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Abstract

Automatic visual inspection is an arising field of research. Especially in security relevant applications, an automa-

tion of the inspection process would be a great benefit. For wire ropes, a first step is the acquisition of the curved

surface with several cameras located all around the rope. Because most of the visible defects in such a rope are

very inconspicuous, an automatic defect detection is a very challenging problem. As in general there is a lack of

defective training data, most of the presented ideas for automatic rope inspection are embedded in a one-class

classification framework. However, none of these methods makes use of the context information which results from

the fact that all camera views image the same rope. In contrast to an individual analysis of each camera view, this

work proposes the simultaneous analysis of all available camera views with the help of a vector autoregressive

model. Moreover, various dependency analysis methods are used to give consideration to the regular rope struc-

ture and to deal with the high dimensionality of the problem. These dependencies are then used as constraints for

the vector autoregressive model, which results in a sparse but powerful detection system. The proposed method is

evaluated by using real wire rope data and the conducted experiments show that our approach clearly outperforms

all previously presented methods.

Categories and Subject Descriptors (according to ACM CCS): I.5.2 [Pattern Recognition]: Feature Evaluation and
Selection, I.5.4 [Pattern Recognition]: Computer Vision

1. Introduction

Today, wire ropes are an inherent part of extraction tech-
nology, ship technology, bridge construction, lift systems or
ropeways, to name but a few [DIN05]. For this reason, they
have to meet highest safety standards and are subject to reg-
ular inspections [WMW03, DIN05]. These inspections are
carried out by the human expert and have several drawbacks,
like the exposure to physical dangers or atmospheric con-
ditions [WMW03]. Additionally, this is a very monotonous
task, which provokes a loss of concentration and leads to
missed defects.

For this reason, an automatic inspection of wire ropes is
desirable. A first step in this direction is made by [WMW03],
who present a prototype system for the visual acquisition
of wire ropes with the use of four line cameras which are
placed in steps of 90◦ around the wire rope. However, the
automatic inspection is not an easy task, as most defects like
wire fractions, missing wires or changes in the rope structure
are very inconspicuous. Furthermore, wire ropes are often
soiled by water, oil or mud, which complicates an automatic
inspection even more. An illustration of above mentioned
wire rope defects can be found in the left column of Figure 1.

Original Wire Rope VAR Prediction Errors

Figure 1: Visualization of the vector autoregressive (VAR)

prediction errors (right column) for three wire rope segments

(left column). For each segment, the four camera views are

shown side by side as they are represented in the data matrix

Y . Faults in the original wire rope are marked with a red

ellipse. For the predictions, green color represents a small,

red color a large absolute error.
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1.1. Related Work

Due to the high security standards, only very few sam-
ples of defective wire rope data are available in general,
for which reason one-class classification or anomaly de-
tection [Tax01] approaches have to be applied. One-class
classification is widely used in texture and surface analy-
sis, for which [Xie08] provides a recent review. With re-
gard to the methods used in this paper, especially time series
based models are of interest. However, most works in the
field of anomaly detection in time series data are designed
for univariate time series. Multivariate approaches are pre-
sented by [BB07] or [CTPK09], but are not applicable in
the present case because of the large dimensionality of the
wire rope data. Two-dimensional autoregressive models are
used by [STAR01] for the detection of microcalcifications
in mammograms, whereas [BSUL04] employ multivariate
autoregressive models and use the model parameters as fea-
tures for a detection of defective regions in multivariate time
series data.

Methods for the defect detection in wire ropes based
on the prototype system of [WMW03] are presented in
[PNWD09]. It is based on a Hidden Markov Model [Rab89],
which is used to model the intact wire rope data. Defective
regions are then detected by using the quotient of two con-
secutive Viterbi scores as anomaly indicator. The main draw-
back of this method is that each camera view is analysed
separately, for which reason no contextual information be-
tween the camera views is taken into account for the defect
detection.

1.2. Our Approach

The main idea we base our approach on is the combined
analysis of all camera views. This strategy allows us to take
advantage of the strong dependency relations between the
camera views which are to be expected due to the regular
wire rope structure. For this reason, the open questions are
whether the usage of this extended context information leads
to a substantial increase of detection performance and how
the additional context is to be included into the defect de-
tection system. To answer these questions, a suitable model
is needed which allows for a one-class classification ap-
proach. Basically, time invariant or time variant methods can
be used for this task. Based on the nature of the camera ac-
quisition system and the general structure of the wire ropes,
it seems more promising to employ time-variant methods.
These can be differentiated into univariate and multivariate
models. Due to the expected feature dependencies implied
by the wire rope structure, multivariate approaches are to be
preferred.

Considering all requirements for the model used in this
work, vector autoregressive (VAR) models [Lüt93] remain
as the method of choice for potential improvements based
on the additional context information of all camera views.

Rope Data

data matrix Y

Dependency Analysis
(Section 3)

Methods:
• correlation analysis
• Bayesian networks
• LASSO regression
• forward selection

Vector Autoregressive
Model (Section 2)

1. model estimation with
structural constraints

2. prediction of wire
rope data

3. further actions operate
on the prediction
errors

Post-Processing
(Subsection 2.2)

modelling of systematic

prediction errors

Expert Inspection

visual illustration of

the detected defects

for a final inspection

by the human expert

ROC Evalua-
tion (Section 4)

comparative evaluation

based on ROC curves

Figure 2: Schematic model for the defect detection in wire

ropes based on VAR models with structural constraints as

proposed in this paper.

They are suited to answer the most important open ques-
tions and allow for a simultaneous analysis of all camera
views in an easy way because of their vector character. Ad-
ditionally, the expected dependencies in the wire rope data
may easily be integrated as constraints into the model, as
we will show in the following section. These constraints al-
low the VAR model to operate on much higher dimensional
data than previous approaches. As the computational com-
plexity for the estimation of VAR model parameters is cubic
in the total number of explanatory variables, a typical re-
duction of the possible explanatory variables to 2.5% of the
original amount results in a speed-up factor of 6 · 104 or a
1/0.025 = 40 times higher amount of actually used explana-
tory variables. Additionally, by using constrained VAR mod-
els, the results tend to be more robust because of the filtered
out noise influences.

The above described schematic procedure for the applica-
tion of constrained VAR models for the defect detection in
wire rope data is shown in Figure 2. The remainder of this
paper is structured as follows: the essential VAR models are
described in Section 2. Methods for the dependency analysis
in real wire rope data are presented in Section 3. Finally, the
experimental results are discussed in Section 4.

2. Vector Autoregressive Models for Defect Detection

Autoregression [Job91] aims at modelling the interrelation-
ships between a target variable yt and the p explanatory vari-
ables yt−1, . . . , yt−p of a time series (yt)1≤t≤T by means
of a regression function f . It is characterized by the re-
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lation f(yt−1, . . . , yt−p) = E [yt | yt−1, . . . , yt−p], where
E [ · | · ] denotes the conditional expectation. Typically, f is
defined to be a linear function with parameters c, φ1, . . . , φp.
Taking into account that generally f(X) does not exactly
match the actual value of yt, an error term ǫt has to be con-
sidered and an autoregressive model of order p may be writ-
ten in the form

yt = c+

p
∑

q=1

φqyt−q + ǫt. (1)

A VAR model [Lüt93] is the multivariate extension of
the model above. If we replace all scalars yt, c and ǫt by
N -dimensional vectors and the coefficients φ1, . . . , φp by
N ×N matrices Φ(1), . . . , Φ(p), we get the VAR model

yt = c+

p
∑

q=1

Φ
(q)

yt−q + ǫt. (2)

The elements yt = [yt,1, . . . , yt,N ]T of the underlying
time series can be combined into the data matrix Y =
[y1, . . . ,yT ]

T. For the representation of wire rope data as a
data matrix, every camera line corresponds to a time index t.
In this way, all four camera views can be easily combined by
concatenating the data of these line cameras to the vector yt

for each time index t. Using this approach, the VAR model
is capable of covering the influences between different cam-
era views because of its vector character. Three examples
for wire rope data matrices are given in the left column of
Figure 1.

Generally, parameter constraints for VAR models may be
arbitrarily complex, but for the present case of wire rope
data, binary structure constraints are sufficient. These binary
constraints only regulate which influences of the VAR model
variables are to be allowed at all and which are not. This
is motivated by the regular rope structure, which suggests
a strong dependency structure for the elements of the wire
rope data, too.

We base the parameter estimation for such constraints on
the result of [Zel62], who shows that the multivariate least-
squares estimation of the VAR model parameters may be
performed separately for all its vector components using or-
dinary least squares (OLS) estimation. Thus, instead of con-
sidering one regression problem with the target variable yt,
it is sufficient to solve N scalar regression problems with
the target variables yt,n for 1 ≤ n ≤ N . Note that the set of
potential explanatory variables nevertheless is equal in both
cases. With this result, the estimation with binary parameter
constraints may be realized by simply neglecting respective
components of the explanatory vectors for each of the N re-
gressions.

2.1. Application for Defect Detection in Wire Ropes

As already mentioned, only few samples of defective wire
rope segments are available in the present case, for which

reason we base our approach on the concept of one-class
classification. The detection of defects has to be entirely
based on the usage of intact wire rope data. In addition to
the methods proposed in the literature, also constrained VAR
models can be used for this task, whereas our approach is as
follows: at first, the binary parameter constraints are deter-
mined using faultless wire rope data. The according methods
are discussed in Section 3. Afterwards, the VAR model pa-
rameters are estimated on a different, but also faultless part
of the wire rope data. With these estimated model parame-
ters, a prediction ŷt of yt can be obtained based on Equa-
tion (2). As the model parameters are learned exclusively on
intact wire rope data, it is to be expected that defective rope
segments can not be described well by the model. Therefore,
significant prediction errors et = yt− ŷt are to be expected
for faulty rope segments.

It is possible to preselect and visualize these prediction
errors for the human expert for a final inspection. As only
few faults are to be expected in each wire rope, this proce-
dure is capable of filtering out the vast majority of obviously
faultless segments while still leaving the final decision to the
human expert for doubtful rope segments. Additionally, the
exact location of the detected defects can be shown on the
surface of the wire rope, which is a vast advantage compared
to previous approaches. An example of a possible visualiza-
tion of the VAR prediction errors is shown in Figure 1 for
one intact and two faulty rope segments. It depicts the origi-
nal wire rope in the left column and the respective prediction
errors of the underlying constrained VAR model in the right
column. Green color indicates a small, red color a large ab-
solute prediction error. It can be seen that the faultless seg-
ment has small prediction errors, whereas the real wire rope
defects cause obvious prediction errors at the appropriate lo-
cations.

For the reason of a comparison with other approaches
and to allow a qualitative evaluation, we additionally use the
common method of receiver operating characteristics (ROC)
analysis [Faw06]. As ROC analysis operates on a series of
scalar values (scores) and the labeling in the ground-truth
data is based on camera lines, the prediction error vectors et

have to be mapped to scalars st for each camera line t.

If we denote the elementwise absolute values of a vector
by | · | and compare the vectors |et1 | and |et2 | correspond-
ing to a time index t1 of a real wire rope defect and to a time
index t2 of an intact wire rope segment, respectively, one
striking difference is to be expected: as faulty regions appear
only locally in the wire ropes, the vector |et1 | should have a
local peak. In contrast, the vector |et2 | is expected to have no
evident peak but a rather regular pattern. Therefore, we em-
ploy the Fourier transform to calculate the score st for each
prediction error vector et, as it is capable of distinguishing
between such faulty and intact wire rope segments. How-
ever, as the Fourier transform does not perform a dimension
reduction, we need to select the necessary information for
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the score st from the Fourier transformed vector |et|. We
achieve this by analysing the Fourier coefficients according
to their ability to separate faulty and intact wire rope seg-
ments and finally using the Fourier coefficient which allows
the best separation as score st for each time index t. In tests
based on real wire rope data, we ascertained that the first
Fourier coefficient enables the best separation. This is a very
favourable result which substantially simplifies the calcula-
tion for each score st, as the first Fourier coefficient corre-
sponds to the mean value of the vector |et|, and we obtain

st =
1

N

N
∑

n=1

|et,n| =
1

N

N
∑

n=1

|yt,n − ŷt,n|. (3)

Motivated by the fact that in the present wire rope data
sets the faulty camera lines are labeled with a large margin
around the actually visible parts of the defects, a smoothing
of the scores along the camera lines may also be applicable.

2.2. Problems

The very specific nature of wire ropes causes some problems
in practical applications, which are described below together
with our solutions to deal with these effects.

As the border regions of the camera views generally do
not allow a reasonable defect detection, we exclude them
from the detection task, as can be seen in the left column of
Figure 1.

Another issue for wire rope data has a more theoreti-
cal background. It can be easily shown, that wire rope data
emerge from non-stationary processes, which means that for
the random variable yt mean and variance change for differ-
ent time indices t. As a consequence, systematic prediction
errors occur in the predictions of the VAR model [Lüt93]. In
the time series of the prediction error vectors this becomes
manifest in a faint but regular pattern, which roughly fol-
lows the original structure of the wire rope. It is desirable
to filter out this regular pattern from the prediction errors
to reveal the irregular part caused by real defects. For this
purpose we employ the method of frequency domain self-
filtering [Bai97], which yields excellent results in this con-
text.

The third and probably most striking concern regarding
the usage of VAR predictions for wire rope data is the prob-
lem of self-prediction. Ideally, the wire rope has a perfectly
periodic structure and each target variable yt,n can be pre-
dicted by arbitrarily distant explanatory variables. In real
data, however, the ideal rope structure is disturbed by noisy
influences like physical distortions. Therefore, the general
predictability decreases with the physical distance between
the target variable and the explanatory variables on the real
wire rope. The OLS estimator will therefore always choose
the VAR parameters in such a way that each target variable
yt,n is only affected by its direct neighbours, as these allow

the best prediction. Other explanatory variables are system-
atically disregarded. In the sense of least-squares estimation,
this behaviour is absolutely correct, as these predictors allow
the smallest prediction errors. However, for the defect detec-
tion this causes the unwanted effect that each defect of the
wire rope predicts itself after a short period of time. There-
fore, in the context of the special structure of wire ropes, the
VAR parameter estimation is actually an ill-posed problem.
To overcome this handicap, we exclude all potential explana-
tory variables within a certain range from the target variable
from the regression. If, as before, p denotes the order of the
VAR model, then we call psep < p the size of this exclusion
zone and peff = p−psep the effective VAR model order. The
potential explanatory variables for each target variable yt,n
then reduce to yt−psep−1, . . . , yt−p. Technically, this can be
achieved by using binary constraints. We base the selection
of psep on the wire rope structure, which has the advantage
of allowing for an automatic calculation. It can be shown,
that choosing psep to be the distance of two neighbouring
wires in the direction of the time axis is sufficient to ensure
multiple equally important explanatory variables for a target
variable.

3. Analysis of Structural Dependencies

The goal of the structural dependency analysis is to reveal in-
dependencies between each target variable yt,n and the vec-
tor components of the explanatory variables yt−psep−1, . . . ,
yt−p. This enables us to derive structural constraints for the
VAR model which improves the prediction quality, makes
the estimation process more robust and substantially reduces
the high dimensionality of the problem. We will discuss how
these constraints can be automatically obtained from wire
rope data using various methods, including correlation anal-
ysis, Bayesian networks, LASSO regression and forward se-
lection. For the following discussion, we denote the set of all
possible explanatory variables for a target variable yt,n with

En = { yt−q,m | psep < q ≤ p, 1 ≤ m ≤ N} . (4)

3.1. Conditional Independence

For a theoretical discussion of the dependency analysis
methods we need the concept of conditional independence
[Daw79]. For three pairwise disjoint subsets U , V and W of
a set of random variables we call U conditional independent
of V given W if and only if P (U |V,W ) = P (U |W ). In
the following discussion we will denote this ternary relation
by U ⊥⊥ V | W .

For the OLS estimation of the VAR model parameters for
the target variable yt,n, our goal is to find a partition of all
explanatory variables En into the sets In and Jn for which
{yt,n} ⊥⊥ In | Jn holds, as this implies

E [yt,n | In, Jn] = E [yt,n | Jn] . (5)

Therefore, if In and Jn are known, the potential explanatory
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variables from In can be entirely neglected for the regression
without the loss of prediction quality.

The theoretically correct solution for this problem under
the assumption of normal distributed data is the method of
covariance selection. It was introduced by [Dem72] and the-
oretically confirmed by [Wer76]. However, this method is
computationally very expensive and can not be applied on
the high-dimensional wire rope data. Therefore, we have to
apply approximate techniques, which are presented in the
following.

3.2. Applied Methods

A very simple approximation approach is the correlation
analysis [Rei93, Chapter 1]. In the case of wire rope
data, it is based on the lagged cross-correlation coefficients
ρn,m(l) = Cor (yt,n, yt−l,m) of the underlying data matrix
Y . The set of explanatory variables Jn which are actually
used for the regression is selected based on thresholding
the absolute lagged cross-correlation values. This method is
an approximation of the correct solution, because it can be
shown that the weaker marginal independence is used in-
stead of the conditional independence.

Another method we applied to obtain the sets In and
Jn from wire rope data were Bayesian networks [Pea00].
They model the dependency relationships of random vari-
ables with the help of a directed acyclic graph, from which
the desired independencies, the set In, may be easily ex-
tracted. One issue of Bayesian networks used on wire rope
data is a degeneration effect, which emerges due to the fact
that two geometrically adjacent features are very similar to
each other. As a consequence, about 1–2 explanatory vari-
ables are selected for each target variable in total. This ef-
fect can be weakened by applying the method on the poten-
tial explanatory variables of each time step psep + 1, . . . ,
psep + peff = p separately to increase the amount of total
explanatory variables by the factor peff .

Also the LASSO (Least Absolute Shrinkage and
Selection Operator) regression [Tib96] may be used to
find dependency structures in wire rope data. While for
the OLS estimation the expected quadratic prediction error
E
[

(yt,n − ŷt,n)
2
]

is minimized without any further con-
straints, the LASSO regression uses the additional restriction

p
∑

q=1

N
∑

n=1

N
∑

m=1

|Φ(q)
n,m| ≤ u (6)

for the model parameter matrices Φ
(1), . . . , Φ(p) and the

regularization parameter u ≥ 0. This constraint has the ad-
vantageous effect of causing many parameters to become ex-
actly zero. Using this property, the set of unnecessary ex-
planatory variables In may easily be derived, as it can be
shown that these LASSO estimates are asymptotically cor-
rect in terms of conditional independence [FHT08].

Another possibility for the selection of a sparse set of pre-
dictors for a given target variable yt,n is the method of for-
ward selection [HTF09, Chapter 3]. It belongs to the greedy
algorithms and therefore specifies the set of optimal explana-
tory variables only approximately in general.

Examples for the resulting parameter structures of
the methods used along with the original lagged cross-
correlation matrices for real wire rope data are given in Fig-
ure A.1. Implied by the regular rope structure, the depicted
lagged cross-correlation matrices show very characteristic
patterns. Also, the extreme sparsity of the model when us-
ing Bayesian networks is obvious. The structure constraints
obtained by the LASSO regression and the forward selec-
tion are very similar to each other, and most explanatory
variables are chosen from the nearest and furthest possible
temporal context for each target variable. A reasonable ex-
planation for this effect is that the explanatory variables with
the time index t−psep−1 carry all the necessary information
of the times t−psep−2, . . . , t−p and have the smallest noise
impacts due to their proximity to the target variable. For this
reason, all other time indices are concealed by t− psep − 1.
In the same manner it can be argued that the time index t−p
conceals all remaining indices t− p− 2, . . . , 1, resulting in
the observed parameter structure.

4. Experiments

Numerous experiments have been carried out to investigate
the practical performance of the presented approach. The
method of evaluation are ROC curves and their correspond-
ing area under the curve (AUC) values [Faw06]. Particularly
we compare our model to the Hidden Markov Model ap-
proach of [PNWD09], as it yields the best results so far. Con-
sequently, the same real ropeway data set as in [PNWD09]
was used.

In the experiments, we concentrated on the performance
of the various dependency analysis methods presented in
Section 3. We used the grayscale values of the line cameras
as underlying features, as these preserve the original depen-
dency structure of the wire rope. Both the dependency anal-
ysis and the parameter estimation were carried out on the
first 5 · 104 camera lines, which correspond to five metres
of wire rope. All experiments were made on the entire wire
rope with a length of 13.6 · 106 camera lines correspond-
ing to 1.3 km. Based on the wire rope geometry we used
psep = 40. The effective VAR model orders were chosen to
be peff = 20, except for the LASSO regression, for which
computational considerations made a reduction to peff = 5
necessary. However, tests suggested that this reduction of
the model order does not have a strong negative influence
on the performance for the LASSO model parameters. The
threshold for the correlation approach, the LASSO regular-
ization parameter u and the variable count of the forward
selection were chosen in such a way that the total number
of explanatory variables for all N target variables was ap-
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Figure 3: ROC curves of the presented VAR-based defect

detection model for various dependency analysis methods.

The results of the model from [PNWD09] are included for a

comparison. The experiments were performed on a real wire

rope data set.

proximately 2.5% of the original amount, which allows for a
reasonable trade-off between computing time and detection
performance. The resulting ROC curves and the correspond-
ing AUC values are shown in Figure 3. As it is important
to detect all wire rope defects in this security relevant appli-
cation, only regions of the ROC curves with a true positive
rate close to one are of interest. From this point of view, all
approaches except for the Bayesian networks clearly outper-
form the approach of [PNWD09], as the false alarm rate for a
true positive rate of 100% is reduced from 96% to 26%. The
best results were achieved by the forward selection method,
closely followed by the LASSO regression and the correla-
tion approach. The comparatively weak performance of the
Bayesian networks can be partly explained by the very small
amount of explanatory variables caused by the degeneration
effect when used on wire rope data.

Additionally, further experiments were made to investi-
gate the effects of several other aspects on the detection per-
formance. It became clear, for instance, that both the post-
processing step of self-filtering as well as the smoothing of
the camera line scores are crucial for the detection perfor-
mance. In Figure 4, the ROC curves of the presented depen-
dency analysis methods are shown in comparison to the case
in which the self-filtering step was omitted. It can clearly
be seen that the use of self-filtering causes a reduction of
the false alarm rate of about 10% for a true positive rate
of 100%. The influence of the self-filtering step is approxi-
mately equal for all presented dependency analysis methods,
for which reason the ranking remains the same as for the

Figure 4: ROC curves of the dependency analysis methods

in comparison to the case without self-filtering. The results

of the model from [PNWD09] are included for a comparison.

case with self-filtering. Notably, even without self-filtering,
our approach still outperforms the method of [PNWD09].

5. Conclusions and Outlook

We have presented a multivariate approach for defect de-
tection in wire ropes. Earlier works are limited to a sep-
arate analysis of the camera views of a wire rope, while
our approach allows for a simultaneous inspection of the
underlying data. We employed various dependency analy-
sis methods to take advantage of the structural dependen-
cies in the data which are to be expected due to the regular
wire rope structure. These dependencies were used as con-
straints for a vector autoregressive model. As a result of the
structural constraints, the prediction quality was improved,
the estimation process became more robust and the high di-
mensionality of the problem was substantially reduced. The
corresponding VAR prediction errors were used as basis for
the visualisation of the defect detection and the comparative
ROC evaluation.

We compared correlation analysis, Bayesian networks,
LASSO regression and forward selection as dependency
analysis methods. The best results were obtained by using
forward selection as dependency analysis method. Due to
the degeneration effect in the context of wire rope data,
Bayesian networks obtained the worst results. Especially
the constrained VAR models based on forward selection
and LASSO regression clearly outperformed competitive ap-
proaches [PNWD09]. In the context of security related appli-
cations with a desired true positive rate of 100%, the corre-
sponding false positive rate could be reduced from 96% to
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26% compared to [PNWD09]. Another advantage of our ap-
proach is the ability for an exact localization of the defects,
which is not possible with previous methods.

Potential improvements of our approach may be achieved
by enlarging the context of the VAR model while leaving the
total number of prediction variables unchanged, which can
be done by exploiting the special properties of the depen-
dency analysis methods. A concrete example for the LASSO
regression and the forward selection is the limitation on ex-
planatory variables from two relative points in time, namely
those two with the dense occupation of explanatory vari-
ables. Based on the experiments, this approach should sus-
tain the detection performance but drastically decrease the
computing time. Another interesting aspect is the inclusion
of non-visual measurement data, for instance from magnetic
inductive tests, to avoid a restriction on exterior defects.
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Figure A.1: Structure constraints obtained with the presented dependency analysis methods from grayscale value features of a

real wire rope data set. For these examples, the VAR model orders were chosen to be psep = 40 and peff = 5. For the forward

selection method, peff = 20 was chosen. Each square depicts a N ×N matrix, whereas the nth row corresponds to the target

variable yt,n and the mth column corresponds to a potential explanatory variable yt′,m. Black entries represent actually chosen

explanatory variables.
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