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Abstract
Data fusion concepts are a necessary basis for utilizing complex networks of sensors. A key feature for a robust data
fusion system is adaptivity, both to be fault-tolerant and to run in a self-organizing manner. In this contribution a general
framework for adaptive data fusion is established with object tracking as an application. The fusion algorithm of Demo-
cratic Integration is presented as one possible robust approach to the fusion task. As an alternative the STAPLE algorithm
will be shown, which was previously only used for late classifier fusion. Extensions to apply the STAPLE algorithm for
the fusion of probabilities will be introduced. Finally both algorithms will be evaluated on complex, realistic scenes to
show their capabilities of self-organization and fault-tolerance.

1 Introduction
One of the key concepts for handling large collections of
autonomous systems with sensors is data fusion. The infor-
mation gathered by the individual sensors has to be com-
bined in an intelligent manner. This combination neces-
sarily has to be fault-tolerant, context-aware and self-orga-
nizing. We present a general framework for an adaptive
data fusion and two algorithms to actually perform the fu-
sion within this framework. The presented methods were
implemented with the application of 3d object tracking in
mind but can easily be applied to different problems.
According to the classification in [1] the framework used
as backbone of our system is capable of handling competi-
tive and cooperative fusion. This means in case of contra-
dicting data there will be a self-organizing competition for
the best result. Also the sensors will cooperate to recon-
struct 3d position estimates, which could not be achieved
by any of the sensors alone.
Other categories to differentiate data fusion systems exist
in the literature [2], e.g. into early and late fusion. In early
fusion the data is first combined and then evaluated as a
whole, while in late fusion the data is evaluated indepen-
dently and then the decisions are combined. We use an in-
termediate solution called probabilistic fusion. The data is
evaluated independently as in late fusion, which makes the
approach flexible for combining different classes of data.
No hard decisions are enforced however but the individual
results are combined probabilistically which allows uncer-
tainty of the decisions to be preserved.
Our framework relies on previous works presented in [3,
4]. In 2d images the state space representing where the
tracked object resides will be completely represented by a
map of saliencies or probabilities. In case of 3d world co-
ordinates a particle filter based approximation of the state
space and thus a sampling of the probability distribution
was proposed. The data fusion concept of Democratic In-
tegration [5] was used in these earlier works. This con-
cept will be reviewed here as example for a complex, self-
organizing fusion system.

As the algorithm of Democratic Integration is not inspired
by a mathematical formalism but by plausible biological
observations, the need for a different method arises. The
STAPLE Algorithm (Simultaneous Truth and Performance
Level Estimation) proposed in [6, 7] will be introduced and
reformulated in the context of our probabilistic framework.
As mathematical background for this method only the well
known Bayes formula is used.
Both algorithms have means to adapt in a self-organizing
manner to changing environment conditions. The strengths
and weaknesses of their adaptation will be evaluated theo-
retically first and then by experimental comparison for the
object tracking application.

2 Framework for Data Fusion
First the probabilistic framework for the data fusion will
briefly be explained. These concepts can be transferred to
different applications apart from the visual tracking task
used in this work. We show that data acquired from differ-
ent state spaces can efficiently be fused within one com-
bined state space. In our work this is used to fuse multiple
2d views of a scene into a 3d hypothesis of the position of
a tracked object.
Elements x in the respective 2d or 3d state spaces can ei-
ther belong to the tracked object, in which case they are
elements of a class Ω1, or they are part of the background
and elements of class Ω0. In the simple case of 2d cues
each state x represents one pixel in the images. As an in-
put for the system we have sensor data sj from the sensors
j = 1 . . . J . To process this raw data and retrieve infor-
mation in the state space we further have cues pk detect-
ing salient regions in the images. The 2d cues then use
methodsMk with parameters rk to assign a probability of
belonging to Ω1, i.e. the tracked object, to each pixel or
state:

pk(x ∈ Ω1) =Mk(x, sj , rk) (1)

Typical examples for basic input cues used in this and other
works [5] are motion detection by pixel based difference
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Figure 1 Example for hierarchical data fusion using three sensors with three cues each. The cues give estimations on a
tracked objects position in the respective state spaces (image planes). Difference image, color tracking and contrast cues
are used in the example above.

images, detecting an area with a specific color (color track-
ing), computing the correlation of a template and the pixels
in an image (template matching) and finally finding regions
with a typical contrast.
In a data fusion step several of these cues pk, k = 0, . . . ,K
can now be combined to a new cue pc. For the fusion step
itself the arrangement of the states or pixels is irrelevant,
i.e. the fusion of the ratings for one pixel is independent of
the fusion of neighboring pixels. Therefore the combina-
tion is expressed in the equation

pc(x ∈ Ω1) = C(p1(x ∈ Ω1), . . . , pK(x ∈ Ω1), rc) (2)

where the combination function C and its parameters rc
will be detailed in the following sections. Note a fusion
step can itself be used as input cue for another fusion step,
which was applied in [4] to build a hierarchical fusion sys-
tem. In this work we also typically use this hierarchical
structure as depicted in figure 1.
An open issue so far is the combination of different state
spaces, i.e. in our case the combination of several 2d views
to reconstruct 3d positions. In [3] an approach using parti-
cle filters was introduced. The state space of the 3d object
position is represented as a set of particles and the conden-
sation algorithm [8] is applied. To calculate weights or rat-
ings for the particles each of them is projected into the re-
spective image planes of the fused inputs using projections
πk. The ratings thus gained from several data sources can
then be combined as before. The projectionsπk can be de-
termined using a camera calibration step [9]. Overall such
a combination of different state spaces can be described by
the formula

pc(x ∈ Ω1)

= C(p1(π1(x) ∈ Ω1), . . . , pK(πK(x) ∈ Ω1), rc) (3)

with the same combination functions C and parameters rc
as in the pure 2d case.

To achieve a self-organizing data fusion framework we fi-
nally add an adaptation step to the system. Thereby the
globally best known result is fed back into the individual
fusion steps and cues to adapt their internal parameters.
Examples for these parameters are the tracked templates
and colors or in case of a data fusion the reliabilities of the
fused input cues. Using the global result this mechanism
achieves a weak coupling between the cues. The results
of high valued sensors and cues can influence and possi-
bly correct the less valued cues. Also user defined controls
could be injected into the system this way by giving a dif-
ferent adaptation goal.
Having a global estimate of the 3d position the same pro-
jections πk as before can be used to define the adaptation
goal on the individual 2d cues. The particles representing
the probability distribution in the higher dimensional state
space have to be projected into a 2d distribution, which
again must be handled by the individual adaptation mech-
anisms of the cues.
The overall framework is schematically shown in figure 2.
Starting with the raw data some input cues first try to detect
salient regions in the image. Several inputs are then com-
bined and the crude initial estimations are refined by the
combination step. From this combined result a state repre-
senting the position of the tracked object can be selected.
Alternatively the result can also be used in a next hierarchy
step, as in figure 1. Finally in an adaptation step internal
parameters of both data fusion and fused input cues can be
adapted by a feedback of the global estimation.
Having presented the inputs and a general framework for
the self-organizing sensor data fusion the specific combi-
nation functions C and their respective adaptation mecha-
nisms yet have to be defined. The two algorithms of Demo-
cratic Integration and STAPLE-Fusion fit into this frame-
work providing both a possibility for combining data and
for adapting internal parameters to re-weight the individual
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Figure 2 Overview of the data fusion framework for 2d
images including an adaptation step.

contributions.

3 Democratic Integration
The idea of Democratic Integration has been introduced
in [5] and was originally biologically inspired. The algo-
rithm has since been studied in greater detail, e.g. in [3, 4].
In previous works a one-state-hypothesis was implicitly as-
sumed. Using this assumption practically the tracked ob-
ject can only be at exactly one position at a time. Each
cue then computes a probability distribution over the whole
state space of where the object could be. The tracked ob-
ject can then be located with the maximum likelihood cri-
terion. To see it even more practically this means each cue
output is normalized to sum to 1 over the whole state space
before further processing.
In Democratic Integration a weighted sum is used as com-
bination function for the cues. Therefore to compute the
combined probability pc from the inputs p1, . . . , pK the
following expression is evaluated:

pc(x) =
∑

k

wkpk(x) (4)

Weighted voting mechanisms have been used previously
in data or classifier fusion [2]. However in the Democratic
Integration scheme another step is added to autonomously
organize the weights in an intelligent way. An input is
needed for this adaptation step, which is typically the fu-
sion output pc itself, as was mentioned in the description
of the framework. Therefore a self-organizing system is
achieved.
In the adaptation step first the quality qk of each fused cue
is calculated. A high quality is assigned to cues having a

high agreement with the global result, while cues disagree-
ing with what is thought to be the optimal distribution re-
ceive a low quality. Various typical distance measures like
sum of squared differences, cross-correlation or Kullback-
Leibler divergence can be used and have been compared
experimentally before [5, 4]. No clearly superior measure
could be determined however.
Using the qualities and an adaptation rate τ the weights can
be modified:

wk := τqk + (1− τ)wk (5)

Altogether a robust object tracking system can be based
on this self-organizing algorithm. In the experiments of
previous works a very good performance was shown also
in complex scenes with the tracked object being temporar-
ily occluded and more difficulties. However the approach
leaves a somewhat heuristical impression and its good per-
formance can hardly be explained from a mathematical
point of view. Effort was therefore put into the second
presented approach trying to handle data fusion in a more
mathematically established formulation.

4 STAPLE-Fusion
As completely different algorithm the STAPLE-Fusion was
introduced in [6] and since has been refined e.g. for effi-
cient segmentation with more than two classes [7]. Yet it
has only been used in the context of late classifier fusion
i.e. with binary decisions, and not in a probabilistic fusion
as we are aiming at in our work. The main drawback of
late fusion is the missing ability to handle uncertain input
information. Instead of probabilities hard decisions are en-
forced as inputs to these algorithms.
For sake of simplicity the self-organizing structure of the
STAPLE-Fusion will first be explained with such binary
decisions ek, which can be computed from probabilities pk
by maximum likelihood estimation. In practice this corre-
sponds to a binarization of pk. After the basic idea is made
clear with this simplified fusion task we will propose a way
to get around the hard decisions.

4.1 Binary Decisions
The STAPLE-Fusion is based on the EM-Algorithm which
is a classical approach for unsupervised learning. Two
steps called Expectation and Maximization are iterated
which in our case first combine the data and then refine the
combination parameters using the results just calculated.
For the dynamic image sequences we do not iterate these
steps until convergence for each image but use the consec-
utive image in each next iteration step. Thus we reach a
similar series of processing steps as with the Democratic
Integration approach.
The combination step is motivated using the well known
Bayes-Formula. Depending on the input decisions ek we
want to calculate the probability pc of a state x to belong to
the tracked object Ω1. This can be transformed to several



a priori probabilities and the probability of the individual
decisions knowing the real membership of the state x:

pc(x ∈ Ω1) = P (x ∈ Ω1|e1(x), . . . , eK(x))

=
P (x ∈ Ω1)P (e1(x), . . . , eK(x)|x ∈ Ω1)∑
i=0,1 P (x ∈ Ωi)P (e1(x), . . . , eK(x)|x ∈ Ωi)

(6)

Assuming the stochastical independence of the decisions
ek equation 6 further simplifies to

pc(x ∈ Ω1) =
P (x ∈ Ω1)

∏
k P (ek(x)|x ∈ Ω1)∑

i=0,1 P (x ∈ Ωi)
∏
k P (ek(x)|x ∈ Ωi)

(7)
The missing variables to calculate pc are therefore the a
priori probabilities P (x ∈ Ωi) and the sensitivities and
specificities P (ek(x) = i′|x ∈ Ωi) representing the cue
reliabilities. The EM-like idea presented in [6] is to calcu-
late approximates of these probabilities by counting their
respective occurrences assuming pc as a given optimal al-
location x ∈ Ωi. This means counting the individual deci-
sions assuming known membership in the classes Ω0 and
Ω1. An adaptation rate τ can be introduced as before to
smoothen the reliabilities in the case of changing input data
in each iteration step. With constant input data and no ad-
ditional adaptation rate convergence was shown [6].

4.2 Non-binary Decisions
The use of sensitivities and specificities P (ek(x) = i′|x ∈
Ωi) requires a binary decision model. Within our frame-
work we want to propagate uncertainties and therefore prob-
abilities. A different decision error model has to be used to
achieve this. As the inputs for our fusion are real valued in
[0; 1] the decision-probabilities P (pk(x)|x ∈ Ωi) have to
be defined on the whole interval pk(x) ∈ [0; 1].
The theoretically correct approach to approximate the curve
on the whole interval is to use a Parzen estimation. This
method is computationally very complex however and for
real-time tracking applications different solutions have to
be found.
Another idea is to approximate the decision-probabilities
by histograms withD bins and linear interpolation between
the center points of the intervals. It has shown however
that these histograms can not be estimated robustly for the
whole interval [0; 1] as decisions near the extremes of this
interval are extremely rare in a practical implementation.
Using the simple and fast counting based adaptation step
is not possible due to the lack of data in some of the inter-
vals.
The currently best solution is to use the following expres-
sions instead of the sensitivity and specificity of a given
decision z:

P (pk(x) < z|x ∈ Ω1)

P (pk(x) > z|x ∈ Ω0) (8)

This also solves the problem that P (pk(x) = z|x ∈ Ωi) =
0 as imposed by probability theory of continuous distribu-
tions.

Using half-open intervals however is only valid under the
assumption that basically all fused cues are well-natured.
This is meant in the sense that they tend to rather decide
on high values pk(x ∈ Ω1) if the state really belongs to
Ω1. For our decision-probabilities P (pk(x)|x ∈ Ωi) this
means a monotonic increase.
In our implementation we again used an histogram based
approximation of the newly defined sensitivities and speci-
ficities with different numbers of intervals D. Better so-
lutions might be possible, good experimental results have
already been found with this simple one however. This
way the half-open decision-probabilities can be efficiently
implemented which is a necessary precondition in all real-
time object tracking tasks.
Altogether with both of the presented data fusion meth-
ods a robust object tracking system can be implemented
within the defined probabilistic framework. Special em-
phasis was put on the adaptation steps of both algorithms.
With the feedback loop a self-organizing system is estab-
lished. The system as a whole can dynamically decide
which cues to rely on. It is therefore fault-tolerant or in
another sense self-healing, with the healing process result-
ing from the feedback of an appropriate adaptation goal.
A more detailed comparison of the two algorithms and es-
pecially practical experiments to show applicability of the
theory is given in the following section.

5 Comparison
Different approaches are used for a comparison of the two
mentioned algorithms. First the behavior of the data fusion
algorithms can be analyzed and predicted with some the-
oretical considerations. This will provide further insights
into the mathematics of data fusion. Practical applicabil-
ity can only be demonstrated with real image sequences
however. Results for a complex object tracking task with
ground truth data available will therefore be presented as a
second section.

5.1 Theoretical comparison
The performance of the mentioned fusion algorithms can
easily be theoretically analyzed for two naive but frequent
situations. The first is the handling of a totally uninformed
input cue or sensor, or more general the influence of uncer-
tainty on the fusion result.
With the weighted sum in Democratic Integration uncer-
tainty has a weakening influence on the global estimation.
Consider the situation where three out of four equally
weighted cues are absolutely sure to have the object in one
state x. The fourth cue however is totally unsure about
whether the object is in this state. In the sum the fourth
cue weakens the decision of the other cues, although not
knowing anything about state x. Considering the Bayes
formula in the STAPLE fusion a cue deciding for both
classes, object and background, with equal weight can be
ignored altogether as it is canceled out in the fraction. This
consideration can easily be extended as to say within the



Figure 3 Examples from the test sequences used in the experiments, seq6 light on top and seq8 below. Three
cameras with different viewpoints observe a toy train moving through the scene. The estimated 3d position of the train is
backprojected into the images and indicated by the rectangles.

STAPLE fusion uncertain input data can be discarded in
contrast to weakening the weighted sum of Democratic In-
tegration. The behavior of ignoring undecided cues seems
more intuitive than allowing influence on the fusion result.
When dealing with multiple inputs another frequent situa-
tion are outliers. If due to misbehavior a single cue assigns
a completely different saliency to a state than all others,
the influence of this contribution in the Democratic Inte-
gration approach is still bounded by the weight of the cue.
In the multiplicative terms of the STAPLE fusion a single
cue contributing a 0 could however introduce a veto such
that all other cues are ignored and the combined result will
be 0 as well.
Concluding the theoretical comparison we can expect a
better ability to ignore uncertain cues or in other words
more decisive results for the STAPLE fusion. However in
cases where many outliers occur and the adaptation mech-
anism has not yet rearranged the weights of the fused cues,
the Democratic Integration approach can be expected to
run more stable without getting confused. In the following
section we observe exactly this behavior in our practical
experiments.

5.2 Experimental Comparison
A major consideration for the experimental setup was the
ability to get ground truth data to be able to numerically
compare the performance of different data fusion settings.
Other than that a complex setup was chosen to show ro-
bustness and adaptivity also under extreme conditions.
Basically three cameras observe a scene with a toy train
moving on a circular track. The camera positions as well
as the circle defining the motion were first computed by
calibration with manual interaction. Ground truth of the
position of the tracked train in each frame of the sequences
could thus be obtained. Calculating the differences of the

estimated positions to the positions modeled by the circu-
lar movement allows an objective measure for the overall
tracking performance.
The complexity of the scenes was varied during the exper-
iments. In simple cases (seq5 and seq7) objects of sim-
ilar color to the train were placed along the circular track,
some of the objects also had a reflective surface. In other
scenes (seq4 and seq6) additionally a large object was
placed in the center of the scene resulting in occlusions
occurring in all camera images at different times. Finally
the camera positions were altered (seq8) such that partial
and full occlusions occur in two of the cameras, but not in
the third. In variations to the basic setup the global lighting
of the scene abruptly broke down (globlight), dynamic
spotlights and shadows were cast (light) and total failure
of one camera was simulated by holding a hand in front of
the lens (hand). An excerpt of the sequences can be seen
in figures 3 and 4.
In initial experiments different settings for common inter-
nal parameters were investigated. These parameters were
namely the number of particles and the noise term in the
particle filter. As in [4] a particle number of 2000 and
a noise term approximately corresponding to the motion
speed in the circular movement assumed as ground truth
proved to be both computationally manageable and robust
in the tracking behavior.
In further experiments the overall performance with dif-
ferent adaptation rates was evaluated. We found a value
of τ = 0.1 to give reasonably good results with both fu-
sion mechanism. With higher (i.e. faster) adaptation the
smoothening effect on the reliabilities over time seems to
be insufficient and tracking results were not robust. Setting
the autonomous adaptation too slow or using no adaptation
at all the performance of the tracking system completely
depended on the choice of the initial weights for the fusion



Sequence DI STAPLE a (D = 8) STAPLE a (D = 32) STAPLE b (D = 8) STAPLE b (D = 32)
seq4 76.90 (46.18) 354.84 (67.57) 349.52 (85.85) 379.90 (95.27) 340.27 (84.62)
seq6 hand 75.07 (31.91) 383.44 (140.88) 410.92 (184.24) 344.70 (169.44) 387.68 (193.61)
seq6 globlight 86.35 (36.21) 357.12 (111.78) 340.19 (119.85) 336.15 (99.53) 293.83 (128.06)
seq6 light 66.79 (28.26) 406.61 (187.62) 291.64 (178.43) 367.09 (242.45) 373.51 (197.72)
seq5 77.41 (29.52) 82.59 (25.89) 90.36 (24.14) 81.38 (26.59) 87.10 (25.61)
seq7 hand 54.50 (19.90) 128.02 (97.80) 190.87 (162.92) 91.32 (49.23) 316.04 (192.93)
seq7 globlight 59.46 (17.19) 62.82 (14.48) 70.39 (17.44) 66.05 (18.46) 65.53 (15.96)
seq7 light 63.67 (24.32) 64.68 (19.49) 73.49 (27.60) 67.81 (20.73) 68.56 (24.84)
seq8 79.05 (32.45) 78.90 (30.22) 85.17 (29.50) 80.81 (33.15) 79.15 (30.56)

71.02 (29.55) 213.22 (77.30) 211.39 (92.22) 201.69 (83.87) 223.52 (99.32)

Table 1 Average position estimation errors in mm for the different data fusion approaches with the standard deviations in
parentheses.

cues. Some choices might yield better results for specific
sequences, our goal however is not to create a system fit-
ting to one specific situation, but a self-organizing system
adapting to any given situation.
Finally we directly compared the approaches of Demo-
cratic Integration and STAPLE fusion. As a quality mea-
sure for Democratic Integration we used a correlation mea-
sure. The estimation of sensitivities and specificities in the
STAPLE algorithm was performed with half open intervals
as described in section 4.2 with different numbers of esti-
mation intervals D. In case a, no interpolation was used,
whereas in case b a simple linear interpolation between the
interval centers was applied.
As seen in table 1 we achieved typical 3d localization er-
rors between 55mm and 70mm with both fusion algo-
rithms. The tracked toy train is approximately a box of
100mm length, most position estimations therefore lie
within the object. Note we also got reasonable results for
the scenes with sensor failures (hand), as illustrated by
figure 4 as well. With the handling and recovery of such
errors by adapting the individual influences on the global
result, the system can be seen as self-healing.
As expected however the STAPLE fusion is severely af-
fected by many outliers in the scenes with many occlusions
(i.e. seq4 and seq6). Breakdowns are the consequence
with the tracked train being lost in the scene clutter. Yet
for the easier scenes the performance of STAPLE is at least
comparable to that of Democratic Integration.
For scenes with continuous successful tracking (i.e. seq5,
seq7 globlight, seq7 light and seq8) we typi-
cally observed a slightly lower standard deviation of the es-
timation error with STAPLE fusion. This increased track-
ing accuracy reflects the prediction of more decisive fusion
steps resulting in a higher concentration of states with high
saliency in one place.
To have an overview of typical processing times we com-
pared the two fusion approaches in this respect as well.
We used the four input cues mentioned in section 2, three
cameras and a sequence of 10 sec. total length. As a test
platform a Pentium 4 with 3.4 GHz and 2 GB RAM was
used, a reasonable standard workstation. It can be seen

DI STAPLE
80x60 8.21s 9.27s
320x240 68.04s 87.55s

Table 2 Average processing times for 10 sec. of video data
from three cameras with different image sizes and the dif-
ferent data fusion approaches.

from table 2 that the STAPLE approach is computationally
slightly more complex. The difference is only marginal
however and both approaches can be run in real-time with
an image size of 80x60 pixels. Such small images were
also used for the other experiments and still provide a good
basis for our object tracking system.
Concluding the experimental results basically a good per-
formance of the overall tracking system could be observed
with both fusion systems, although the difficulties in the
test sequences include occlusions, reflections, spotlights
and a non-uniform object to track. Higher estimation er-
rors occur for scenes with many occlusions, as expected.
The higher sensitivity of STAPLE fusion to outliers, which
was theoretically predicted before, can be observed in the
complex setups with many regular occlusions, especially
seq4 and seq6. With the Democratic Integration ap-
proach the adaptation mechanisms prevent any drastical er-
rors in these cases as well.

6 Further Work
Several open ends have been mentioned throughout the
work. First of all the estimation of the sensitivities and
specificities, i.e. the decision error model of the STAPLE
algorithm could be improved. This could provide a gener-
ally more robust fusion step, but through the iterative feed-
back positive effects on the adaptation step can be expected
as well. The situation of dominating outliers also plays a
major role when defining a more appropriate estimation of
the reliabilities.
A systematic investigation of hierarchies different than the
one depicted in figure 1 might also give further insights



Figure 4 Excerpts from the test sequence seq6 hand. Three cameras observe the toy train moving through a complex
scene with regular occlusions and a sensor failure simulated by holding a hand in front of one of the lenses. The estimated
3d position of the train is backprojected into the images and indicated by the rectangles.



into the process of data fusion. The potential lying in the
correct ordering of several fusion steps was shown in [4],
where the hierarchical structure and a flat fusion were com-
pared. Hardly any research has focused on this basic issue
in the past.
The need for a camera calibration step prior to perform-
ing the data fusion is another starting point for further re-
search. Especially if the sensors do not survey the same
area of a scene it is hard to establish a common 3d coor-
dinate system and to compute the projections needed by
the presented framework. In such a case it might be use-
ful to run the data fusion independently in the individual
cameras and then establish the world coordinate system by
combined evaluation of these results.

7 Conclusions
We have presented a general and flexible framework for
data fusion. A major concern was adaptivity and providing
means for an autonomous self-organization. The adapta-
tion process also provides self-healing mechanisms as they
are ubiquitous in biological systems [5], in the sense of de-
tecting and recovering from sensor errors.
Within the framework fusion is not only possible for data
of the same state space but using projections, or more gen-
erally a mapping between different state spaces, such bound-
aries can be crossed as well. The framework was con-
structed with the application of 3d object tracking in mind.
The different state spaces in this domain were 2d image
coordinates and 3d world coordinates. The framework also
permitted an hierarchical approach with a first fusion step
on image level and a second step for fusion of the individ-
ual cameras.
Two methods to perform the data fusion were then intro-
duced. The first approach of Democratic Integration met
all of the requirements to be a self-organizing, robust algo-
rithm. However the lack of a mathematical foundation to
the approach gave reason for further research in the area.
The other presented algorithm was an extension of the
STAPLE-Fusion. Although further work on its details may
be necessary, this method was equally autonomous as the
Democratic Integration approach. As an advantage a math-
ematical basis to the formulas was given by the Bayes equa-
tion.
A detailed comparison of the two methods was given af-
terwards. Both perform very well on a set of complex test
sequences, with STAPLE being more sensitive to outliers.
Also both algorithms run in real-time if the image size is
reduced. The expected self-healing capabilities, i.e. ro-
bust behavior and recovery in case of changing environ-
ment conditions or failure of a sensor were also shown in
the experiments. The observed results also were predicted
in a short theoretical analysis of the mathematics behind
the data fusion algorithms.
All of the presented methods were applied to the case of 3d
object tracking but can be transferred to different applica-
tions where a robust, self-organizing data fusion is needed.
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