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The detailed understanding of animal locomotion is an important part of biology, motion
science and robotics. To analyze the motion, high-speed x-ray sequences of walking an-
imals are recorded. The biological evaluation is based on anatomical key points in the
images, and the goal is to find these landmarks automatically. Unfortunately, low contrast
and occlusions in the images drastically complicate this task. As recently shown, Active
Appearance Models (AAMs) can be successfully applied to this problem. However, ob-
taining reliable quantitative results is a tedious task, as the human error is unknown. In
this work, we present the results of a large scale study which allows us to quantify both
the tracking performance of humans as well as AAMs. Furthermore, we show that the
AAM-based approach provides results which are comparable to those of human experts.

Introduction and Related Work

The in-depth understanding of animal loco-
motion is an essential part of modern biology
and has many applications in the fields of mo-
tion science and robotics. A key method of
today’s locomotion analysis is x-ray videogra-
phy, which provides an insight into the course
of motions at an extremely high level of preci-
sion [1]. For the practical realization, animals
are placed on a treadmill and captured by a bi-
planar high-speed x-ray camera system with up
to 2000 frames per second. In Fig. 1, exemplary
images for two real world datasets are shown.

The biological evaluation of the recorded
sequences is based on anatomical key points
(landmarks) of the locomotor system, e.g. the
knee and the hip joints. As a manual label-
ing of these points is extremely time-consuming
due to the high frame rate, an automatic track-
ing method would be of great benefit. However,
considering the nature of the data, several prob-
lems arise. Besides the low contrast, the great-
est difficulties are x-ray occlusions in the im-
ages which make the use of local tracking meth-
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(a) Bantam Chicken

(b) Quail

Fig. 1. Example images of the two datasets used for
the experiments in this paper.

ods impossible [2]. In [2, 3] it is shown that
Active Appearance Models (AAMs) [4] can be
used to overcome these specific problems en-
countered in this setting.

All AAM-based studies presented so far,
however, rely on datasets for which the ground
truth landmark labeling was provided by only
one single person [2, 3]. This situation makes
it hard to distinguish between human errors in
the ground truth data and automatic tracking er-
rors. To be able to quantify both the perfor-
mance of the AAM-based approach as well as
the performance of human experts, a large scale
study based on two datasets, each with 12 inde-
pendent ground truth labelings, was carried out.



The results of this survey are presented in this
paper, together with a new practically important
evaluation method.

Active Appearance Models (AAMs)

This section gives a brief overview of AAMs
[4] in general and their application to landmark
tracking. AAMs are statistical models which
jointly describe the shape (landmarks) and the
appearance (texture) of objects in digital im-
ages. Given a set of training images with an-
notated landmarks, an AAM can be trained and
afterwards be fit to new images automatically.

Training Step. If ln denotes the vectorized
landmark coordinates of the nth training image,
the first step is to build a shape model by ap-
plying Principle Component Analysis (PCA) to
the matrix L = (l1 − lµ, . . . , lN − lµ), where
lµ = 1/N

∑N
n=1 ln is the mean shape. PCA

yields the matrix PL of shape eigenvectors,
which can be used to describe an arbitrary shape
l′ via

l′ = lµ + PLbl′ , (1)

where bl′ are the shape parameters of l′.
In the next step, all training object textures

are aligned into a common reference shape
and vectorized. We denote the nth texture by
gn. Then, again PCA is applied on the ma-
trix G = (g1 − gµ, . . . , gN − gµ), where gµ is
the mean texture. By using the resulting texture
eigenvectors PG, any texture g′ can be speci-
fied by its texture parameters bg′ by means of

g′ = gµ + PGbg′ . (2)

To combine both the shape and the texture
model, the according parameters are concate-
nated for each training example, and again a
PCA is applied. Using the matrix PC of com-
bined or appearance eigenvectors, each model
instance with the concatenated shape and tex-
ture parameters c′ is described by

c′ = PCbc′ , (3)

and bc′ are the appearance parameters of each
particular model instance.

Finally, only the most significant eigenvec-
tors of PC are used to obtain a compact param-
eterized model of the object shown in the train-
ing images.

Model Fitting. To fit an AAM to new im-
ages, a further training step is necessary. The
known model parameters bn of the training in-
stances are varied by diverse values of ∆b. For
each ∆b, the texture differences ∆g between
model and image are stored. Afterwards, a lin-
ear regression model ∆b = R∆g is estimated.
The matrix R can then be used to fit the model
to unseen images, solely based on the current
texture difference ∆g.

Application for Landmark Tracking. To
make use of the biplanar camera setup, a com-
bined model for both camera views is desirable.
The combination of multiple views for AAMs is
described in [5] and can be achieved in an easy
manner.

Further adaptions of AAMs for the present
scenario are described in [2, 3] and shall not be
considered in detail here.

Experiments and Results

Datasets. The experiments presented in the
following were conducted on two real world
datasets of a bantam chicken in the one case,
and a quail in the other case. Example im-
ages for both datasets are shown in Fig. 1. The
datasets have an identical camera setup (top and
side view) and image resolution of 1250× 1250
pixels recorded at 1000 frames per second. To-
gether with the recording times of 1024 and
1372 milliseconds, this results in image se-
quences with just as many frames.

In both cases, the ground truth landmark po-
sitions were provided independently by four bi-
ologists, three times each. Therefore, for any
of the two datasets, a total of 12 independently
labeled ground truth landmark sequences are
available. The operating experiences of the ex-
perts ranged from very experienced (> 5 years)
over experienced (> 11/2 years) to novice. For
the bantam dataset, every 10th frame was man-
ually labeled, in the case of the quail dataset it
was every 20th frame.

The anatomical landmarks covered by our
experiments include the pelvis (two landmarks),
the hip joints (two landmarks) and the knee
joints (four landmarks), i.e. eight landmarks per
camera view.

Evaluation Method. As general approach
for the evaluation and comparison of the hu-
man and AAM-based tracking performance, we
employed the following scheme separately for
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Fig. 2. Results of the Euclidean evaluation for the landmarks of the side view. For one person, an AAM which
was trained on this person (intra-person, human/AAM) gives better results than a human novice (inter-person,
human/human).

any of the two datasets. For all 12 ground truth
landmark sequences, an individual multi-view
AAM was trained on a subset of the labeled
frames. The amount of training frames was 10
for the bantam and 14 for the quail dataset. Af-
terwards, the landmarks of interest were tracked
for the entire locomotion sequence using these
AAMs as described in [2, 3]. As a result, we
obtained 12 artificially produced landmark se-
quences. We then performed a pairwise com-
parison for all 24 (12 human experts + 12 artifi-
cial AAMs) landmark sequences. For the com-
parisons of these sequences we selected two dif-
ferent error measures, as discussed in the fol-
lowing subsection.

To make the evaluation of the 24·(24−1)
2

= 276
sequence pairs interpretable, they were grouped
into the categories “intra-person” (different la-
beling sequences of one person), “inter-person
(expert)” (labeling sequences of two distinct ex-
perts) and “inter-person (novice)” (labeling se-
quences of one expert and one novice). To-
gether with the distinction between “human vs.
human” and “human vs. AAM”, this allows us
not only to compare the tracking performances
of AAMs with respect to humans, but also to
quantify the error ranges of manual labeling to
obtain a gold standard.

Error Measures. The most straightfor-
ward approach to quantify the differences be-
tween two given landmark sequences is by
using the Euclidean distances between corre-
sponding landmarks. In the literature, this er-
ror measure is known as point to point error [6]
and is the only method used in this context so
far [2, 3]. It has the advantages of being easily
computable and feasible for both camera views.

However, the biological evaluation of the

landmark positions is not based on their Eu-
clidean coordinates, but rather on the angles be-
tween parts of the locomotor system. One ex-
ample is the angle between femur and torso,
which can be computed based on four land-
marks of the side view, namely one knee, one
hip joint and both pelvis landmarks. Thus, an-
other error measure we used was the angular er-
ror, that is the difference between correspond-
ing angles of certain parts of the locomotor
system. Despite of its practical relevance, the
drawback of the angular error is that it only in-
corporates a subset of landmarks and uses only
landmarks of the side view.

As both error measures have advantages and
disadvantages in this scenario, both of them
were used for the evaluation of the results.

Euclidean Results. In Fig. 2, the results
of the evaluation based on the Euclidean land-
mark distance are depicted for the side view of
both datasets. To maintain a better overview,
the eight landmarks were grouped into the three
distinct anatomical classes “pelvis”, “hip joints”
and “knee joints”. As can be seen, intra-person
landmark sequences have the smallest errors.
There is also a noticeable difference in tracking
quality between experienced users and novices.

Obviously, the Euclidean errors are depen-
dent on the landmark type. For human experts,
the knee landmarks give the best results, while
for the pelvis there may even be a median er-
ror of 60 pixels. A possible explanation for this
result is that knees have a well observable local
image structure, whereas the pelvis is located in
a nearly homogeneous image region. As AAMs
are global models, this is also the reason why
AAMs perform better on pelvis and worse on
knee landmarks compared to humans. In con-
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Fig. 3. Results of the angular evaluation for the an-
gle between left femur and torso. An AAM trained
on one person (intra-person, human/AAM) gives
more accurate results than another experienced bi-
ologist does compared to that person (inter-person,
human/human).

clusion, the Euclidean based evaluation shows
that for one person, an AAM which was trained
on this person gives better results than a human
novice.

Angular Results. The results of the angu-
lar error based evaluation are shown in Fig. 3 for
the angle between the left femur and the torso.
It can be clearly seen that, again, the human
intra-person class has the best performance, as
there is virtually no bias and a maximum angu-
lar error of only ±8◦. When humans are com-
pared to other human experts, the error range
increases to about ±12◦, and—at least for the
quail dataset—a bias of +4◦ is introduced. An-
other striking observation is that there is a huge
bias of −9◦ (bantam dataset) and −26◦ (quail
dataset) between human experts and novices.
The variance, however, is comparable to the
inter-person results of two human experts. This
effect is caused by the fact that the novice con-
sistently assigned an incorrect position for cer-
tain landmarks, in this case for the pelvis.

A general observation is that the angular re-
sults of AAMs show a larger error variance
compared to their corresponding human coun-
terparts. However, a major advantage of AAMs
is that they practically have no bias in their
tracking results, as opposed to human experts.
The explanation for this property is that AAMs
only use the given training data, whereas hu-
mans may have different levels of experience
and anatomical knowledge. Another interest-
ing effect can be seen in the results of the quail
dataset. Here, the intra-person performance of

the AAMs is superior to the inter-person per-
formance of human experts. Consequently, this
implies that an AAM trained on one person
gives more accurate results than another expe-
rienced biologist does compared to that person.

Conclusions and Further Work

We have presented and analyzed the results
of a large scale study to quantify both the hu-
man as well as the AAM-based tracking perfor-
mance in x-ray locomotion analysis. The eval-
uations were based on two datasets, each hav-
ing 12 independent ground truth labelings avail-
able. We used two different error measures and
showed that AAMs provide results which are
comparable to those of human experts.

Future work should take into account that—
compared to humans—AAMs have deficits in
using local gray value information. Thus, a pos-
sible extension should cover a local refinement
step after standard AAM fitting.
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