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Abstract—The detection of multivariate extreme events
is crucial to monitor the Earth system and to analyze their
impacts on ecosystems and society. Once an abnormal
event is detected, the following natural question is: what
is causing this anomaly? Answering this question we
try to understand these anomalies, to explain why they
happened. In a previous work, the authors presented a
multivariate anomaly detection approach based on the
combination of a vector autoregressive model and the
Mahalanobis distance metric. In this paper, we present an
approach for the attribution of the detected anomalous
events based on the decomposition of the Mahalanobis
distance. The decomposed form of this metric provides
an answer to the question: how much does each variable
contribute to this distance metric? The method is applied
to the extreme events detected in the land-atmosphere
exchange fluxes: Gross Primary Productivity, Latent
Energy, Net Ecosystem Exchange, Sensible Heat and
Terrestrial Ecosystem Respiration. The attribution results
of the proposed method for different known historic
events are presented and compared with the univariate
Z-score attribution method.

I. INTRODUCTION

The detection of multivariate extreme events is
crucial to monitor the Earth system and to analyze
their impacts on ecosystems and society. We expect
that climate extremes such as droughts and heatwaves
will increase as a consequence of climate change 1.
Hence, it is of a paramount importance to understand
the drivers of such multivariate extreme events as well
as the complex land-atmosphere-biosphere interactions,
including those constellations that are not extreme for
a single variable but are extreme for a combination of
variables, also called compound event [1], [2]. In the
last years several studies have gone in this direction,
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Fig. 1. Flowchart of the anomaly detection method using
ARMA/VAR model(s) and Mahalanobis distance.

proposing different approaches: [2], [3], or [4] are
just some examples. Unlike the different attribution
methods proposed in the literature so far, the proposed
method is suitable for data with low sampling rate
where a pointwise detection and attribution can be
applied.

An abnormal event can be defined as those points
within a time series that are not well represented
by a previously fitted statistical model [5]. Follow-
ing this intuitive concept, we have recently proposed
a methodology based on linear regression models to
detect extreme events in the biosphere [6],[7] (cf. Figure
1). More precisely, in [6] after preprocessing the data,
we combine Autoregressive Moving Average Models
(ARMA) with the Mahalanobis distance of the residuals
between the models and the data to detect those points
where the models and the data significantly differ and
therefore can be considered as abnormal events. The
method was further improved in [7] based on using a
Vector Autoregressive (VAR) Model instead of multiple
univariate ARMA models. The VAR model allows
for presenting the variables with a model that takes
into account their inter-dependencies and hence enables
better whitening of the residuals and consequently
better spatial and temporal detection accuracy of the
anomalous events.

In this paper, we present an approach for the attribu-
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tion of multivariate anomalous events, where attribution
here means to define the contribution of each of the
variables involved to making the event an extreme one.
The presented approach is based on the decomposition
of the Mahalanobis distance of the residuals of the
VAR model into components whereby each component
presents the contribution of one of the used variables
to the Mahalanobis distance. The decomposed form of
this metric provides an answer to the question: how
much does each variable contribute to this distance
metric? The method is applied to the extreme events
detected when using five land-atmosphere exchange
fluxes (Gross Primary Productivity, Latent Energy, Net
Ecosystem Exchange, Sensible Heat and Terrestrial
Ecosystem Respiration). The attribution results of the
proposed method for different known historical events
are presented and compared with the univariate Z-score
attribution method.

II. ANOMALY DETECTION WITH VECTOR

AUTOREGRESSIVE MODEL AND MAHALANOBIS

DISTANCE

Let xi, i = 1, · · · , N denotes the time series of N
Earth observation variables. Each time series xi(n), n =
1, · · · ,m is a realization of length m real valued
discrete stationary stochastic process Xi, i = 1, · · · , N .
These N time series can be represented by a pth order
VAR model of the form x1(n)

...
xN (n)

 =

p∑
r=1

Ar

 x1(n− r)
...

xN (n− r)

 +

 ε1(n)
...

εN (n)

 .
(1)

The residuals εi, i = 1, · · · , N constitute a white
noise stationary process with an N × N residual co-
variance matrix Σ. The model parameters at time lags
r = 1, · · · , p are defined by

Ar =

 a11(r) · · · a1N (r)
...

. . .
...

aN1(r) · · · aNN (r)

 . (2)

The steps of the anomaly detection method using
the VAR(p) model in (1) are summarised in Figure I.
After removing seasonality and normalizing the vari-
ables as two pre-processing steps, the data are clustered
into climate regions according to the Koppen climate
classification map [8]. Then for each climate region, a
representative point that is geographically centered in
the region has been selected. The VAR model order
p was defined for every climate region, at each repre-
sentative point, by means of a Bayesian Criterion [9].

Once the model order p is defined for each region, we
proceed with the entire grid, fitting a VAR(p) model
for each point in the grid. The residual vector E is
calculated as the difference between the estimated VAR
model output and the real value of the used variables.
The Mahalanobis distance [10], [11] of the residual
vector is then used as a measure of the deviation of the
multivariate residuals at a certain time step from their
joint distribution. The Mahalanobis distance is defined
in the square unit as:

dm(E) = (E − Ē)TΣ−1(E − Ē) (3)

where Ē and Σ are the mean and covariance matrix
of the multivariate residuals vector E respectively. The
mean and the covariance were estimated considering
the entire time series. This was the best way to do
so in our case due to the short length of the time
series used together with its coarse temporal resolution.

When the value of the Mahalanobis distance of the
residuals is large, it is assumed that something abnormal
occurs in the system and the model is not able to
correctly capture it. The easiest way to detect abnormal
events is to set a fixed percentile threshold and look
for the points with Mahalanobis distance surpassing
this threshold. The reader is referred to [6], [7] for
further details on different multivariate anomalous event
detection methods.

III. ATTRIBUTION SCHEME BASED ON

MAHALANOBIS DISTANCE DECOMPOSITION

Once an anomalous event is detected, the next natural
question is: which variables are causing this anomaly?
An intuitive approach to answer this question is to
decompose the value of the Mahalanobis distance into
components, whereby each component quantifies the
contribution of one of the variables to the distance.
Garthwaite and Koch [12] recently proposed the corr-
max transformation for the decomposition of the Ma-
halanobis distance which can be easily implemented
and provides helpful results from an attribution point
of view. The decomposition has the form:

dm(E) = WTW, (4)

where W = (W1, · · · ,WN )T is a vector with N
elements, corresponding to the N variables contributing
to the Mahalanobis distance dm(E), and is calculated
by:

W = (SΣS)−1/2S(E − Ē), (5)

where S denotes a diagonal matrix of the inverses
of the standard deviations of the variables of E. The
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components of W should be uncorrelated, with the
transformation chosen to maximize the sum of corre-
lations between the corresponding elements of S and
W.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Data from the Earth System Data Cube (ESDC)2

developed within the ESDL project has been used
as the primary source of land-atmosphere exchange
fluxes data for this study. The ESDC comprises
spatiotemporal data consisting of: time, latitude,
longitude and multivariate Earth Observations.
The version used in this study covers the period
from January 2001 to December 2012 with 8-daily
observations and a spatial grid with a resolution
of 0.25◦. More than 30 biosphere and atmosphere
parameters are included in this database. Out of
these variables, we have used those five that mainly
measure the terrestrial biosphere activities: Gross
Primary Productivity (GPP), Latent Energy (LE), Net
Ecosystem Exchange (NEE), Sensible Heat (SH) and
Terrestrial Ecosystem Respiration (TER), which were
kindly provided by the FLUXCOM3 initiative [13],
[14]. The study area comprises Africa and Europe (see
Figure 2). This area was defined as the main study
area within the European project BACI: Towards a
Biosphere Atmosphere Change Index4 which is the
framework of the current study.

The proposed method is applied for the attribution
of two known historic events: the Russian Heatwave
of July 2010 and the Drought that affected the Horn of
Africa in November 2006. Attribution results of other
historic events can be found in [7]. The definition of
the temporal and spatial extension of these events was
supported by socio-climate experts from the BACI
project and is out of the scope of this study.

The results of the proposed method are compared
with the univariate Z-score results [15] applied to
the same historic extreme events. The Z-score is a
measure that compares the distribution of a certain
variable within the temporal extent of the detected
anomalous event with the distribution of this variable
in the entire time series. The Z-score quantifies the
discrepancy between these two distributions. This is
done separately for each variable. High positive or

2//http://www.earthsystemdatalab.org/
3//http://www.fluxcom.org/
4//http://www.baci-h2020.eu

negative values of the Z-score indicate which variables
are most different from their normal behaviour within
the time duration of the event.

Figures 2 and 3 show the results obtained for the
Mahalanobis distance decomposition and the Z-scores
for the two known historic events. Each figure shows
the spatial extension of the event (upper left subplot),
the Z-scores (upper subplots) and the Mahalanobis
distance decomposition (lower subplots). The Z-score
subplots show the histograms of the five variables
within the time window of the event (red) and the entire
time series (grey) together with the value of the Z-score
obtained from the comparison of both histograms.
The lower subplots show the Mahalanobis distance
intensity (map on the left) presenting the spatial extent
of the detected anomalous event, in addition to five
other maps, each one shows the contribution of one of
the used variables to the detected events.

According to the Mahalanobis decomposition using
the corr-max transformation, the Russian Heatwave
(Figure 2) is most dominantly manifested in LE then
in SH. These results of the Mahalanobis decomposi-
tion are coherent with the analysis proposed by other
authors, [2], [4]. For the case of the Drought in the
Horn of Africa, (Figure 3) GPP and NEE, are the
most contributing ones. Validating the attribution re-
sults of a drought are not trivial since these are very
long events where several factors are involved. The Z-
score analysis sorts the contribution of the variables
differently. These discrepancies between the Z-score
approach and the proposed multivariate approach show
the relevance of performing a multivariate analysis
and the limitations of univariate approaches in such
complex systems like biosphere or climate systems.
Unfortunately, a detailed quantitative evaluation of the
performance of the proposed method is not possible due
to the lack of ground truths for the attribution of the
extreme events considered in this study.
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Fig. 2. Attribution scheme for the Russian Heatwave from July 2010. Upper left plot: spatial extent of the Heatwave (blue rectangle),
upper right plots: Z-score for the five variables involved, lower plots: Mahalanobis intensity (left) and its decomposition into the five used
variables .
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