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Abstract. In this paper, we present a new combined approach for fea-
ture extraction, classification, and context modeling in an iterative frame-
work based on random decision trees and a huge amount of features. A
major focus of this paper is to integrate different kinds of feature types
like color, geometric context, and auto context features in a joint, flexible
and fast manner. Furthermore, we perform an in-depth analysis of mul-
tiple feature extraction methods and different feature types. Extensive
experiments are performed on challenging facade recognition datasets,
where we show that our approach significantly outperforms previous ap-
proaches with a performance gain of more than 15% on the most difficult
dataset.

1 Introduction

Recognition of semantic categories in images is an important field in computer
vision and especially labeling each pixel of an image is a challenging structural
task. Solving this task requires to take several different cues into account, such
as color, shape, and texture. Furthermore, contextual information, like probable
constellations and positions of categories in an image, is essential to achieve
consistent and accurate results [16].
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Fig. 1: Basic idea of our approach: features are added and updated incrementally
to the set of available features to refine the semantic segmentation result.

sponsored by the Graduate School on Image Processing and Image Interpretation,
TMBWK ProExzellenz program.
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In this paper, we present a powerful semantic segmentation framework, which
handles different information cues and features in a combined manner. In con-
trast to previous work [16, 22, 23], where contextual constraints are integrated
after a local classification step, our approach allows for learning them directly
and jointly together with other feature types. This is done by estimating con-
textual cues in an iterative manner based on the output of the classifier built in
a previous step.

Features, whether or not contextual, are calculated with feature extraction
methods performed on so called feature maps, which contain a value for each
pixel of the original image. The number of possible combinations of all param-
eters leads to millions of possible features and we show how to handle them
with random decision forests in an efficient manner. The approach can be easily
extended and adapted to other application areas, simply by extending the set
of feature maps. Another advantage is that due to the iterative and combined
nature of our approach, the trade-off between accuracy and computation time
for learning and testing can be controlled. With slightly modifications and a loss
of accuracy the introduced method has anytime capabilities which has be shown
in [8].

Related Work on Semantic Segmentation We incorporate context knowl-
edge by using the output of previous levels of a decision tree classifier as features
for a new one. This strategy is similar to the one used by Fink and Perona [6]
for their mutual boosting approach, where they train a set of object detectors si-
multaneously. In each round of the Boosting method, features are added derived
from the results of the current classifier.

Our work is also related to the approach of Shotton et al. [16], where a two
stage segmentation technique is proposed. Their idea is to first train a random
forest using basic local features and then to train a second random forest using
context features calculated using the first forest. In contrast, we learn a single
random forest and incrementally add context features derived from coarser levels.
This allows for handling the problem in a combined manner, where dependencies
between contextual features and non-contextual features are exploited directly.
Considering image and context features jointly is beneficial, because it reflects
more the inherent dependency between both types. For example, blue might
be a typical color for a car, but only when we know that there is no building
underneath, which would give a good hint for a sky region. Those situations can
not be modeled by considering contextual after color features. Typically, context
information is modeled by time consuming random field approaches [11, 13, 22,
23]. For a good overview of other semantic segmentation approaches, we refer
the reader to Arbelaez et al. [1].

Related Work on Facade Recognition The application considered in this
paper is semantic segmentation for facade recognition based on standard color
images. The task is to estimate the position and size of various structural (e.g.
“window”, “door”) and non-structural elements (e.g. “sky”, “road”, “building”)
in a given image of a building or street scene. This recognition task has gained
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interest in recent years [9], which is mainly due to the growing need to store the
appearance of buildings in large 3D city models [9]. For example, an efficient
representation of already labeled images with a grammar based compression
scheme [15] allows for reducing each facade image to a few parameters. Further-
more, by incorporating a large amount of prior knowledge, the recognition of
facade elements also allows for estimating the rough 3D structure of buildings
[9].

The work of Fröhlich et al. [7] propose an approach, which classifies local
color features with a random decision forest and further refines the result by
fusing with an unsupervised segmentation. In contrast to our approach, they do
not incorporate contextual information and the feature set is strictly limited.
Yang and Förstner [23] use a conditional Markov random field (CRF), in which
the unary potentials are computed by applying a random forest classifier. A sub-
sequent work of the same authors [22] improves this method by considering a
hierarchical CRF that exploits region segmentations on multiple image scales.
Our approach takes high-order dependencies of multiple pixels into account and
integrates classification and contextual inference in a combined approach. Fur-
thermore, the approach does not incorporate any prior model-based knowledge
about facades as utilized in Teboul et al. [18].

Outline The remainder of this paper is structured as follows. In Section 2, we
introduce a new flexible framework for semantic segmentation based on random
decision forests including feature extraction and classification with respect to
spatial context. Several high-level cues and feature types that are integrated in
our approach are presented in Section 3. Extensive experiments and an analysis
of the results are done in Section 4. A summary of our findings and a discussion
of future research directions conclude the paper.

2 Semantic Segmentation with Iterative Context Forests

Our semantic segmentation approach, named Iterative Context Forests (ICF),
is based on the massive use of random decision forests and the computation of
several basic as well as high-level contextual features during learning.

Random Decision Forest Random decision forests (RDF) are an extension of
the well known decision trees. The main disadvantage of decision trees is the high
risk of over-fitting and the high computation time during learning. Breiman [2]
showed how to circumvent both aspects with different kinds of randomization.
RDFs use multiple decision trees in which each tree is trained with a different
random and balanced subset of the training data. Furthermore, in an inner node
of a tree, only a random subset S ⊆ U with τ features is used to find the best
binary split of the training data, which is done by maximizing the information
gain. A huge benefit of this idea is that not all available features have to be
computed in each inner node, which is an essential property for our approach.
To treat every feature equally, independent of its number of possible parameter



4 Björn Fröhlich and Erik Rodner and Joachim Denzler

Table 1: List and description of feature extraction methods.

abbr. description abbr. description

PP1 diff. of two random pixel RA2 centered rectangle
PP2 absolute diff. of two random pixel RA3 diff. of two centered rectangles
PP3 sum of two random pixel HL1 horizontal Haar features
PP4 value of a single random pixel HL2 vertical Haar features
RP1 relative x-position of the pixel HL3 diagonal Haar features
RP2 relative y-position of the pixel HL4 3 rows of horizontal Haar features
RA1 random rectangle HL5 3 columns of vertical Haar features
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Fig. 2: Feature extraction methods applied to feature maps: features are com-
puted in a window of size d around the current pixel position (blue pixel). De-
pending on the type of a feature one or two pixels [16] (a) or one (c and d) or two
areas (b and e) are randomly selected. Every parameter θ is selected randomly
(the size of an area, the position of the area, etc.) under some constraints, e.g.,
for (d) the rectangle is centered. For features utilizing areas, the mean values of
the areas are used.

values, we first sample the feature type uniformly and then sample the parameter
vector (e.g. position and size of the region) in a second step.

For classification, a new example finds its path through each decision tree
and the average of the empirical distribution in the reached leaves is used as an
estimate for class-wise probabilities.

Generating Millions of Features The question remains how the set U of all
available features is defined. Our approach is based on extracting large sets of
features of very different characteristics from an input image I. This is done by
first computing several feature maps (Mi)

m
i=1, which are matrices that store a

value for each pixel of the input image. For example, one very simple feature
map is the red channel of the image. After computing these maps, we apply
several feature extraction methods gθ to the feature maps to actually compute
feature values. Those feature extraction methods are parameterized by a vector
θ including the index of the feature map used and parameters for the exact
position. A list of the feature extraction methods used in this paper is given in
Table 1 and illustrated in Fig. 2.
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Due to the large number of possible locations and feature maps, the set
of available features U goes up to several million features. For example, for
only one feature extraction method on a window of a size of d = 50 pixel, the
number of possible feature pairs is 6.25 · 106. Due to the reason that we have
many different feature extraction methods for many channels the real number of
possible features increases dramatically. However, the randomization techniques
of the RDF classifier allow us to handle these sets in an efficient manner by only
computing a small random selection of them.

Auto Context Features Estimating semantic labels for each image pixel is
a structured task requiring the usage of context knowledge to exploit the in-
trinsic dependencies between different parts of the image. A common approach
is to use conditional Markov random fields with a pairwise potential modeling
dependencies between two pixels. However, often high-order contextual cues are
required to capture important context information. For example, if we like to
model the relative locations of object categories, e.g., “building” is above “road”
but below “sky”. This sort of prior knowledge can not be captured by a plain
pairwise CRF.

Therefore, we use a concept known as auto-context [19], where features are
computed based on previous classification results. Shotton et al. [16] used this
technique in a two stage manner, where a first RDF was built on color features
only and a second RDF used the results of the first one as auxiliary features.
Our approach was inspired by this technique but extends it by applying auto
context in an iterative manner. We built and traverse the trees always in a
breadth-first manner, which allows us to use the results of a previous level as a
source for additional features. In our case, we compute probability maps for the
whole image in each level of a decision tree and use them as additional feature
maps. This allows for extracting high-level contextual features. For example, the
rectangle feature extraction method RA1 (see Table 1) evaluated in a region
above a pixel yields a feature giving a cue whether a certain class is present on
top of the current one.

3 High-level Cues for Semantic Segmentation

In this section, we present how to compute feature maps and how to incorporate
them in our framework. Besides simple operations like the conversion of the
image from the RGB color space to the HSI color space and the computation
of gradient images we are using an unsupervised segmentation [3], 3D geometric
context features [10], and a high-level color transformation [21]. We call the set
of all used feature maps the feature pool. The feature extraction methods from
the previous section are applied on these feature maps to extract features for
each pixel.

Unsupervised Segmentation In previous approaches an unsupervised seg-
mentation is used to smooth the results to get one label for homogeneous re-
gions [4, 7, 22, 23]. There are two common ways in literature to incorporate the
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a: RGB image b: hue c: saturation
d: unsupervised
segmentation

e: probability for red f: color names g: gradient h: geometric context

Fig. 3: Overview of the algorithms used to compute feature maps: a: input RGB
image, b: color hue, c: color saturation, d: unsupervised segmentation result,
where each area is encoded by a different color, e: probability map for class red,
the right car is highlighted in this map, f: most probable color for each pixel
based on the probability maps from image e, g: gradient image of the RGB
image, h: geometric context features, for details we refer to [10].

regions. The first way is to annotate every pixel with the most probable class of
one region after all other steps are finished [4, 7]. Furthermore, the second way
is to utilize the regions in an early step to initialize a graph for a CRF were each
region is a node and the neighborhood of two regions is modeled as an edge [22,
23]. In our framework, we found a third way to integrate region information.
We propose to use the segmentation result as an additional feature added to
the feature pool. After each iteration we compute the mean probability for each
class in each region. Consequently, we have for each pixel the information about
the previous classification result of all classes in the region where the pixel be-
longs to. We decided to utilize one of the most used unsupervised segmentation
method, which is the mean-shift segmentation introduced by [3]. Please note that
there are many alternative unsupervised segmentation methods like the very fast
graph based segmentation introduced by Felzenszwalb and Huttenlocher [5].

3D Geometric Context Features A human is using 3D context features not
only for classifying objects in the real world, but also for objects in 2D images. Of
course, there is no direct 3D information in a 2D image without any additional
knowledge. An important aspect is the Manhattan world assumption which says
that most of the man-made environments are based on objects perpendicular to
each other. Hoiem et al. [10] tries to learn such information from some hand la-
beled images, where they differ between the three main classes: “ground plane”,
“surfaces at roughly right angles to the ground plane” and “sky”. These surfaces
are split into “planar” and “non planar” surfaces. Furthermore, the “non pla-
nar” surfaces are split up into “solid” and “porous‘” and “planar” is subdivided
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into planar surfaces facing “left”, “right”, or “centered” towards the camera.
Following this method, we can extract seven probability maps, one for each of
these 3D geometric context classes, which are added directly as features to our
feature pool.

Color Names An interesting idea to transform RGB color features to another
feature space is introduced by van de Weijer et al. [21]. They describe these
color names as linguistic labels that humans attach to colors. Therefore, they
use eleven main colors which are not describable through a combination of two
or more of the other colors. For example, nobody would say “reddish yellow”
instead of “orange”. To learn a transformation between the L*a*b*-color space
and the color names the authors use a set of annotated images, where in each
image one object of a specific color is masked. The color space is partitioned into
10× 20× 20 bins for each channel of the L*a*b*-space. The distribution of each
bin is calculated by counting pixels of each color ending up in a specific bin.
With this it is possible to transform each RGB value into pseudo probabilities
for each color name.

4 Experiments

In the following, we evaluate our methods on some facade datasets. The analysis
concentrates on recognition performance as well as time needed for labeling a
single image.

Experimental Setup For feature extraction, we use a window with a size of
d = 50 pixels for the non-context features and d = 200 pixels for the auto con-
text features. The random forest contains five trees with a maximum depth of
15 levels and a random subset of τ = 400 features is used in each node dur-
ing learning. Computation times are evaluated on an Intel R©CoreTMi7 CPU 930
with 2.8GHz with four cores. We differentiate between the average recognition
rate over all classes and pixel-wise accuracy, which we refer to as overall recog-
nition rate. The different modifications of the ICF are illustrated by additional
letters. H represents the use of the geometric context features, G the usage
of the gradient image and W the color representation of van de Weijer [21].
Furthermore, mean-shift [3] is used as an unsupervised segmentation method
providing optional feature for the feature pool (S+), or for post processing (S-).
For example, ICFHG represents an Iterative Context Forest using the geomet-
ric context features and gradient images besides the HSI channel and the auto
context features.

Facade recognition For our experiments, we use the eTRIMS dataset originally
introduced by Korč and Förstner [12]. We use ten different random splits of
the data into 40 images for training and 20 images for testing similar to [22,
23]. Furthermore, the LabelMeFacade dataset introduced in [7], which contains
100 images for training and 845 images for testing, is used as a second more



8 Björn Fröhlich and Erik Rodner and Joachim Denzler

Table 2: Recognition rates of our experiments with different classifiers in com-
parison to previous work. In contrast to [7], we used random splits of training
and testing for the eTRIMS dataset to allow for fair comparison with [22, 23].
ICF represents our proposed approach including auto-context and the HSI color
channels. An additional letter shows the usage of the feature channels: H in the
name represents the usage of the geometric context features of Hoiem et al. [10],
W the usage of the color names from van de Weijer et al. [21], S+ the direct
incorporation of the mean-shift segmentation [3] and S- the usage of mean-shift
as a post-processing step.

dataset approach average recognition rate overall recognition rate

eTRIMS CRF [23] 49.75% 65.80%
HCRF [22] 61.63% 69.00%
3-Layer [14] 63.25% 81.94%
SIFT/RDF [7] 62.81% (±1.58) 64.00% (±3.28)
SIFT/SLR [7] 65.57% (±2.47) 71.18% (±2.69)
ICF 68.61% (±1.71) 70.81% (±1.32)
ICFwoC 64.07% (±1.72) 61.11% (±1.59)
ICFHGW 71.47% (±1.25) 72.59% (±1.06)
ICFHGWS+ 68.94% (±1.48) 73.65% (±1.07)
ICFHGWS- 72.22% (±2.17) 75.09% (±1.60)
ICFHS- 72.26% (±3.25) 76.10% (±1.24)
ICFHGS- 72.23% (±1.76) 77.22% (±1.22)

LabelMeF SIFT/RDF [7] 44.08% (±0.45) 49.06% (±0.52)
SIFT/SLR [7] 42.81% (±0.89) 48.46% (±1.58)
ICF 49.39% (±0.48) 60.68% (±0.72)
ICFwoC 47.66% (±0.06) 43.97% (±0.03)
ICFHGW 56.95% (±0.28) 61.93% (±0.65)
ICFHGWS+ 56.61% (±0.32) 67.33% (±0.67)
ICFHGWS- 57.11% (±0.20) 66.08% (±1.68)
ICFHS- 57.82% (±0.19) 64.76% (±0.78)
ICFHGS- 57.35% (±0.51) 66.86% (±0.41)

challenging dataset. Both datasets consists of the eight classes shown in Fig. 4
and an additional background class named “unlabeled”. For trivial decision rules
or random guessing the average recognition rate for both datasets is 12.5% and
the overall recognition rate is less than 35% (all pixels labeled as building).

Table 2 and Fig. 4 shows some results on the eTRIMS and the LabelMe-
Facade datasets using different methods for semantic segmentation. First of all,
one can see that we outperform all previous state-of-the-art approaches on these
datasets significantly. All previous approaches from [7, 22, 23] are based on SIFT
features, which need to be fully computed in advance. The Iterative Context
Forest (ICF) only using simple color features (HSI) and the auto context fea-
tures is as good as previous state-of-the-art results. Furthermore, incorporating
additional features improves the results significantly. The usage of the gradients,
the unsupervised segmentation as an post-processing step and the geometric
context from Section 3 improves the recognition rate obviously. Unfortunately,
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original ground-truth ICFwoC ICF ICFHGS-

building car door pavement road sky vegetation window unlabeled

Fig. 4: Example images from eTRIMS (first three rows) and LabelMeFacade
database (last four rows). The corresponding results obtained by a decision tree
without any auto context (ICFwoC), Iterative Context Forests using only color
features (ICF), and Iterative Context Forests using color, gradients, 3D geomet-
ric context and an unsupervised segmentation (ICFHGS-) are shown.
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original building window sky vegetation

Fig. 5: Probability maps of some classes for a specific image. Warm colors corre-
spond to areas with high probability.

a: ICFwoC

building 41.1 5.5 10.1 25.8

car 71.1 7.3 12.1

door 20.2 53.9 6.3 11.8

pavement 11.3 43.7 27.9 9.9

road 10.7 17.6 68.2

sky 92.8

vegetation 88.5

window 5.4 8.1 5.8 67.8

b: ICF

building 62.0 22.9

car 12.4 71.9 5.2 5.4

door 22.3 6.4 55.3 6.1 5.5

pavement 8.3 16.2 49.0 22.9

road 9.3 15.8 74.4

sky 96.9

vegetation 87.3

window 23.1 64.9

c: ICFHGS-

building 71.9 18.5

car 77.4 12.8 5.7

door 14.4 71.1 8.2

pavement 7.2 69.9 15.5

road 7.4 19.4 73.2

sky 95.4

vegetation 90.1

window 26.0 6.3 63.5

Fig. 6: Confusion matrices for one run in the eTRIMs dataset using the same
settings as shown in Fig. 4.

the utilization of the color names does not bring any improvement of the re-
sults, but a decrease in performance. We also did experiments with the MSRC21
dataset achieving an overall accuracy of 67.2% using ICFHGWS-. The accuracy
increases with each iteration until it converges. We point to [8] for further results
of the different iterations.

The computation time depends on the usage of the feature channels. The ICF
using auto-context and the HSI color channels needs ≈ 3s per image. Computing
the 3D geometric context features increases the time by ≈ 10s, the segmentation
≈ 3s and the color names � 1s. Therefore, it is possible to adjust between a
fast computation of the result or a high accuracy by choosing different types of
features and by selecting parameters like the amount of trees and the depth of
each tree.

Some samples for the auto context feature maps are shown in Fig. 5. Each
of these channels is computed after each iteration and used for computing the
splits in the next level of the forest (see Section 2).

The confusion matrices for three different settings of our framework are pre-
sented in Fig. 6. Incorporating context features increases the recognition rate for
the classes “building”, “road”, and “sky” significantly. Furthermore, using the
additional features increases the recognition rates for “building”,“car”, “door”,
“pavement” and “vegetation” clearly. All proposed methods still have prob-
lems with the confusion of “window” and “building” as well as “pavement”
and “road”.
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Fig. 7: Statistical analysis of used features types and feature extraction methods.
a: Usage of each feature extraction method in a learned decision forest, b: Usage
of context features and non-contextual features for each level of the decision
trees.

Evaluation of Feature Usage As mentioned above, we use a huge amount
of different feature extraction methods. In this section, we want to analyze the
usage of each of the methods presented in Table 1. As shown in Fig. 7a by far
the most important features are different kinds of rectangle features (cf. [17]),
led by the single window centered at the current pixel position, followed by the
difference of two windows centered in the middle and a rectangle with a random
position relative to the current position. More than 48% of all decisions over all
trees are done using these three feature extraction types. Another 30% of the
decisions are done using some of the Haar features. The pixel-pair respectively
the single pixel features are chosen in about 17% of all cases and only 4% of all
decisions are based on the relative position of a pixel in an image. This is more
or less what we have expected. Relative positions should not be that important,
due to a high risk of over-fitting, but it is still an useful information for some
classes like “sky”. Pixel-pair features are much more sensitive against image
noise compared to rectangle features.

In Fig. 7b the usage of non-contextual versus auto context features is plotted.
In the first level of a tree it is not possible to use any auto context features, but
from the second level of a tree the influence of the contextual features is slowly
increasing. Beginning at a depth of about six levels the ratio converges at about
60% auto context features and about 40% non-contextual features. This shows
that both feature types are important to train an ICF and that the importance
of the auto context features increases with the quality of previous outputs.

Looking Beyond the Current Horizon As we have seen in the previous
sections, our method is able to remarkably outperform state of the art approaches
for semantic segmentation. However, we discovered several special cases, where
our proposed method failed during evaluations. We visualized exemplary images
in Fig. 8 showing problematical details of the classification results from Fig. 4.
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Fig. 8: Detailed analysis of the results of our approach.

(1) Untypical positions like the windows on the roof are underrepresented in the
training data. Obviously, these problems can be solved by adding more images to
the training data. (2) Another problem are badly labeled images as shown in the
second row of Fig. 8. This is a twofold problem. First of all, during training the
classifier learns the class “building” based on noisy data leading to disturbed
classification models. On top of that, evaluations are negatively skewed since
test images are counted as wrongly classified in these regions due to the missing
ground truth data. (3) As shown in the last row of Fig. 8 in some special cases
objects are identified which are not in the image but would have been expected to
be based on contextual assumptions. In this example the ICF tries to fit the class
“car” between “pavement” and “building” instead of “vegetation”. Apparently
the classifier was not sure how to classify these regions. Although this may be due
to missing training data for this constellation of classes, it would be interesting
to regularize the influence of context in such scenarios.

5 Conclusion and Further Work

In this work, we presented a new approach for incorporating context features and
multiple other features in a single framework for semantic segmentation. We have
shown that our approach is very flexible and can simply be adjusted between fast
evaluation and high accuracy. In extensive experiments, we have shown that our
approach significantly outperforms other state of the art methods including time
consuming conditional random field techniques. Furthermore, we have shown
that extending the set of available features can increase the recognition rate.
Especially 3D geometric context features lead to a high performance gain for
the challenging LabelMeFacade dataset.

For future work, we plan to adapt the random sampling to allow for integra-
tion of prior knowledge about feature relevance. The current approach samples
uniformly from the set of available feature types and does not differentiate be-
tween them. Furthermore, the sampling could be also tuned towards sampling
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easy-computable features with high probability. This strategy would lead to trees
with a lower average computation time for classifying a new test input.
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