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Abstract. It has been highlighted by many researchers, that the use of
context information as an additional cue for high-level object recognition
is important to close the gap between human and computer vision. We
present an approach to context extraction in the form of global features
for place recognition. Based on an uncalibrated combination of range
data of a time-of-flight (ToF) camera and images obtained from a visual
sensor, our system is able to classify the environment in predefined places
(e.g. kitchen, corridor, office) by representing the sensor data with vari-
ous global features. Besides state-of-the-art feature types, such as power
spectrum models and Gabor filters, we introduce histograms of surface
normals as a new representation of range images. An evaluation with
different classifiers shows the potential of range data from a ToF camera
as an additional cue for this task.

1 Introduction

The development of time-of-flight (ToF) cameras [1], which provide range infor-
mation in realtime, has led to a large number of applications. Most of them con-
centrate on the support of vision-based systems in tasks like 3D reconstruction
and robot navigation [2]. Alternatively to geometric reconstruction techniques,
we show how to utilize a classification based system for place recognition or
rough self localization of a mobile robot.

Instead of describing the position of a robot in exact geometric terms, it is
often beneficial to use a discretization of predefined places or scenes, e.g. kitchen,
corridor or office. Especially for subsequent object detection tasks [3], informa-
tion about the current place can be used as high-level contextual information [4].
Due to the large variability of scene appearances, the estimation of the most
probable label is a challenging recognition task. For this reason we calculate a
feature representation from ToF range data and from an image obtained using
a standard visual sensor (Fig. 1). This allows to describe a scene using rough
3D information and visual appearance. Furthermore we present a simple method
for feature calculation in range images which describes the image as a collection
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Fig. 1. Setup of our place recognition system with a ToF sensor and a visual sensor
mounted on a mobile robot. Data is obtained from both uncalibrated cameras in order
to build the combined feature representation of the current view.

of planar patches. It can be seen as an instance of the bag-of-features concept,
which has been shown to be well suited for scene recognition [5]. Features from
visual images are calculated using two state-of-the-art approaches often used for
the task of scene recognition. Our work extends the scene recognition approach
of [4] to multiple sensors and range data.

The remainder of the paper is organized as follows: First of all, we present
histograms of surface normals as a feature type for range images which is well
suited for the place recognition task. In Sect. 3 we describe state-of-the-art global
feature representations that can be applied to data from the visual and the
range sensor. Classification techniques and details of the feature combination
are explained in Section 4. Experiments in Sect. 5 compare feature types and
different classifiers and show the performance benefit of feature combination
from different sensors. A summary of our findings and a discussion of future
research directions conclude the paper.

2 Histogram of Surface Normals

Range images captured by ToF sensors consist of dense distance measurements
of scene elements in the field of view of the camera. Using a simple histogram
representation of all depth values would be a typical global representation of the
scene. However, for scene and place recognition with standard cameras, feature
types that use aggregated local statistics of pixel neighborhoods showed to be
successful. A simple but efficient approach to incorporate information from a
small environment of a pixel is the representation of a range image as a collection
of small planar patches or patchlets [6]. A statistic of the orientation of such
planar patches then corresponds to local surface characteristics.

Let x be a three dimensional point obtained from the range image and N(x)
the set of all points in the (rectangular) image neighborhood of size P ×P with
center (x1,x2)T .

In the following we assume orthogonal projection. Note that we will show
that our scene recognition system achieves a suitable performance without the
need for an intrinsic camera calibration. With given camera parameters one can
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Fig. 2. Representation of surface normals in sphere coordinates [7]

easily undo the perspective projection, which might result in a better recogni-
tion performance. Nevertheless this influence is not investigated in this paper,
because our results show that despite our severe assumption a histogram of
surface normals can be a useful feature representation (cf. Sect. 5.2).

Each plane that does not intersect the camera center can be described by
nTx = 1, where n = (nx, ny, nz)T denotes the surface normal. We estimate
the parameters of the planar patch in each point xi with Iteratively Reweighted
Least Squares (IRLS) applied to the resulting optimization problem:

ni = arg min
n

∑
x∈N(xi)

|nTx− 1| . (1)

Instead of absolute depth values, we use local surface characteristics as a fea-
ture. Therefore we utilize the normal representation of Hetzel et al. [7], which
transforms ni into a pair of angles (ϕi, θi)T in sphere coordinates, where:

ϕ = arctan
(
nz
ny

)
(2)

θ = arctan


√
n2
y + n2

z

nx

 (3)

as illustrated in Fig. 2. Thus, the resulting representation is a two dimensional
histogram with Bϕ and Bθ bins for φi and θi, and Bϕ ×Bθ entries.

3 Visual Features

In the subsequent sections low-level visual features are described, which we utilize
to calculate a feature representation of the data of our visual sensor. Additionally,
we use the following features to extract second order and structure information
from range images.
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(a) (b)

Fig. 3. Sample image (a) and its (logarithmed) power spectrum representation with
16 sectors (b).

3.1 Power Spectrum Features

One famous approach, which was first described by Mezrich et al. [8] in the late
seventies, is to fit the Fourier power spectrum to an isotropic model. Empirical
studies on natural images [8, 9] show that the average power spectrum approxi-
mately obeys the power law M(f) = A · ||f ||−α2 , with parameter A and α, where
f denotes frequency. Straightforward linear least squares optimization can be
used to estimate the model parameters.

However, Oliva and Torralba [9] empirically show that the power law does
not hold for artificial images. Thus, since we concentrate on indoor environments
and want to calculate features from a single image, it is unlikely that an isotropic
representation is sufficient to properly describe present second order statistics.
We therefore use an extended representation [9], where the power spectrum is
radially divided in Ω non-overlapping sectors. Each sector ω is then assumed to
obey a power law:

Mω(f) =
Aω
||f ||αω2

1 ≤ ω ≤ Ω . (4)

In order to reduce noise, radially averaging [10] is employed for each sector prior
to model fitting. Note that this anisotropic power spectrum model, which is
illustrated in Fig. 3 does not incorporate phase information.

In the remainder of this paper, a 16-sector model is used which results in a
32-dimensional feature vector (α1, . . . , α16, A1, . . . , A16).

3.2 Gabor Features

Phase-preserving representations can be computed using properties of the am-
plitude spectra. Gabor filters are selective filters that respond to structures of a
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specific range of frequencies and orientations. A bank of Gabor filters, therefore,
can be used as a global image representation. Since the collection of responses is
very high-dimensional, we follow the approach of [11], where subsampled squared
response images are used. This results in substantially reduced feature vectors.
Prior to Gabor filtering, the image is preprocessed by a whitening step, followed
by divisive normalization [12] in order to increase contrast and, thus, amplify
higher-order structures.

4 Classification and Feature Combination

In this paper, four different classifiers were used in order to learn the mapping
between features and scene labels: multi-layer Perceptron (MLP), Parzen classi-
fier, Randomized Decision Forests, and Support Vector Machines. However, for
the sake of brevity, only the latter three classifiers are described here.

4.1 Parzen Classifier Using Kernel Density Estimation

Core of the generative Parzen classifier for Gaussian kernel densities [13, 14] is
the estimation of empirical likelihoods for each class κ ∈ {1, . . . ,K}:

p(f | Sκ) =
1
Mκ

Mκ∑
i=1

Kκ(f − fi) , (5)

where Kκ is a zero-mean normal density with covariance matrix Σκ and the set
Sκ = {f1, . . . , fMκ} denotes the n-dimensional training data labeled with class
κ. An unseen feature f is then classified using maximum likelihood estimation.

Although the shape of the empirical density is determined by the observed
data Sκ, the smoothness depends solely on the kernel bandwidth parameter Σκ.
The appropriate choice of a bandwidth is the most critical step in kernel density
estimation, since small bandwidths lead to over-fitting, whereas too large band-
widths result in oversmooth densities. In this paper, we use an ad-hoc method for
bandwidth selection known as generalized Scott’s rule [14] for kernel densities:

Σκ ≈M
− 2
n+4

κ Σ̂κ , (6)

where Σ̂κ is the sample covariance with respect to Sκ.

4.2 Randomized Decision Forest

A Randomized Decision Forest (RDF) is a discriminative classifier that can
handle a large set of features without issues due to the curse of dimensionality.
Standard decision tree approaches suffer from severe over-fitting problems. A
RDF overcomes these problems by generating an ensemble (forest) of T decision
trees. During the classification, the overall probability of a class κ given a feature
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vector f can be obtained by simple averaging of the posterior probabilities pτ (·)
estimated by each tree of the ensemble:

p(κ | f) =
1
T

T∑
τ=1

pτ (κ | f) . (7)

In contrast to Boosting, the RDF approach uses two types of randomization
to learn the ensemble. The first type of randomization is Bootstrap Aggregat-
ing [15], where each tree is trained with a random fraction of the training data.
Additionally, to reduce training time and to incorporate randomization into the
building process of a tree, the search for the most informative split function in
each inner node is done using only a random fraction of all features [16].

4.3 Support Vector Machines

In the last years, Support Vector Machines (SVM) have emerged to one of the
most popular machine learning techniques. For a basic introduction we refer the
reader to the textbook of Bishop [13] and concentrate on the detailed setup used
for our evaluation.

We train K SVM classifiers using the one-vs.-all principle. All scores are
converted to suitable probabilities using the logistic regression method of Platt et
al. [17]. The classification result is the class with the highest probability (score of
the corresponding binary SVM classifier). Each single classifier uses a radial basis
function kernel with parameter γ and trade-off parameter C [13] optimized with
cross-validation. Instead of simple grid search, we apply cyclic coordinate search
which is faster and yields in our experiments to similar optimal parameters.

4.4 Feature Combination and Temporal Context

In order to combine a set of features F = {f1, . . . , f|F|}, simple concatenation
is performed. To avoid facing the curse of dimensionality, which often occurs
with generative classifiers, a different scheme is used for the Parzen classifier.
In addition to subspace reduction via PCA, we choose a soft voting approach,
where each feature type fi is classified separately. The overall class probability
p(κ|F) is then computed by averaging the separate class probabilities p(κ|fi).

To further improve the classification performance, a hidden Markov model
(HMM) is used to exploit temporally contextual properties. We use the approach
from Torralba et al. [4], but instead of a sparse Parzen classifier, we utilize the
classifiers listed above.

5 Experiments

We experimentally evaluated our approach to illustrate the benefits of the com-
bination of range and visual features for the task of place recognition. In the
next sections the following hypotheses are empirically validated:
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Fig. 4. Example images from different sequences, where each row comprises images
from one scene. In addition to four visual example images, the range image which
corresponds to the rightmost visual image is shown. The scene categories in our setting
are (listed from top to bottom) Corridor, Elevator Area, Entrance Area, PhD Lab,
Kitchen, Robot Lab, and Student Lab.

Table 1. Evaluation of different features types (incl. computation time) with the best
classifier result and HMM integration. Features computed on the range image of the
ToF sensor are tagged with a preceding r−.

Feature type Avg. Recognition Rate Time (in sec)

r−hist 51.8 0.024
r−power 48.5 0.031
r−gabor 45.5 0.140
r−surface 53.8 0.303

power 55.4 0.040
gabor 64.6 0.512

feature combination 67.0 0.839
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Fig. 5. Influence of additional preprocessing of the ToF data: all depth measurements
below a given amplitude threshold are discarded in the computation of range features.
A zero threshold corresponds to raw ToF data.

1. Incorporation of range features improves the recognition performance.
2. The Randomized Decision Forest classifier and the SVM classifier achieve

the best recognition rates with a combination of different feature types.
3. The use of temporal context information by means of hidden Markov models

leads to an important gain in performance.

Our empirical evaluation is based on a place recognition scenario with seven
different rooms (classes). The final dataset consists of eight sequences, where
each sequence was captured by navigating a mobile robot through a subset of
the rooms. Roughly each second, a PMD[vision] 19k camera and a standard CCD
camera obtained range and visual images (Fig. 1). As can be seen in Fig. 4, visual
and range images do not contain exactly the same image sections, which is due
to the different angle of view of the cameras. Note that a calibration of the
cameras was not necessary, because features are calculated from the different
sensor images independently.

Training is done on two chosen sequences, which together cover all classes of
the dataset. The remaining six sequences were then used to test the recognition
performance. To measure recognition performance, unbiased average recognition
rate was computed. Since more than one scene is used for testing, the mean of all
average recognition rates (one for each sequence) is used to evaluate our system.

5.1 Evaluation of Preprocessing Techniques

Due to the severe noise of the ToF range data, one often has to mask outliers
using the amplitude image. All depth measurements with corresponding ampli-
tude value below a predefined threshold are discarded. Nevertheless, we do not
apply this preprocessing technique prior to feature computation because it would
decrease the recognition performance in our setting.
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Table 2. Table of feature type combinations (among the tested subsets), which lead
to the best recognition performances with HMM integration.

classifier Gabor power r−Gabor r−power r−hist r−surface result

Parzen × × × 65.4

MLP × × × 65.5

RDF × × × 67.0

SVM × × × × 65.6

We analyze this surprising effect in the following experiment. The recognition
performance is evaluated for the surface normal feature and the range histogram
feature using the RDF classifier with several values of the amplitude threshold.
A threshold of zero corresponds to raw data without preprocessing.

The results are illustrated in Fig. 5. and show that the recognition rate de-
creases if we discard more and more measurements, even erroneous ones. Our
place recognition system, therefore, seems to benefit also from wrong measure-
ments which are possible cues of black or critical surfaces.

5.2 Evaluation of Feature Types and Combinations

In order to evaluate the effects of combined features, we first analyzed the clas-
sification performance on each feature type separately. The recognition results
are illustrated in detail in Fig. 6 and summarized in Table 1, where only the
best (out of four) classifier result is shown. Regarding the range features, our
experiments show that the surface normal histogram (Bϕ = Bθ = 10, P = 3)
achieves the best place recognition result. However, Gabor and power spectrum
features computed using the data from the visual sensor yield a higher recogni-
tion performance.

As can be seen in Table 1, feature combination leads to a substantial perfor-
mance gain over single feature types. The best combination scheme achieved is
a recognition rate of 67.0%.

5.3 Evaluation of Different Classifiers

In the preceding section we showed that the combination of different feature
types can improve the classification performance. However, the amount of per-
formance gain depends on the used classifier. We also observed that the classifiers
achieved best results when only a subset of all feature types were used. By ana-
lyzing either a manually chosen list of feature combinations (for RDF and SVM)
or by applying a greedy search algorithm on the space of combinations (for
Parzen and MLP), we obtained the results shown in Fig. 7 with corresponding
combinations listed in Table 2. These average recognition rates suggest that the
RDF is the appropriate classifier for our scene recognition task.

In order to further evaluate the power of range information, we removed all
range features from the used feature type subsets mentioned above, i.e. only a
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Fig. 6. Performances of single features types without hidden Markov model (a) and
with hidden Markov model (b).
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Fig. 7. Comparison of various feature type combinations (sensor-specific and mixed).

combination of visual features remains. The average recognition rates in Fig. 7
(visual) illustrates a drop in classification performance for all classifiers except
SVM. These results clearly show the advantage of our multi-sensor approach.

It can be also seen that without the integration of the hidden Markov model
the recognition performance decreases substantially. This observation highlights
the importance of temporally contextual information in our scene recognition
task.

Finally, in order to allow a more detailed analysis of the scene recognition
result obtained by the best feature type combination, we computed the confusion
matrix for this setting (averaged over 30 results). As can be seen in Fig. 9, the
recognition rates for six out of eight rooms vary between 76.9% and 85.3%. The
significantly lower overall recognition rate (67.0%) is thus directly related to
the low recognition rates of the remaining two categories PhD Lab and Robot
Lab, which tend to be recognized as Student Lab. This behavior stems from the
close holistic similarity of these rooms and suggests that more locally receptive
features could be promising in order to differentiate between these similar rooms.

5.4 Influence of the number of trees

In our previous experiments we used T = 100 trees for the randomized decision
forest. To investigate the influence of this parameter we perform tests with Gabor
and combined features without HMM. The results can be seen in Fig. 8. To cope
with the randomization, we average the results of 200 runs for each data point.
As can be seen, the generalization performance increases with the number of
trees even beyond T = 100. However, this effect levels out after a specific size of
the forest.
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Fig. 8. Influence of the number of trees for the randomized decision forest with visual
Gabor features or a combination of range and visual features.

6 Conclusion and Further Work

We presented an approach to place and scene recognition which combines infor-
mation from both a ToF sensor and a standard visual sensor without calibration.
We utilized state-of-the-art feature representations from the field of scene recog-
nition [9, 4] and developed a novel description of the range image using planar
patches. To show the applicability of our method, we performed experiments
with multiple image sequences collected by a mobile robot. The resulting per-
formance gain of the combined feature representation highlights the usefulness
of a ToF sensor for the task of place recognition.

As an interesting direction for future research, our feature description of the
range image as a histogram of surface normals could be used in conjunction with
the principle of spatial pyramid matching [5]. This approach has been shown to
lead to a significant performance gain by incorporating rough spatial information
within images. The most interesting application of our place recognition system
would be to use the probabilities of places as prior information in an object
detection setting as proposed in [11].
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