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Abstract

Annotated training data is the enabler for supervised learning. While recording data
at large scale is possible in some application domains, collecting reliable annotations is
time-consuming, costly, and often a project’s bottleneck. Active learning aims at reduc-
ing the annotation effort. While this field has been studied extensively for classification
tasks, it has received less attention for regression problems although the annotation cost
is often even higher. We aim at closing this gap and propose an active learning approach
to enable regression applications.

To address continuous outputs, we build on Gaussian process models – an established
tool to tackle even non-linear regression problems. For active learning, we extend the ex-
pected model output change (EMOC) framework to continuous label spaces and show
that the involved marginalizations can be solved in closed-form. This mitigates one of
the major drawbacks of the EMOC principle. We empirically analyze our approach in
a variety of application scenarios. In summary, we observe that our approach can ef-
ficiently guide the annotation process and leads to better models in shorter time and at
lower costs.

1 Introduction
As impressive as latest advances in computer vision and machine learning are, the majority
of our today’s systems crucially depend on the availability of ample annotated data to learn
from. Collecting this data can be the limiting factor when building machine learning systems,
especially when expert knowledge is needed for reliable annotations. A prominent example
are medical diagnosis systems, where reliable annotations should only be provided by a
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Figure 1: The idea of the expected model output change criterion for regression tasks:
estimate and maximize the change of model outputs via active sample selection.

team of qualified medical practitioners rather than by crowd-annotating systems like Amazon
Mechanical Turk [49]. In these scenarios, active learning techniques can reduce the effort of
annotating large amounts of data.

Using active learning, an initial (small) annotated set L is incrementally extended by
carefully choosing examples from a (large) pool of unlabeled data U and requesting their
annotations. Given a restricted annotation budget, only the most informative examples are
selected by maximizing the expected benefit of the newly annotated samples for supervised
training. While active learning has been extensively studied for classification tasks (e.g., [37,
57]), it has received less attention for regression problems. We aim at closing this gap since
annotation with a continuous output is often even more expensive than for classification.

Our active learning approach for regression is inspired by the expected model output
change (EMOC) criterion [14], which is an established active learning technique for classi-
fication tasks [37]. By applying EMOC, only those examples are queried that maximize the
expected change of model outputs after annotation which serves as a proxy for the expected
reduction of errors. A visualization for the application to age regression is shown in Fig. 1.

We transfer EMOC to regression where model outputs are continuous. An exact ex-
pectation over these continuous but yet unknown annotations is computationally infeasible
without further assumptions. Therefore, we chose a Gaussian process (GP) regression [54]
to model the unknown relations between inputs and regression outputs, which has been suc-
cessfully applied in a variety of application domains (e.g., [8, 9, 18, 36, 54, 65]). This allows
not only for efficient training and model updates, but further allows us to apply closed-form
solutions to the otherwise intractable marginalization within EMOC.

In a variety of applications and in comparison to state-of-the-art techniques, we show the
benefits of our method. We observe that EMOC is consistently able to efficiently guide the
annotation process while competitor methods succeed on some data and fail on other.

2 Related Work
Active learning is a widely studied field in machine learning. In the following, we briefly
review some influential or related work. A broader overview can be found in [37, 57].
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Active Learning for Classification One of the most prominent ideas in active learning
is uncertainty sampling, where most uncertain examples with respect to the current model
are selected. This uncertainty can be formulated in various ways, for example as distance to
a classification boundary [11, 16, 33, 60], or it can be directly derived from the underlying
classification model [20, 25, 34]. Other approaches try to combine active learning with other
research goals. For example, [21] directly fuses active learning with novelty detection. In [2],
the selection of instances is combined with the selection of models for prediction and in [46],
even annotators are actively selected. Especially for huge amounts of data, a combination
of active learning with hashing is a common technique [26, 28, 29]. Most active learning
methods are classifier-independent, but some of them are particularly designed for a single
type of prediction model, e.g., CNN architectures [38, 51, 64].

The majority of methods only use surrogate metrics to estimate the future reduction of
error. Two exceptions are [61], which describes the information gain of unlabeled samples,
and [56], where the value of unlabeled samples is estimated according to the empirical risk.
Noteworthy, most of these are not suitable for regression tasks.

Active Learning for Regression Tasks In [7], active learning is combined with passive
learning by introducing bounds to the passive learning scheme. The work of [10] describes
instance selection for various models mainly based on estimated variance. Exploration
guided active learning (EGAL) proposed in [23] is a selection scheme that is based on a
combination of diversity and density. An active learning algorithm using Gibbs sampling is
proposed in [13]. Here, samples are drawn if estimated labels generated by repeated Gibbs
sampling differ. Similar in mind is the work of [59] which presents an approach called
ALICE. In contrast to our work, this approach relies on importance-weighted least-squares
models and explicitly tries to minimize the generalization error. Active selection based on
distances in feature space is presented in [68]. But more importantly, this work discusses
the problems active learning has to face for regression tasks and reveals the power of passive
learning. Finally, a comparison of different model-based and model-free algorithms is given
in [52].

Again, most of the methods presented above are using surrogates and are not clearly
linked to risk minimization.

Model and Output Change Our approach relies on expected model output changes,
which have been analyzed for different scenarios and model types before. For example,
[62] presented an approach to semantic segmentation using decision trees. The works of
[14, 30, 31] proposed solutions for classification with GPs. Meanwhile, [5] presented the
combination of active and passive learning based on expected changes. Like our approach,
these works can be related to risk minimization. However, they are not suitable for regression
tasks per se.

Similarly well-studied is the approach of selecting examples that induce large model
changes. For example, [6, 24, 58] follow this approach. As shown later, this technique can
be expressed as a simplification of our method and is empirically inferior to our approach.

Another related approach is to select samples which are likely to influence the entropy
of outputs. A common approach is to minimize the predictive entropy of model outputs and
therefore to maximize information gain [57]. In [22], the authors present a formulation of
this, called Bayesian active learning by disagreement (BALD), where the goal is to maximize
the mutual information between predictions and model posterior. This approach is specially
tailored to binary tasks with Gaussian processes involving the assumption that outputs are
Bernoulli distributed. Hence, it can not be applied for our regression scenarios as it is.
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3 Active Learning for Regression Tasks
In machine learning, we want to estimate a function f : Ω→ Y which maps from inputs
x ∈ Ω to outputs y ∈ Y . In the original version of EMOC for classification [14], which will
be reviewed in the following, the elements of Y are discrete. We extend it to regression tasks
with a continuous label space Y and show that a closed-form solution of the computationally
demanding expectation operation can still be derived.

3.1 Review of EMOC
The main motivation of the EMOC framework is to select the most useful examples for
labeling, while avoiding the selection of redundant or irrelevant ones that would not lead to
any change of model outputs when added to the training set after annotation. To tackle this
goal, EMOC selects examples x∗ ∈ U with the largest expected change of model outputs:

x∗ = argmax
x′∈U

∆ f (x′) .

As shown in [30], EMOC is closely related to the principles of expected error reduction
and expected model change (EMC). In contrast to EMC, however, EMOC measures not the
distance between old and updated model parameters, but the change of model outputs (see
also the visualization in Fig. 1):

∆ f (x′) = ExEy′|x′ L
(

f (x) , f ′ (x)
)

, (1)

with f ′ being the old model f updated with (x′,y′). The maximization of Eq. (1) can also
be understood as selecting that sample x′ for annotation that shakes the current view on the
world the most. In the following, we consider general LP-loss functions, i.e.,L( f (x), f ′(x))=
|| f (x)− f ′(x)||P. Hence, any suitable LP-loss function can be selected, in contrast to the fixed
L1-loss, which has been used in [14, 30].
EMOC Framework for Gaussian Process Regression While the EMOC principle can
be applied to any machine learning method (e.g., [5, 31, 32, 33, 63]), we follow [14] and
use GP regression as a underlying model for f . For a chosen kernel function κ(·, ·) and a
zero-mean assumption, the value predicted by f can be obtained as:

f (x′) = k(x′)T
α =

n

∑
i=1

α i ·κ(X i,x′) ,

where the vector α results from GP training and represents the weights of each training
example X i ∈ L. For the sake of clarity, we use the following abbreviations: K = κ (X ,X) ,
k(·) = κ (X , ·) , k′(·) = [k(·),κ (x′, ·)]T . The EMOC criterion of Eq. (1) can be rewritten as:

∆ f (x′) = Ex Ey′|x′
∣∣∣∣k′(x)T

∆α
∣∣∣∣

P︸ ︷︷ ︸
·
=∆ f (x′,x)

, (2)

where ∆α is the difference between the current model α and the model updated with the
labeled example (x′,y′). As shown in [14], the model change ∆α of vanilla GP regression
models has a closed-form solution:

∆α =
k(x′)T α− y′

σ2
n +σ2

f (x
′)

[ (
K +σ2

n I
)−1 k(x′)
−1

]
, (3)
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where σ2
n and σ2

f (x
′) represent the regularization parameter and the predicted signal vari-

ance, respectively. In direct consequence, this allows for closed form evaluations of the
EMOC criterion as stated in Eq. (2). However, despite the resulting computational benefits,
the criterion still depends linearly on the size of the unlabeled pool due to the expectation
operation Ex . To tackle large amounts of unlabeled data, approximation techniques have
been presented in [31].

3.2 EMOC for Continuous Label Spaces
In classification, the marginalization of y′ can be easily tackled by summing over all possible
labels of the discrete output space. Since this is not directly possible for regression prob-
lems with y′ ∈ R, we derive a closed form solution for the computation of Eq. (1) for the
continuous space Y of possible labels of a so far unlabeled sample y′.

First, from Eq. (3) it can be observed that the model change ∆α can be decomposed into
a factor depending on y′ and a vector g(x′) completely independent of the label:

∆α = g(x′) · (k(x′)T
α− y′) .

We can now rewrite the expected model output change for the new example x′ with respect
to a single example x:

∆ f (x′,x) = Ey′|x′
∣∣∣∣k′(x)T g(x′)(k(x′)T

α− y′)
∣∣∣∣

P

= ||k′(x)T g(x′)︸ ︷︷ ︸
v

||P · Ey′|x′ ||k(x′)T
α︸ ︷︷ ︸

c

−y′||P , (4)

with the terms v and c being independent of y′. Substituting z = y′− c leads to:

∆ f (x′,x) = ||v||P
∫
Y
||z||P p(z+ c |x′)dz . (5)

In Eq. (5), the posterior distribution of y′ = z+ c given x′ is estimated by the current model.
Here, we can exploit that f is modeled as a Gaussian process. Hence, the posterior distribu-
tion in Eq. (5) is Gaussian with predictive mean µ(x′) and variance σ2

f (x
′):

p(z+ c|x′) = N (z+ c |µ(x′),σ2
f
(
x′
)
) .

This leads to the following expectation operation for z:

∆ f (x′,x) = ||v||P
∫
||z||PN (z+ c|µ(x′),σ2

f
(
x′
)
)dz

= ||v||P
∫
||z||PN (z|µ̃(x′),σ2

f
(
x′
)
)dz

= ||v||P ·E [||z||P] , (6)

with µ̃(x′) = µ(x′)− c. Furthermore, Eq. (6) includes the non-central Pth-moment of a
Gaussian distribution for which a closed-form solution exists involving the confluent hyper-
geometric function [66]:

E [||z||P] = σ
P ·2

P
2 ·

Γ
( 1+P

2

)
2
√

π
· 1F1

−P
2
,

1
2
,−1

2

(
µ̃(x′)

σ2
f (x
′)

)2
 ,
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with P being the norm to apply and Γ(·) as gamma function. The confluent hypergeometric
function 1F1 (·, ·, ·) is defined as follows:

1F1 (a,b,z) =
∞

∑
n=0

a(n)zn

b(n)n!
, (7)

with a(n) = a · (a+1) · ... · (a+n−1) and a(0) = 1 (b(n) alike). It can be solved, for example,
using the alternative integral definition [1]:

1F1 (a,b,z) =
Γ(b)

Γ(b−a)Γa

∫ 1

0
eztta−1(1− t)b−a−1dt .

However, our proposed criterion can be computationally demanding on very large data-
sets, e.g., it depends linearly on the amount of all available data x ∈Ω to estimate the model
output change for a single sample x′ ∈ U (see Eq. (1)). A possibility to overcome this would
be to sub-sample the data to approximate Ex as presented in [31]. Another solution could be
to estimate the EMOC score only on the current sample x′ itself. It can be shown that this
approximation connects our criterion to variance sampling. Please see the supplementary
material for further details on this. Another known drawback on large amounts of data arises
from the underlying Gaussian process itself and the size of used kernels therein. Therefore,
some approaches, as for example [50], are developed to mitigate this.

4 Experiments
Regression is a widely used technique which can be applied in broad range of scenarios. We
try to cover as many as possible by conducting experiments in a variety of problem settings
including a range of relevant computer vision specific experiments (see Sections 4.1 to 4.4)
as well as more general regression problems taken from different machine learning domains
(see supplementary material).
Methods We evaluate our method in comparison to several state-of-the-art approaches. In
all cases, GP regression is used as underlying model for the regression task to remove addi-
tional dependency on the model selection. The simplest baseline is passive learning which is
a mere random selection of data points [68] (random). A similarly common strategy is un-
certainty sampling. Since we use GP models, we are able to compute the predictive variance
for any data point, and the sample with the highest predicted variance can be selected [34]
(variance). Closely related is the selection of samples which maximize the data entropy
(entropy). The authors of [23] propose a scheme for exploration guided active learning
(EGAL). Since we are not interested in querying batches of data, we adapt their strategy ac-
cordingly. The same authors also introduce a measurement for density and diversity. We use
these definitions and maximize the weighted combination of both (Diλ /De1−λ ). Another
related approach would be to query samples with largest mahalanobis distance in feature
space to already labeled samples (mahalanobis). The authors of [6] and [58] propose to
query samples which are most likely to change the current model (EMC). This framework can
also be derived from our method as follows. In Eq. (4), we state that the v-term of the EMOC
definition consists of the model change and the extended kernel values k′(x). Ignoring these
kernel values would lead to a model change criterion which can be defined as follows:

∆ f (x′,x) = ||g||P ·E [||z||P] (8)
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random variance EGAL entropy Di0.0/De1.0 Di0.5/De0.5 Di1.0/De0.0 mahalanobis EMC EMOC

AwA 63.78% (2) 69.69% (4) 86.15% (8) 71.51% (7) 87.27% (9) 70.93% (5) 71.23% (6) 67.77% (3) 100.00% (10) 62.04% (1)
ABL 59.51% (5) 49.28% (2) 77.17% (8) 77.85% (9) 100.00% (10) 68.85% (6) 69.54% (7) 55.24% (4) 50.92% (3) 49.24% (1)
C-Tai 87.00% (2) 91.89% (7) 95.67% (9) 100.00% (10) 94.10% (8) 90.47% (4) 90.58% (5) 91.19% (6) 88.64% (3) 85.03% (1)
yearbook 25.49% (3) 33.71% (6) 37.33% (7) 45.16% (9) 100.00% (10) 37.64% (8) 27.87% (4) 23.65% (2) 28.94% (5) 22.81% (1)
MSCOCO quality 60.99% (2) 97.01% (8) 61.89% (3) 100.00% (9) 66.27% (6) 64.74% (5) 96.82% (7) - (10) 63.63% (4) 60.61% (1)

average rank 2.80 5.40 7.00 8.80 8.60 5.60 5.80 5.00 5.00 1.00

Table 1: Area under error curve in percent relative to the worst performing method on
the same dataset (lower is better). Additionally, a ranking (lower is better) of all methods
according to their area under error curve per dataset is given in brackets as well as an overall
ranking at the bottom.

Evaluation Setup In each experiment, we train an initial model with a common set of
labeled data L. After this, we evaluate active learning by querying single samples out of a
pool of yet unknown instances U. Each newly selected sample is incorporated incrementally
into the current model by applying Eq. (3). As a consequence, each of the tested methods
starts with the same initially annotated samples, but improves regression over time using
newly annotated samples selected by the respective criterion. To assess accuracy, we apply
the established root mean square error (RMSE) measure to predictions on the labeled held-
out test set T at each step. If the variable to predict has more than one dimension, the RMSE
score is averaged over the dimensions to yield a single scalar. Hence, we obtain error curves
as for example shown in Fig. 2. Due to lack of space, we only present this single error
curve in this paper and additionally show all error curves in the supplementary material.
Instead, we report the relative improvement in percent of each particular method in Table 1.
Additionally, we give the corresponding ranking of the methods for better comparability over
different datasets. In our experiments, we follow [14, 30] and set P = 1. To compute Eq. (7),
we use the function scipy.special.hyp1f1(a,b,z) from SciPy [27]. Source code is
available at triton.inf-cv.uni-jena.de/LifelongLearning/gpEMOCreg.

4.1 Visual Attribute Estimation
Estimating visual attributes from images is a widely studied field. Attributes can be either
ordinal or real-valued and can be used for zero-shot learning [42, 43], to categorize object
classes utilizing additional text hints [4], or to improve person identification [40, 41]. To
demonstrate the effectiveness of our method in those challenging scenarios, we use the es-
tablished animals with attributes dataset [42] (AwA). This dataset consists of 30,475 images
from 50 animal classes. Since we are interested in attribute regression instead of attribute
based prediction, we use the provided 85 real-valued predicates as output variables.

Experimental Setup For the evaluation, we use an RBF kernel and L2 normalized relu7
features of a VGG19 network provided by the project website 1 which leads to a regression
problem with 4,096 input and 85 output dimensions. We conduct three random initializations
and use random splits with five initial samples for L and 20,000 test samples for T. After
initialization, we perform 1,000 queries on the unlabeled data pool U consisting of 10,470
instances. All of these splits are independent of the actual animal class.

Evaluation Results are presented in Fig. 2 as well as in Table 1 and indicate that we are
able to perform better than all other evaluated active learning methods. Only the random
baseline comes close to our proposed method. A possible reason could be the following:

1http://www.ist.ac.at/~chl/AwA/AwA-features-vgg19.tar.bz2
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Figure 2: Error curves (lower is better) on the AwA dataset [42].

All active learning methods query samples according to a specific selection scheme which
prefers corresponding structures in the feature space. But only passive learning ignores the
data structure for selection. Hence, none of the evaluated baselines is able to take advantage
of the structure in the data to overcome passive learning. In contrast, results indicate that
estimating the change of model outputs makes selection more robust against contrary feature
spaces since the importance of feature dimensions is encoded in the model itself.

4.2 Landmark Prediction for Bipedal Locomotion

Biomechanics have strong influence on robotics [12, 53]. Hence, researchers are interested
in analyzing animal bipedal locomotion, which requires enormous effort of annotating land-
marks (i.e., important anatomical points as joints or bones). For evaluation, we use data
provided by zoologists showing quails stepping over obstacles [3]. The walking birds were
recorded by a biplanar X-ray acquisition system with a frame rate of 1,000 FPS from two
orthogonal views (see supplementary for example images and video material). We conduct
an experiment for regression of those landmarks on an already labeled subset of 672 samples
(ABL). Please note, this approach could also be extended to bounding box regression as for
example done by YOLO [55] or facial landmark regression as done by [35].

Experimental Setup We use a deep feature representation from an AlexNet model [39],
fine-tuned to distinguish between leg poses of walking birds quantized into ten classes. Af-
ter fine-tuning, we use activations of conv5 layer concatenated from both views as feature
representation for the landmark regression problem. In our evaluation, we consider 15 land-
mark positions which were normalized to range [0,1]. Both lead to a regression problem
involving real-valued inputs with 8,192 dimensions and real-valued outputs with 60 dimen-
sions. We average our results over ten experiments and query all 335 unlabeled samples of
U. The performance is measured on random test data T comprising also 335 samples. Our
GP regression model uses linear kernels and is initialized with two samples for the initial L.

Evaluation Corresponding results are presented in Table 1. The experiments show that
active learning is able to reduce the localization error after already few queries. Our proposed
method is superior to mere passive learning and most of the competitor active learning meth-
ods. Only variance sampling and EMC obtain similar accuracies which can be attributed to
strong relationships between the methods (see Eq. (8) and supplementary material).

4.3 Age Prediction

Age prediction is an important topic in various research areas where domain experts are
essential for correct assessment. We apply active learning to age regression on two datasets.
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First, we use the C-Tai dataset which was originally introduced by [47, 48] and pre-
pared as benchmark dataset by [15] for computer vision researchers. This dataset consists of
images of 5,078 chimpanzees in the wild taken at Tai National Park in Côte d’Ivoire and pro-
vides attribute information like age, gender or identity. Since there are missing information
for some images, we consider a subset of 4,414 image-age-pairs.

Second, we use the yearbook dataset proposed by [17] which consists of yearbook
photos from 115 American high schools from 1905 to 2013. As done by [17], we only
consider images of the 20,248 females and try to predict the year the photo was taken.

Experimental Setup For both datasets, we average our results over three random test
splits and draw 1,000 samples out of the unlabeled pool U. We use L2 normalized fc7
features calculated by vanilla AlexNet and RBF kernels. Hence, in both scenarios, regression
models with 4,096 real-valued input and a single real-valued output dimension are learned.
In terms of the C-Tai dataset, we start with four initial samples for L and split the dataset in
2,205 test instances for T and 2,205 unlabeled samples in U. For the yearbook dataset, we
initialize our models with three random samples in L and use 10,000 samples as unlabeled
pool U and 10,254 instances as test set T.

Evaluation The results for the C-Tai and the yearbook datasets are shown in Table 1.
Please note that the CNN is not fine-tuned towards age regression. This fact should be con-
sidered when explaining the surprisingly good performance of random sampling. We belief
that a feature representation adopted towards age regression instead of object recognition
will change the results. The development of such an optimized representation is beyond
the scope of this paper but subject to future investigations. However, the proposed EMOC
framework is able to achieve best results even in these challenging scenarios.

4.4 Image Quality Assessment
A pre-requisite for reliable data analysis by any automated inspection system is the avail-
ability of non-degraded data. However, a major source of failure during the life cycle of
inspection systems is defect or manipulated hardware which can result in blurry or noisy
images. In practice, automated image quality assessment can solve this problem. Similar to
[67], we tackle the estimation of image quality as an regression task. In detail, we predict the
degree of Gaussian blur and salt-and-pepper noise of potentially disturbed images (MSCOCO
quality). In contrast to [67], we directly predict the image quality from extracted CNN
features instead of learning a noise type classifier first and an noise-type specific regressor
for the noise level thereafter.

Experimental Setup We sample 1,500 random images from the training set of the 2014
MSCOCO v1.0 dataset [45]. After resizing the images to 227×227 pixels, a Gaussian blur
kernel with randomly selected sigma between zero and five is applied. Finally salt-and-
pepper noise is applied to at most 25% of the pixels (some visualizations can be found in
the supplementary material). We use a vanilla AlexNet and compute L2 normalized pool2
features as image representation as well as a regression model with RBF kernel. This leads
to a regression problem with 43,264 dimensional real-valued inputs and two real-valued out-
puts. Both, the sigma of the blur kernel and the ratio of salt-and-pepper-noise, is normalized
independently to generate the labels. The evaluation protocol uses five initial samples for L
and 500 samples for the test set T. All remaining samples serve as unlabeled samples in U.
Presented results are averaged over three random initializations while drawing all remaining
samples out of the unlabeled pool U.
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Evaluation Obtained results can be found in Table 1. First of all, results for mahalanobis
are missing due to the memory demand of calculations using pool2 features. Since we use an
AlexNet which is trained to distinguish between object categories, the obtained features are
not designed to estimate image quality degradations. This may result in a feature space where
distances between data points are wrong indicators for different blur or noise strength. The
poor performance of all methods which rely on pure exploration (i.e., variance, entropy, and
diversity) support this intuition. Our proposed EMOC criterion is able to perform best since
it is involving the change of model predictions rather than solely relying on those distances.

4.5 Summary of Experimental Results

Some of the previously presented experiments rely on features which were not specifically
tailored for regression tasks. To develop adapted representations is behind the scope of the
currently presented work. However, to overcome this short-coming, we present additional
results in the supplementary material including active sensor placement for wave height esti-
mation on the coastDat-1 dataset [19] as well as experiments on established UCI regression
benchmark data [44]. Even on this regression specific data, we are able to show that our
proposed EMOC criterion performs best.

Overall, the experiments represent a broad range of application scenarios and are repre-
sentative for various fields of research. Our evaluations show that the ranking of the inves-
tigated methods differs from dataset to dataset. The only exception is our EMOC criterion
which is able to achieve the top rank on each dataset (albeit with small margin in few cases).
No other method shows a similar consistent behavior over the variety of regression problems.
The second-best method for the experiments presented in this paper is random sampling with
an average rank of 2.80. In terms of all conducted experiments, including those shown in the
supplementary material, the best baseline is diversity sampling with average rank 3.82. In
either case, The discrepancy in ranking between EMOC and the strongest competitor method
is remarkably large.

Finally, all experiments reveal the surprising strength of passive learning. The counter-
intuitive performance of mere random selection of data points for regression tasks was al-
ready discussed in [68] and could be proved once more in our evaluation. We conclude that
regression tasks are more challenging than classification for active learning. Our intuition
is that the real-valued nature of the output space Y causes this effect, but to the best of our
knowledge, a convincing explanation from a learning theory point of view is still missing. A
possible consequence could be to combine active with passive learning as suggested by [5].

5 Conclusion

In this paper, we aimed at cutting the annotation costs when training models for regressions
problems. Our approach extends the established EMOC criterion from mere classification
towards continuous regression tasks. By using Gaussian process regression models, which
are a versatile tool for regression applications and offer efficient model updates, we were
furthermore able to derive closed-form solutions for the marginalization operations within
the EMOC criterion. Since regression tasks arise in many applications, we evaluated our
method on a broad range of different datasets. We were able to empirically prove that EMOC
leads to the largest error reduction and thereby steers the annotation process most efficiently.
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