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Abstract

To identify microorganisms is of utmost importance

in various applications such as medical science and

pharmaceutical industry. The technique of Raman spec-

troscopy is particularly useful in this scenario, since it

extracts a high-dimensional molecular fingerprint from

samples at hand. Instead of using the complete spec-

trum, it is often sensible to concentrate on a small num-

ber of discriminative dimensions. Apart from providing

important molecular insights, this can be beneficial in

terms of speed and accuracy. This work studies sev-

eral state-of-the-art machine learning techniques suit-

able for feature ranking, many of which have not been

used before in the context of Raman spectra classifi-

cation. Experiments on three different bacteria clas-

sification problems show that boosting-based methods

and zero-norm support vector machines are especially

suited for this challenging task.

1. Introduction

Given the large biodiversity of microbiological

species, the identification of microorganisms is a chal-

lenging task. Raman spectroscopy is an optical tech-

nique for measuring molecular vibrations that has re-

cently received much interest in this field. Combined

with powerful classifiers, it has been shown to enable an

accurate and fast analysis of microorganisms [12]. Ra-

man spectra (see Figure 1) usually contain many hun-

dreds or a few thousand dimensions. Finding relevant

spectral features is therefore desired for several rea-

sons. First, concentrating on a few features can increase

speed and accuracy. Second, one spectrum essentially

is a superposition of responses from molecular bonds,

each of which can be traced back to certain frequen-

cies. Finding discriminative features can therefore pro-

vide information to the biologist about chemical com-

pounds, which are relevant for a given task.

The search for relevant features can be realized via
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Figure 1. Example Raman spectra from

the PHB dataset together with 20 discrim-

inative features (vertical lines).

ranking-based feature selection methods. These meth-

ods aim to order features in descending order according

to their discriminability. In vibrational spectroscopy,

genetic algorithms are often used for finding relevant

features [3]. Since their application is limited to small-

scale problems, embedded methods [6] such as partial

least squares [15] and random forests [9] recently re-

ceived a lot of interest.

In this work, we compare a large list of embedded

methods, many of which have not been used before in

the context of feature ranking for Raman spectra classi-

fication.

2. Methods for Feature Ranking

2.1 Linear Predictors

A major body of feature ranking techniques com-

prise linear models f(x) = xT θ + ϑ0, with inputs

x ∈ R
d and outputs f(x) ∈ R. The linear depen-

dency between parameters θ = [θ1, . . . , θd]
T and in-

put dimensions enables to scale features according to

their relevance. Large parameters θi increase the im-

pact of the i-th feature on the output. An automatic rel-

evance assessment can be accomplished by optimizing

the parameter vector θ with respect to a loss function

ℓ(X,y), where inputs X = [x1, . . . ,xn]T and outputs

y = [y1, . . . , yn]T both form the training data. Abso-

lute weights |θi| can then be used for feature ranking.
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Partial Least Squares In the field of chemometrics,

partial least squares (PLS) regression is used for a va-

riety of applications [15]. Multivariate inputs X and

outputs Y are described by the bilinear factor model

T = XW , U = Y C (1)

where a mapping y(x) = xT B needs to be found that

maps through the low-dimensional space accessed by

W and C. Since the parameters stored in B are linearly

associated to the features, one can use their absolute val-

ues |bik| as relevance scores for feature i [15]. Summing

over all outputs leaves us with one ranking score for

each feature (PLS-B). A similar approach uses the pro-

jection matrix W [15]. Instead of using a simple sum

over absolute values, the components are weighted by

the percent of output variance explained by the learned

PLS model (PLS-WY).

Regularized Logistic Regression In logistic regres-

sion, class probabilities p(y|x,θ, ϑ0) = ς(y · f(x)) for

outputs y ∈ {−1,+1} are modeled via the sigmoid lo-

gistic function ς(z) = [1 + exp(−z)]−1. By optimiz-

ing the parameters such that the negative log-likelihood

ℓ(X,y) = −
∑

n

i=1
log p(yi|xi,θ, ϑ0) is minimized,

ranking scores |θi| are obtained. In order to avoid over-

fitting, a regularized objective can be optimized:

ℓλ(X,y) = ℓ(X,y) + λΩ(θ) (2)

where function Ω : R
d → R penalizes complex models.

Ridge logistic regression (L2-RLR) is achieved for the

L2-norm regularizer Ω(θ) = 1

2
||θ||22. Analogously, the

L1-norm penalty Ω(θ) = |θ|1 leads to sparse logistic

regression (L1-RLR).

L0-norm Support Vector Machines Linear support

vector machines (SVMs) model the relationship y(x) =
sgn(f(x)) between inputs x and binary outputs y ∈
{−1,+1}, where sgn denotes the signum function.

The optimization process can be cast as an instance

of regularized optimization problem (2) using L2-norm

penalty Ω(θ) = ||θ||2/2 and the hinge loss ℓ(X,y) =
∑

n

i=1
|1 − yif(xi)|+, where |z|+ = max(0, 1 − z).

For the context of feature selection, [14] proposed to

use an “L0”-penalty, which is equal to the number of

non-zero parameters in θ. Since this leads to an NP-

hard optimization problem, the authors used an itera-

tive scheme for approximating the L0-SVM. Their ap-

proach consists of a sequence of standard SVMs, whose

inferred parameters are used to rescale the training data,

i.e.xi ← θi · xi. This procedure of data re-scaling and

SVM optimization is repeated until a stopping criterion

is met.

dataset name size dim classes

endospores 499 2701 5

vegetative 426 2701 7

PHB 621 2811 5

Table 1. Dataset information

2.2 Ensemble Classifiers

Instead of using a single predictor, ensemble clas-

sifiers combine several base predictors. They allow

for feature selection and ranking if decision stumps

h(X,y,θ) are employed as base learners [7]. These

classifiers split the data according to the information

present in a single dimension, which leads to a sepa-

ration orthogonal to the associated coordinate axis.

Adaptive Boosting In adaptive boosting [13], de-

cision stump classifiers are linearly combined in an

iterative manner to realize the mapping y(x) =

sgn
(

∑

t

i=1
αih(X,y,θi)

)

. In the i-th iteration, pa-

rameters αi and θi are optimized such that an adaptive

accuracy criterion is maximized, which focuses on ex-

amples that are wrongly classified in the previous iter-

ation. After training is completed, t decision stumps,

each working on one dimension, are extracted. This se-

lection process implicitly induces a ranking of dimen-

sions based on their first occurrence in the sequence of

t classifiers (BOOST-SEL). Instead of focusing on the

first occurrence, all occurrences can be utilized by em-

ploying the linear parameters α. One sensible ranking

criterion for dimension i is to sum up its associated ab-

solute weights |αi| (BOOST-RANK).

Random Decision Forest As a variant of decision

trees, random forests [1] aim to partition data in a hi-

erarchical manner. Starting at a root node, a decision

stump is learned that distributes the data into two child

nodes such that an impurity criterion, e.g., information

gain, is optimized. This procedure is repeated in each

child node until a node-specific criterion is satisfied.

Random forests additionally utilize randomization tech-

niques for robustification. Instead of relying on a sin-

gle tree, T trees are learned on data that are randomly

drawn with replacement. Furthermore, decision stump

classifiers are trained with a randomly chosen subset

of features. For extracting feature relevance, feature-

dependent node statistics can be used. In this work, we

used the feature count (RDF-C) and the sum of informa-

tion gain values (RDF-IG), summed up over all trees.
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2.3 Gaussian Processes

In Gaussian process (GP) regression, outputs are as-

sumed to be governed by a latent function f and a noise

term ε, i.e.

y(x) = f(x) + ε (3)

Instead of using a parameterized function, f is assumed

to be drawn from a GP prior GP(m,κ). The latter can

be seen as a generalization to normal distributions over

functions and is described by mean function m(·) and

covariance function κ(·, ·). Assuming Gaussian noise,

inference for the most likely output y∗, given a previ-

ously unseen input x∗, is analytically tractable [11]. In

GP classification, assumption (3) is not justified due to

the discrete nature of output labels. In practice, we can

either perform label regression, or account for the dis-

crete nature by changing the noise model. For the latter,

exact inference is intractable and approximation meth-

ods such as expectation propagation are required [11].

Feature ranking can be achieved by employing a

covariance function that parameterizes each dimen-

sion separately, e.g., κ(x,x′) = θ2
0 exp

(

−xT Λx′/2
)

,

where Λ = diag(θ2
1, . . . , θ

2
d
). Hyperparameter opti-

mization can be done by maximizing the data likelihood

with respect to θ. Since this is prone to overfitting, we

follow [10] and choose the parameters on the optimiza-

tion path that lead to the maximum leave-one-out (loo)

probability. While this can be analytically calculated

[11] in the case of label regression (GPR-ARD), we

use the cavity distribution similar to [10] for approxi-

mate loo estimation in GP classification (GPC-ARD).

Finally, parameters |θi| are used as a ranking score for

the i-th feature.

3. Experiments

Implementation Details For comparison, we used

three different bacteria datasets listed in Table 1, which

were measured by a micro-Raman setup. For feature

ranking, the data is normalized such that each dimen-

sion has zero mean and unit standard deviation.

For PLS regression, Matlab’s Statistics

Toolbox is employed. We used LIBLINEAR [4] for

L0-SVM and [8] to solve L1-norm logistic regression.

For all regularized objectives, we set λ = 1.0. Boosting

was trained using the MultiBoost package [2]

using t = d weak learners, where d denotes data

dimensionality. For random forests, T = 100 trees

were employed, each using a third of all training data

and 100 features per node. For GP classification, the

code distributed along [11] was utilized. To speed

up GP learning, we trained 30 independent predictors

using a random training subset (50 per class for PHB

number of retained relevant features

dataset method 10 20 50 100 200 500

en
d
o
sp

o
re

s

RF-C 92.1 94.9 98.7 99.2 99.3 100.0

RDF-IG 92.1 95.3 98.8 99.2 99.1 100.0

BOOST-SEL 98.5 99.6 99.8 100.0 100.0 100.0

BOOST-RANK 98.5 99.6 99.8 100.0 100.0 100.0

PLS-B 68.8 90.0 97.1 99.8 99.7 100.0

PLS-WY 83.2 91.6 96.9 99.3 99.8 100.0

L
0-SVM 98.2 99.8 99.4 99.2 98.4 100.0

L
2-RLR 31.1 77.4 98.3 99.6 100.0 100.0

L
1-RLR 97.8 98.2 98.7 99.0 99.4 100.0

GPC-ARD 95.9 99.3 99.3 99.8 100.0 100.0

GPR-ARD 94.1 97.5 99.5 100.0 100.0 100.0

ve
g
et

a
ti

ve

RDF-C 85.3 91.6 94.7 96.3 98.4 99.6

RDF-IG 86.6 92.1 94.6 96.3 98.9 99.6

BOOST-SEL 96.1 98.6 98.8 98.6 99.6 99.8

BOOST-RANK 96.1 98.2 98.9 98.4 99.6 99.8

PLS-B 40.9 82.6 96.3 98.1 98.9 99.6

PLS-WY 73.2 90.3 96.8 98.0 99.4 99.6

L
0-SVM 96.5 99.2 98.8 98.5 97.8 99.3

L
2-RLR 43.4 86.4 97.7 98.7 99.0 99.6

L
1-RLR 94.2 98.8 98.5 98.6 98.2 99.3

GPC-ARD 92.0 96.4 97.9 98.7 98.5 99.6

GPR-ARD 87.9 96.8 98.7 99.1 99.3 99.6

P
H

B

RDF-C 87.7 90.4 93.5 95.0 94.0 97.1

RDF-IG 80.7 83.3 94.2 94.6 94.2 96.8

BOOST-SEL 93.8 97.0 96.1 94.7 96.0 97.5

BOOST-RANK 94.3 96.7 97.9 95.8 96.0 97.5

PLS-B 62.2 78.6 87.2 93.1 94.2 97.6

PLS-WY 57.1 64.7 81.9 92.4 94.4 97.7

L
0-SVM 93.7 96.2 92.9 93.1 94.0 98.0

L
2-RLR 70.9 81.6 93.7 94.8 94.9 97.1

L
1-RLR 83.6 84.4 89.4 90.4 94.2 97.1

GPC-ARD 88.9 93.1 95.9 94.4 95.8 97.4

GPR-ARD 85.1 95.2 96.2 93.6 95.6 97.1

Table 2. Performances on all datasets.

and endospores, 30 per class for vegetative) instead of

a single GP predictor. Binary classifiers were extended

to multi-classification using the one-vs-rest scheme.

For analyzing the feature ranking ability of all

embedded methods, we employed 10-fold cross-

validation. Performance was assessed using a GP label

regression scheme.

Results Table 2 displays the classification perfor-

mances (measured in average recognition rate) when

projecting the data onto the first few discriminative fea-

tures. While all methods converge to very similar clas-

sification rates when using more dimensions, there is

a clear performance difference among the first 10, 20,

and 50 features. It is apparent that both boosting based

ranking methods achieved the overall best performance,

followed by L0-SVM. Sparse logistic regression, Gaus-

sian process based methods, as well as node statistics

from random forest have a moderate ability in extract-

ing relevant features. Ridge logistic regression and the

PLS based ranking approaches seem to fail in finding

discriminative features.
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Figure 2. The 20 most discriminative fea-

tures for the first fold of the PHB dataset.

The clear superiority of boosting can be explained

by its iterative optimization scheme. At each iteration,

only the feature leading to the highest increase in accu-

racy is selected. Neighboring features, which are likely

to highly correlate, are usually not considered in this

step. Sparse linear models such as zero-norm SVMs

and sparse logistic regression select variables in a sim-

ilar vein [16]. Weight vectors associated to all but one

highly correlated features are usually set equal to zero.

For L2-norm regularized methods such as ridge regres-

sion and Gaussian process methods, highly correlated

variables often receive similar ranking scores. This ef-

fect is even more pronounced in PLS, where no regular-

ization term is employed.

Figure 2 supports this reasoning. For the three best

and two worst performing methods, the 20 most rel-

evant features inferred from the first fold of the PHB

dataset are shown. While boosting and zero-norm SVM

select wavenumbers from the whole range, features

from PLS and ridge logistic regression cluster around

a few frequencies. However, note that no method votes

for features from the Raman silent region 1800 – 2700

cm−1, which is physically plausible since nearly no bi-

ological molecule vibrates in this frequency range [5].

4. Conclusions and Future Work

This work focused on finding relevant features for

high-dimensional Raman spectroscopy data. A multi-

tude of methods, including linear and non-linear clas-

sifiers, are compared on three bacteria datasets. Our

analysis shows that boosting and zero-norm SVMs are

suitable for extracting highly discriminative features,

substantially outperforming other established methods

such as ranking methods based on partial least squares

and random forest. We plan to extend this study using

larger, more complex Raman spectra databases. Fur-

thermore, an adaption of all methods for finding rele-

vant coherent intervals would be interesting.
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