far reaching conse-
quences with respect to the inference procedure. Due to
the non-Gaussian likelihood, integral (13) can no longer
be solved in closed form which renders the problem of
estimating p( f∗|X, y, x∗) computationally intractable.

Approximate inference methods can be used to tackle
this problem. In the GP framework, these methods
generally estimate a Gaussian approximation to a non-
Gaussian probability distribution such as p(f|X, y). Two
popular methods following this scheme are Laplace
approximation [42] (LA) and Expectation Propaga-
tion [43] (EP). While the latter usually achieves very
accurate estimations, LA has indisputable speed advan-
tages [44]. Interested readers are referred to [22] for
further insights of LA and EP and their application to
the GP framework.

Using the likelihood (16) in combination with a
Gaussian approximation to p( f∗|X, y, x∗), integral (12)
also turns out to be a cumulative Gaussian which is com-
putable in closed form [22].

2.5.3. Model Selection and Relevance Determination
Parameter selection is a crucial step in designing a

classifier. In the Bayesian framework those parame-
ters are given as prior and hyperpriors over latent vari-
ables. In case of GP classifiers, the appropriate covari-
ance function (which serves as prior over latent func-
tions) needs to be specified. One of the most commonly
used covariance function is the isotropic squared expo-
nential (SE) kernel

κSE(x, x′) = θ2
1 · exp

(
−θ−2

2 · ||x − x′||2/2
)

(17)

One flexible alternative to the isotropic SE-kernel is the
Automatic Relevance Determination (ARD) kernel

κARD(x, x′) = ν2
0 · exp

− D∑
k=1

ν−2
k · (xi − x′i )

2/2

 (18)

Hyperparameters θSE = (θ1, θ2)T or θARD =

(ν0, ν1, . . . , νD)T can be optimized via the evidence
framework. This strategy aims at finding the hy-
perparameters θ∗ which maximizes the probability
p(y|X, θ) of generating the output given the input, i.e.

Figure 6: Automatic Relevance Determination using the GP classifier
applied on a binary toy dataset with class A (black dots) and class
B (white dots). The inferred hyperparameters are ν1 = 0.2868 and
ν2 = 1.7806 which indicates a high relevance of the first feature. The
estimated probability of belonging to class A using above parameters
is visualized by different background shading.

θ∗ = argmaxθ p(y|X, θ) [22]. This method is often used
in practice since it provides an automatic way to obtain
parameters, e.g. by using gradient based optimization
routines such as Conjugate Gradient Descent [22].

The evidence framework, coupled with the ARD-
kernel can thus serve as a mechanism to infer the impor-
tance of features. A small value of νk (1 ≤ k ≤ D) would
lead to an amplification of the k-th feature, whereas a
large value attenuates contributions of feature k with re-
spect to the classification result (c.f. Figure 6). Hence,
the following relevance criteria can be derived from the
GP classifier using ARD-kernel after evidence maxi-
mization is invoked:

1. Contribution to kernel (ARD-U): Since large val-
ues of ν−1

k (1 ≤ k ≤ D) suggest large contribution
of the k-th feature to the kernel, this measure can
serve as a relevance criterion.

2. Normalized Contribution to kernel (ARD-N):
Unequal scalings within dimensions cannot be in-
ferred by using the ARD kernel. A measure which
tries to overcome this shortcoming reweights the
inferred contribution with the standard deviation
σk within the k-th dimension. Since the kernel
measures differences, this variance-based correc-
tion is used instead of the mean correction as in
RLR-RW, i.e. the relevance of feature k is propor-
tional to (νkσk)−1

However, when many parameters are optimized by
the evidence framework, which is the case for our Ra-
man spectroscopic problem using the ARD approach,
severe overfitting problems can result. In order to avoid
over-adaption to the training set, Qi et al. [45] propose
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to monitor a leave-one-out (LOO) error for intermedi-
ate parameter estimates θ′ within the optimization pro-
cedure. Since no method for obtaining a LOO error es-
timate using LA is known to us, the approach of [45] is
followed which uses EP, leading to a procedure closely
related to the mean field approach of Winther and Op-
per [46].

Since the GP classifier used in our experiments is a
binary classifier, we again utilized a one-vs-all scheme.
Instead of optimizing the hyperparameters indepen-
dently, however, we follow Kapoor et al. [47] and op-
timize the joint evidence, i.e.

θ∗ = argmax
θ

∑
τ

log p(y(τ)|X, θ) (19)

where τ indexes the binary one-vs-all tasks. In addi-
tion to a possible speed improvement, this method also
achieves a smoothing of hyperparameters and hence
avoids overfitting.

Although a faster inference is possible employing
joint maximization of parameters, using EP on large
amounts of data is still a lengthy procedure and may
easily take a few weeks or months on current comput-
ers. In order to achieve a further speed-up, we rely on
a Bagging approach. As for RDFs (c.f. 2.3), we con-
struct multiple problems by resampling from the whole
dataset. The overall relevance score is then computed
as the sum of scores obtained from all subproblems. In-
stead of estimating the ARD-hyperparameters for each
bag separately, a joint optimization over all bags is pos-
sible. This strategy avoids high fluctuations among hy-
perparameters from different bags and gets rid of the
rather heuristic summation process. Since all parame-
ters are shared between different bags, the risk of over-
fitting is once more reduced.

2.6. PLS-DA

Projection to Latent Structures (PLS) is a basic tool
in chemometrics which enables to compress informa-
tion hidden in both inputs X (explanatory variables) and
outputs Y (response variables) by projecting both to a
lower-dimensional latent variable space. While several
types of PLS exist, most variants try to iteratively find
those latent basis vectors which maximize the covari-
ance between projected input and output vector [25].
To make use of PLS for the classification scenario,
PLS Discriminant Analysis (PLS-DA) was recently pro-
posed [26]. In a one-versus-all manner, the multi-label
problem is reduced to several subproblems with binary
response variables. By collecting all binary response
vectors to a response matrix Y, standard PLS regression

is then utilized to infer a given number of latent basis
vectors. To fix the dimension of the latent space in ad-
vance is a difficult problem since a trade-off between
flexibility and generalization ability has to be made. In
practice, a good estimation can be often accomplished
by using k-fold cross validation (CV) on the training
data, choosing the dimensionality that leads to the low-
est CV error.

Once the dimensionality is fixed, PLS is invoked and
the weights wi j used for the projection to latent variables
T = WT X can be employed to estimate variable impor-
tance. By construction, wi j describes the contribution
of the i-th input to the j-th latent dimension. The sum∑

j |wi j| of absolute weights over all dimensions of the
latent space can hence be used as relevance score for
input dimension i. Wold et al. [25] also propose to addi-
tionally use the amount of variance explained by latent
component j as a weighting factor to further include la-
bel information into the relevance estimation procedure.
However, the latter is not further mentioned in this pa-
per since it always lead to inferior performance in our
experiments.

2.7. Base Classifiers for Performance Assessment

For measuring the suitability of feature extraction
methods, quantitative methods based on classification
accuracy can be used. Apart from the Gaussian process
classifier from Sect. 2.5.2, three standard methods [19]
well established in chemometrics literature are used for
performance assessment.

2.7.1. Linear Discriminant Analysis
One of the most simple classification strategy is to

model each class by a normal distribution in feature
space. This parametric assumption can be further con-
strained by restricting all classes to share the same
covariance matrix Σ. After inferring a mean µc for
each class 1 ≤ c ≤ C and shared covariance by us-
ing unbiased estimates from the training data, test vec-
tors are assigned to classes by using a maximum like-
lihood rule, i.e. label c is assigned to test vector x if
c = argmaxi p(x|µi,Σ). It can be shown that the result-
ing class boundaries based on above decision process
are piecewise linear which is the reason for terming this
classifier Linear Discriminant Analysis.

2.7.2. Quadratic Discriminant Analysis
As in LDA, Quadratic Discriminant Analysis (QDA)

assumes normally distributed data for each class. How-
ever, the class-specific covariance matrix is no longer
shared but allowed to vary for each class independently.
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Using maximum likelihood estimation as in LDA, this
higher flexibility leads to a piecewise quadratic decision
boundary.

2.7.3. Nearest Neighbor Classifier
The Nearest Neighbor classifier is an easy but power-

ful non-parametric decision rule. Rather than learning a
distribution of some parametric family, the whole train-
ing data is stored as a model. A new test data is then as-
signed to the class of its nearest neighbor in the training
dataset according to a predefined similarity measure. In
this work, standard Euclidean distance is used for mea-
suring similarities between samples.

3. Experiments

This section deals with the analysis of the relevance
criteria presented in Sect. 2 with respect to a Raman
spectroscopic classification problem. Information about
the Raman spectra dataset and implementations used for
our experiment are provided prior to discussing the re-
sults.

3.1. Raman Spectra Datasets

The current study is based on two datasets, measured
by a micro-Raman setup (HR LabRam invers, Jobin-
Yvon-Horiba, Bensheim, Germany). The spectrometer
has an entrance slit of 100 µm, has a focal length of 800
mm, and is equipped with a 300-lines/mm grating. As
excitation wavelengths the 532-nm line of a frequency
doubled Nd:YAG laser (Coherent Compass, Dieburg,
Germany) with a laser power of approx. 2.4 mW in-
cident on the sample were used. The Raman scattered
light was detected by a CCD camera operating at 220 K.
A Leica PLFluoar 100× objective (NA 0.75) focused the
laser light onto the samples (≈0.7 µm focus diameter).
The spectrometer was calibrated each day prior to mea-
suring (using titanium dioxide). All cells were recorded
from fused silica plates with an integration time of 60 s.

The first (large) Raman spectra dataset DL contains
6707 spectra from 10 different bacterial species. The
species were chosen according to their occurrence in
clean-room environments. The microorganisms were
purchased from the German Collection of Microorgan-
isms and Cell cultures (DSMZ, Braunschweig, Ger-
many) and from the Institute for Infectious Biology at
the University of Würzburg. The employed cultivation
media consisted of NA (nutrition agar), S-1-NA (stan-
dard 1 nutrition agar), CA (corynebacterium agar) and
CASO (trypticase soy yeast extract medium). The mi-
croorganisms were cultured under varying conditions

Table 1: Contents of the bacterial Raman datasets used in this study:
The large datasetDL and the independent datasetDI .

genus species number of spectra
inDL inDI

Bacillus

B. pumilus 534 0
B. sphaericus 275 15
B. subtilis 924 8
B. megatarium 94 0

Escherichia E. coli 641 84

Micrococcus M. luteus 1259 51
M. lylae 186 10

Staphylococcus
S. cohnii 245 25
S. epidermidis 1884 27
S. warnerie 665 0

with respect to nutrient medium, growing time and tem-
perature.

In addition, an independent test set DI , consisting
of 7 out of 10 species included in the training set, was
recorded. For performing Raman measurements on sin-
gle cells the bacteria were extracted from the agar plates
and smeared on a fused silica plate. The composition of
both datasets is listed in Table 1.

3.2. Spectral Pre-processing
Both datasets DL and DI are pre-processed by per-

forming local quadratic interpolation to obtain Ra-
man intensities on a fixed (integer) wavenumber grid.
All Raman signals are then cropped to the integer
wavenumber range I = [540, 3350] cm−1 which is cov-
ered by all spectra. In order to suppress spike noise in-
troduced by cosmic radiation, a running median filter is
employed. For numerical stability, all spectra are fur-
ther normalized to unit length.

3.3. Implementation Details
In this experiment, we used Discrete AdaBoost.MH

from the MultiBoost [48] package and single Decision
Stumps as weak learners.

As in [36], we used 100 trees for RDF construc-
tion, employing a high randomization for the resam-
pling scheme (10% of the data is randomly drawn for
each tree). Furthermore, 250 features are randomly
chosen at each node for optimization of the Decision
Stumps.

The RLR classifier was trained using an inverse vari-
ance parameter of λ = 10. This rather large value was
chosen to generate weight vectors with many compo-
nents close to zero. The in-house implementation of
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Figure 7: Visual inspection of important features for classification on the species level inferred by all 15 relevance criteria.

RLR used in this work also sets small weight values be-
low a threshold ε < 10−4 equal to zero in each iteration
of the optimization routine. This property and the fur-
ther restriction that zero-valued weights are re-adjusted
only with a probability of 0.5 additionally encourage the
formation of sparse weight vectors.

The GP classifier from the source code provided
alongside the book of Rasmussen et al. [22] is adapted
to allow joint evidence optimization and Bagging. For
the latter, resampling is performed with 25 random
draws, each containing 50 spectra per class. For the
hyperparameter optimization, the Conjugate Gradient
Descent optimizer minimize was adapted to enable
a LOO-error control mechanism. In all cases, the
optimizer is used with initial parameter vector θ =

(1, . . . , 1)T and a predefined number of function eval-
uations (30 for ARD-kernel, 10 for SE-kernel).

For PLS-DA, the Matlab function plsregress from
the Statistical Toolbox including its built-in CV option
was utilized for all PLS-related analyses. By using a
10-fold CV setup with the number of latent basis vec-
tors ranging from one to 100, the minimum CV error
was obtained for 34 latent dimensions. All subsequent
results concerning PLS-DA are based on this model.

3.4. Results

In this section, relevance criteria are compared based
on a feature selection task. First, all 15 relevance crite-
ria discussed in Sect. 2 are employed on the large Ra-
man dataset DL in order to generate a relevance order-
ing of features. Using this ordering, only the D′ = 200
most relevant features are retained whereas remaining
dimensions are discarded from all features. This results
in 15 different subsets I1, . . . ,I15. For a given subset
Ik, both datasets DL and DI are then projected onto
the relevant feature in Ik, generating reduced datasets

DL(Ik) and DI(Ik). The 200-dimensional spectra of
DL(Ik) are then used to train a classifier.

The above procedure results in a number of 15 differ-
ent classification models, one for each relevance crite-
rion. The suitability of a given relevance criterion gen-
erating subset Ik can thus be estimated by means of the
recognition performance of their corresponding classi-
fiers. This performance is estimated on the independent
datasetDI(Ik), utilizing two known measures from pat-
tern recognition: average recognition rate (ARR) and
overall recognition rate (ORR). The ORR measure is de-
fined as the percentage of correctly classified test points
of the whole dataset. The ARR measure, on the other
hand, calculates the recognition rate for each class sep-
arately and then averages all class-specific accuracies.

Fig. 3.3 illustrates the relevant feature subsets based
on all relevance criteria from Sect. 2, plotted according
to their wavenumbers. It can be seen, that a clear pattern
arises with two clusters at wavenumbers about 700 −
1800 cm−1 (fingerprint region) and 2800 − 3100 cm−1

(high wavenumber region). While the fingerprint re-
gion is usually used for Raman spectroscopic analyses,
the high wavenumber region is often discarded. How-
ever, it has been shown that this region also contains
discriminant information for classification [49, 50, 51],
most likely due to C-H stretching vibrations of com-
pounds such as triglycerides (≈ 2850 cm−1) and pro-
teins (≈ 3000 cm−1). The latter two wavenumber re-
gions are highlighted by each single relevance criterion
(with the clearest separation of both regions by ARD-
U and ARD-N) which indicates that C-H stretching vi-
brations of fatty acids and proteins can provide useful
information for the discrimination of bacterial species.

The lack of relevant features within the range 1800–
2800 cm−1 is also supported by chemical properties
of organic compounds which rarely produce excita-
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Figure 8: Classification results (ARR and ORR) for different classifier architectures employing the proposed methods using the 200 most relevant
features. The tag ”default“ denotes the standard approach for the respective classifier: while for kernel-based classifiers (NN and GP classifier) no
dimension reduction is used, PCA projection onto the first 200 eigenvectors is performed for LDA and QDA in order to avoid numerical issues.

tion peaks in this frequency band. The above observa-
tions supports the relevance criteria used in this work.
However, notable differences occur in the range 540–
650 cm−1 and 650–1150 cm−1. The first, which might
be attributed to glycosidic bonds (polysaccharides) and
disulfide bonds (polypeptides), is not selected by ARD-
based criteria. The second range, however, is not in-
cluded in the relevant set of RDF based methods (with
the exception of a small strip at ≈900 cm−1).

The recognition accuracies with respect to different
feature subsets were empirically measured by means of
the classifiers introduced in Sect. 2.7 (LDA, QDA and
NN) and a GP classifier using the SE-kernel (17) which
has been recently shown to produce excellent results
compared to other state-of-the-art methods [23]. Note
that the GP classifier results discussed in the following
are obtained using the bag-wise hyperparameter opti-
mization (see Sect. 2.5.3). The joint optimization strat-
egy does not lead to an improvement in our experiments
(and is thus omitted).

Apart from the 15 feature subsets mentioned above
we also analyzed all classifiers in a default setting.
While the whole set of 2811 features is used as default
for the non-parametric classifiers (NN and GP classi-
fier), PCA was employed as preprocessing step for the
normal distribution based methods (LDA and QDA) to
avoid numerical problems by inverting the covariance
matrices. The results are graphically depicted in Fig-
ure 8. Beside the fact that the GP classifier and NN
always outperform LDA and QDA, no clear pattern
is followed by all four tested classification methods.

While LDA, NN and GP classifier prefer RDF-based
and ARD-based measures, QDA yields best results for
AdaBoost.MH (B), RLR and ARD-based scores. The
well-known PLS-DA method provides useful scores
yielding comparable results to RLR-W for most classi-
fication techniques. It can be further seen that, through-
out all classifiers, ARD-U serves as a method of choice
since it constantly leads to high recognition rates mea-
sured by both ARR and ORR.

It should be also noted that the simple NN rule con-
sistently produces high recognition rates, often out-
performing all other classifiers. The highest overall
recognition rate (97.8%), however, is obtained by us-
ing the GP classifier whose detailed recognition results
are shown in Table 2. Using the GP classifier based on
ARR performance, 14 out of 15 relevance criteria lead
to a better recognition performance compared to the de-
fault setting (all features). This behavior which is also
followed by NN is encouraging, considering that less
than 10% of the original features are used. This is an
additional evidence for the suitability of the proposed
feature selection methods.

What remains to show is that this increase in recog-
nition accuracy does not stem from the mere reduction
of dimensionality. To validate this hypothesis, we ran-
domly draw 1000 artificial feature subsets containing
200 wavenumbers and analyze their quality using recog-
nition performance. For this experiment, the NN classi-
fication rule was employed due to its good performance
using the subsets above and its fast learning and pre-
diction process. The results are visualized in Figure 9
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Table 2: Detailed recognition performance on independent Raman dataset DI , using varying sets of relevant features (each containing D′ = 200
elements) obtained by relevance criteria from Sect. 2. For the sake of readability, only detailed results from the classifier which lead to the highest
overall recognition rate (GP classifier) are shown (c.f. Figure 8). The criterion leading to the highest prediction accuracy is highlighted in boldface.

methods B.sph. B.sub. E.coli M.lut. M.lyl. S.coh. S.epi. ARR ORR
ALL 0 8 82 51 8 24 27 81.9 90.9
ARD-N 11 8 84 51 9 25 27 94.8 97.7
ARD-U 14 8 83 51 9 23 26 95.8 97.8
RLR-RW 13 8 84 48 10 18 27 93.3 94.6
RLR-W 13 8 84 49 10 16 27 92.4 94.1
RLR-C 13 8 84 45 10 16 26 90.7 91.8
RDF-IG-ID-IDP 8 7 82 50 10 23 26 89.3 93.6
RDF-ID-IDP 6 8 84 49 10 23 26 89.2 93.6
RDF-IG-IDP 7 7 83 49 10 23 25 87.7 92.7
RDF-IG-ID 10 8 84 51 10 23 26 93.6 96.4
RDF-IDP 7 8 83 49 10 23 26 90.0 93.6
RDF-ID 10 7 83 49 10 21 26 89.9 93.6
RDF-IG 0 8 83 51 10 17 26 80.4 88.6
RDF-C 3 8 84 50 10 15 26 82.0 89.1
B 4 8 84 51 10 15 26 83.3 90.0
PLS-DA 13 8 84 51 10 17 25 92.5 94.6
#spectra 15 8 84 51 10 25 27

0.88 0.9 0.92 0.94 0.96
ARR

random       

supervised   

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96
ORR

random       

supervised   

Figure 9: Quantitative analysis of 15 supervised feature selection
methods compared to 1000 randomly selected feature subsets us-
ing the NN classifier. The result obtained using all 2811 fea-
tures/wavenumbers is visualized as a vertical spaced line.

via boxplots showing the accuracy for both supervised
and randomly generated feature subsets. It can be seen
that the median of the random subset accuracies is close
to the result using the default setting, i.e. on average
there does not seem to be an improvement over using
all features. It is also obvious that subsets from super-
vised selection techniques leads to a significant increase
in recognition accuracy compared to randomly gener-
ated subsets. This observation additionally justifies the
use of supervised feature selection methods proposed in
this paper.

The above results suggest that responses in wavenum-
ber regions below 650 cm−1 and above 3100 cm−1 are
not relevant for discriminating between bacterial species
contained in the independent Raman spectra datasetDI .
This follows from the fact that ARD-based measures
which do not select any wavenumbers in that range are
competitive to all other feature selection methods in the
quantitative analysis.

4. Conclusions and Future Work

This work aims at comparing different supervised
classification techniques for the task of feature selec-
tion. In order to extract a subset of features that is
relevant for discriminating between bacterial species,
15 relevance criteria based on five different classifiers
are employed. Apart from using techniques which are
known in the field of Raman spectroscopy (AdaBoost,
Random Decision Forests, Regularized Logistic Re-
gression), we also applied a Gaussian process classifier
with Automatic Relevance Determination which, to our
knowledge, has not been used for feature selection in a
vibrational spectroscopic context.

All relevance criteria are applied on a large Ra-
man spectra dataset, consisting of 10 different bacterial
species. A visual observation of the most relevant 200
features revealed that all methods selected wavenum-
bers within reasonable spectral regions (fingerprint and
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high wavenumber region). All inferred feature subsets
are additionally ranked by a classification task, using
an independent Raman dataset. Compared to classifica-
tion without wavenumber selection, the majority of rel-
evance criteria achieved a higher recognition rate using
appropriate classification techniques. Among all tested
feature selection methods, Automatic Relevance Deter-
mination turned out to be particularly useful. Moreover,
our results indicate that non-parametric classifiers such
as the Nearest Neighbor rule and the GP classifier are
methods of choice since they outperform standard para-
metric techniques by achieving high overall recognition
rates up to 97.8%. A further comparison with randomly
generated feature subsets showed that using supervised
feature selection criteria is beneficial and that the in-
crease in recognition performance is not a mere byprod-
uct of dimension reduction.

Further improvements of the proposed criteria are
also possible. E.g. the AdaBoost based selection pro-
cedure might take weights α into account for reweight-
ing feature relevance. Regularized Logistic Regression
might be used with an l1 loss instead of an l2-loss which
would lead to very sparse weight vectors ω. Further-
more, the selection procedure used in this paper con-
centrates on a predefined number (D′ = 200) of rele-
vant features. A fast procedure for obtaining this num-
ber automatically for a given relevance criterion would
be advantageous. Last but not least, the visual analy-
sis in Sect. 3 shows that relevant features usually cluster
in prominent Raman bands. However, it is often sug-
gested in literature that neighboring spectra share a large
amount of information. Hence, methods which choose
features from different bands are highly worth investi-
gating in future work.
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[25] S. Wold, M. Sjöström, L. Eriksson, PLS-regression: a basic tool
of chemometrics, Chemometr. Intell. Lab. 58 (2) (2001) 109–
130.

[26] M. Barker, W. Rayens, Partial Least squares for discrimination.,
J. Chemom. 17 (2003) 166–173.

[27] K. Fukunaga, Introduction to Statistical Pattern Recognition,
Academic Press, 2nd ed., 1990.

[28] I. Guyon, A. Elisseeff, An Introduction to Variable and Feature
Selection, J. Mach. Learn. Res. 3 (2003) 1157–1182.

[29] R. Jarvis, R. Goodacre, Genetic algorithm optimization for pre-
processing and variable selection of spectroscopic data, Bioin-
formatics 21 (7) (2005) 860–868.

[30] J. Bi, K. Bennett, M. Embrechts, C. Breneman, M. Song, Di-
mensionality Reduction via Sparse Support Vector Machines, J.
Mach. Learn. Res. 3 (2003) 1229–1243, ISSN 1532-4435.

[31] J. Weston, A. Elisseeff, B. Schölkopf, M. Tipping, Use of the
Zero-Norm with Linear Models and Kernel Methods, J. Mach.
Learn. Res. 3 (2003) 1439–1461, ISSN 1532-4435.

[32] R. E. Schapire, Y. Singer, Improved Boosting Algorithms Using
Confidence-rated Predictions, Mach. Learn. 37 (3) (1999) 297–
336.

[33] L. Breiman, Random Forests, Mach. Learn. 45 (1) (2001) 5–32.
[34] P. Viola, M. Jones, Rapid Object Detection using a Boosted Cas-

cade of Simple Features, in: Proc. CVPR, 511–518, 2001.
[35] J. Rogers, S. Gunn, Ensemble Algorithms for Feature Selection,

in: Sheffield Machine Learning Workshop, 2004.
[36] B. Menze, B. Kelm, R. Masuch, U. Himmelreich, P. Bachert,

W. Petrich, F. Hamprecht, A comparison of random forest and
its Gini importance with standard chemometric methods for the
feature selection and classification of spectral data, BMC Bioin-
formatics 10 (2009) 213–228.

[37] R. Neal, Bayesian Learning for Neural Networks, Springer,
1996.

[38] W. Iba, P. Langley, Induction of One-Level Decision Trees, in:
Proc. ICML, 1992.

[39] L. Breiman, Bagging Predictors, Mach. Learn. 24 (1996) 123–
140.

[40] J. Rogers, S. Gunn, Identifying Feature Relevance Using a Ran-
dom Forest, in: Subspace, Latent Structure and Feature Selec-
tion, 173–184, 2006.

[41] R. von Mises, Mathematical theory of probability and statistics,
Academic Press, 1964.

[42] D. MacKay, Information Theory, Inference & Learning Algo-
rithms, Cambridge University Press, 2002.

[43] T. P. Minka, A family of algorithms for approximate bayesian
inference, Ph.D. thesis, supervisor-Picard, Rosalind, 2001.

[44] H. Nickisch, C. E. Rasmussen, Approximations for Binary
Gaussian Process Classification, J. Mach. Learn. Res. 9 (2008)
2035–2078.

[45] Y. A. Qi, T. P. Minka, R. W. Picard, Z. Ghahramani, Predictive
automatic relevance determination by expectation propagation,
in: Proc. ICML, ACM, New York, NY, USA, ISBN 1-58113-
828-5, 85, doi:http://doi.acm.org/10.1145/1015330.1015418,
2004.

[46] M. Opper, O. Winther, Gaussian Processes for Clas-
sification: Mean-Field Algorithms, Neural Comput.
12 (11) (2000) 2655–2684, ISSN 0899-7667, doi:
http://dx.doi.org/10.1162/089976600300014881.

[47] A. Kapoor, K. Grauman, R. Urtasun, T. Darrell, Gaussian Pro-
cesses for Object Categorization, Int. J. Comput. Vision 88 (2)
(2010) 169–188.

[48] N. Casagrande, MultiBoost: An open source multi-class Ad-

aBoost learner, http://iro.umontreal.ca/ casagran/multiboost/,
2005.

[49] S. Koljenovic, T. Bakker Schutt, R. Wolthuis, B. de Jong,
L. Santos, P. Caspers, J. Kros, G. Puppels, Tissue characteriza-
tion using high wave number Raman spectroscopy, J. Biomed.
Opt. 10 (2005) 031116.

[50] A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker
Schut, J. C. den Hollander, M. H. A. Neumann, G. J. Puppels,
Discriminating basal cell carcinoma from perilesional skin using
high wave-number Raman spectroscopy, J. Biomed. Opt. 12 (3)
(2007) 034004–+, doi:10.1117/1.2750287.

[51] A. Chau, Development of an intracoronary Raman spectroscopy,
Ph.D. thesis, Massachusetts Institute of Technology. Dept. of
Mechanical Engineering., 2009.

14


