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Abstract—Gaussian processes are powerful modeling tools in machine learning which offer wide applicabil-
ity for regression and classification tasks due to their non-parametric and non-linear behavior. However, one
of their main drawbacks is the training time complexity which scales cubically with the number of examples.
Our work addresses this issue by combining Gaussian processes with random decision forests to enable fast
learning. An important advantage of our method is its simplicity and the ability to directly control the trade-
off between classification performance and computational speed. Experiments on an indoor place recogni-
tion task and on standard machine learning benchmarks show that our method can handle large training sets
of up to three million examples in reasonable time while retaining good classification accuracy.
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1. INTRODUCTION

Gaussian process (GP) based machine learning
techniques have recently gained much attention in the
field of pattern recognition and computer vision, since
they provide an elegant Bayesian framework and offer
state-of-the-art recognition performance [9]. How-
ever, one non-negligible disadvantage of the full GP
framework is the time consumption needed during
learning which scales cubically, and quadratically con-
sidering memory usage, with the size of the training
data. This fact hinders their use for large-scale classifi-
cation tasks which often occur in object and place rec-
ognition scenarios [5].

To overcome this shortcoming, a large amount of
scientific effort has been spent in the last years to
develop fast inference techniques for GP regression
and classification [13]. Prominent techniques usually
rely on conditional independence assumptions [12]
with respect to a small set of predefined variables
which might either be part of the training dataset [16]
or learned during training [15]. A separate branch of
techniques are based on decomposition techniques,
where the original large-scale problem is broken down
into a collection of smaller problems. Next to simple
Bagging strategies [4], unsupervised kd-trees neglect-
ing label information during clustering were recently
proposed [14] for GP regression. As a supervised alter-

IThe article is published in the original.

Received October 5, 2011

native, Broderick et al. [2] combined a Bayesian deci-
sion tree with GP classifiers.

In this paper, we propose a combination of GP
classifiers and random decision forests (RDFs) to
enable accurate classification in large-scale settings
(cf. Fig. 1). This idea is hence strongly related to the
work of [2], since it is based on supervised tree-struc-
tured decomposition techniques. In contrast, our
approach is very efficient and simple as it does not
need sophisticated sampling methods. It is hence ide-
ally suited for very large datasets. Please note that par-
allel to the conference publication [7] related to this
extended journal article, Chang et al. [3] proposed a
very similar idea to accelerate the learning process of
SVMs.

The remainder of the paper is organized as follows.
We briefly review classification and regression with
Gaussian processes, which is followed by describing
random decision forests. The subsequent sections
detail our approach of combining these two classifiers
and experimentally demonstrate the benefits of this
method on a place recognition task [10] and on very
large datasets in comparison to Chang et al. [3]. A
summary of our findings and a discussion of future
research directions conclude the paper.

2. CLASSIFICATION
WITH GAUSSIAN PROCESS PRIORS

In the following we briefly review Gaussian process
(GP) regression and classification. Due to the lack of
space, we concentrate on the main model assumptions
and the resulting prediction equation. For a presenta-
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Fig. 1. An outline of our approach: RDF is used to cluster the data in a supervised manner and a GP classifier is used to separate

classes in each leaf.

tion of the full Bayesian treatment we refer to Rasmus-
sen and Williams [13].

2.1. Basic Principles of GP Priors

Given » training examples x; € R” denoting input
feature vectors and corresponding binary labels y; €
{—1, 1}, we would like to predict the label y, of an

unseen example x,,.. Therefore a learner has to find the

intrinsic relationship between inputs x and labels y. It
is often assumed that the desired mapping can be
modeled by y = f(x) + €, where fis a noise-free latent
function (which is not observed during training) and ¢
denotes a noise term.

One common modeling approach is to assume that
S belongs to some parametric family and to learn the
parameters which best describe the training data.
However, the main benefit of the GP framework is the
ability to model the underlying function f directly, i.e.
without any fixed parameterization, by assuming that
fis a sample of a specific distribution. Defining a dis-
tribution on functions in a non-parametric manner
can be done with a Gaussian process, which is a special
kind of a stochastic process. An informal and rough
definition would be that a GP is an infinite dimen-
sional normal distribution.

2.2. Bayesian Framework for Regression
and Classification with GP

To use the modeling ideas described in the previous
section we formalize and correctly specify the two
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main modeling assumptions for regression and classi-
fication with Gaussian processes:

(1) The latent function f is a sample from a GP
prior f~GP(0, K(-,-)) w1th zero mean and covari-
ance or kernel function K: R” x R” — R.

(2) Labels y are conditionally independent given
latent function values f(x) and are described using
some noise model p(y|f(x)).

The Gaussian process prior enables to model the
correlation between labels using the similarity of
inputs, which is described by the kernel function. It is
thus possible to model the assumption of smoothness,
i.e. that similar inputs should lead to similar labels.
Please note, that this assumption is one of the under-
lying requirements of machine learning in general,
because learning a non-smooth relation between
inputs and labels without additional prior knowledge is
infeasible.

For classification purposes, sigmoid functions are
often employed as noise models [13]. In contrast, we
follow Kapoor et al. [9] and use zero-mean Gaussian

. . . 2
noise with variance o), :

POV /(X)) = N(|f(x), 5,), (1)

which is the standard assumption for GP regression.
The advantage of this label regression approach is that
tractable predictions for unseen points x,, are possible,

without using approximate inference methods [13].

Vol. 22 No. 1 2012



LARGE-SCALE GAUSSIAN PROCESS CLASSIFICATION 115

Let K be the kernel matrix with pairwise kernel val-
ues of the training examples K; = K(x;, x;) and k, be

kernel values (k,); = K(x;, x,) corresponding to test

example x,,. The most likely outcome y, for a given
input x,, and labeled training data can be predicted
analytically using the following equation:

Pa(x,) = Ko(K+aD) 'y, )

This prediction equation is equivalent to kernel
ridge regression, but with a clear probabilistic mean-
ing. For example, the GP framework allows for pre-

dicting the standard deviation ci of the estimation:
oo(xy) = KXo %) —kL(K+0D) ky +0,.  (3)

Although we do not utilize this additional informa-
tion in this paper it is directly available and might be
suitable to detect instances from unseen classes.

We restricted the theoretical review of GP classifi-
cation to binary tasks. However, by applying the one-
vs.-all strategy in combination with a majority voting
scheme, multi-class classification problems can be
solved without much additional computational effort

[9].

3. RANDOM DECISION FOREST

In contrast to GP techniques, a random decision
Jforest (RDF [1]) is an ensemble classifier that can han-
dle large sets of training examples with high dimen-
sionality. This advantage is mainly due to the simplic-
ity of the linear base classifiers (decision stumps)
which cluster the feature space. Compared to standard
decision tree approaches, which suffer from severe
over-fitting problems, a RDF is an ensemble (forest)
of T decision trees generated using randomized learn-
ing techniques [8]. Each tree is learned with only a
random fraction of the available training data and the
data is recursively split by axis orthogonal hyperplanes
which are learned by maximizing the information gain
of a randomly selected feature set. The procedure is
stopped if the current set contains only examples of a
single class or the number of examples falls below a
certain value L.

To classify a new example x,, each tree 7 in the

%
ensemble is traversed until a leaf node v/(x,) is

reached. Each such leaf node contains a histogram
which models the posterior probability p(y, =

K|v,(x,)) obtained during learning. The final posterior

probability is then estimated by simple averaging over
all leaf probabilities:

T
PO =xIx) = 23 0L =KV, @)

t=1
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Table 1. Computational complexity of all three methods con-
sidered: n denotes the number of training examples, L refers to
the maximum number of examples a GP classifier is learned
within a leaf, 7"is the number of decision trees in the forest

Trainin Classification
g of one Example
el o) o)
RDF O(Tnlogn) O(Tlogn)
RDF-GP | O(Tnlogn+ TnL* | O(Tlogn+ TL)

4. COMBINING RDF AND GP

For speeding up vanilla GP classifiers, we propose
to efficiently combine RDF and GP to a new classifier
called RDF-GP. In principle, GP classifiers can be
utilized as weak classifiers in each node of the under-
lying decision trees. This strategy, however, would even
amplify the computational cost of the learning algo-
rithm. The main idea of our approach is thus to learn
a RDF whose inner nodes are simple decision stumps
and only leaf nodes are equipped with powerful GP
classifiers. It allows the description of the posterior
distribution in each leaf using a non-linear decision
function and to achieve a significant speed-up due to
the clustering of the training data performed by the
RDEFE From a different perspective, we are construct-
ing an ensemble of GP classifiers where each single
classifier is trained on a preclustered subset of exam-
ples. These subsets are given by X, = {x; € X| v,(x;) = v},
i.e. the training data reaching the corresponding leaf
nodes v. If the training set in one leaf consists only of
examples belonging to the same class, the posterior
probability of this class is set to one and no GP classi-
fier is learned.

Upper bounds of the computational time for train-
ing and learning are listed in Table 1, where n is the
number of training samples, 7 is the number of trees
and L is the maximum number of examples in a leaf.
The bounds assume that the learned trees of the
ensemble are balanced.

5. EXPERIMENTS
In our experiments we empirically support the fol-
lowing hypotheses:
1) RDF-GP clearly outperforms the standard
RDF;
2) RDF-GP is substantially faster than the full GP
classifier approach;

3) RDF-GP allows for utilizing Gaussian process

classifiers on very large datasets;

4) RDF-GP achieves similar performance com-

pared to DT-SVM [3].

First we show the behavior of our classifier combi-
nation in comparison to GP and RDF on a place rec-
ognition application before we evaluate the algorithm
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Fig. 2. Place recognition task: example images obtained from different locations and rooms. The categories in our setting are
(listed as displayed from top left to bottom right) Corridor, Elevator Area, Entrance Area, PhD Lab, Kitchen, Robot Lab, and Stu-

dent Lab.

on common machine learning benchmarks and com-
pare it with the one of Chang et al. [3].

5. 1. Multi-Sensor Place Classification

Our method is assessed using the place recognition
database utilized in Kemmler et al. [10]. The goal of
this application is to predict the room a robot is situ-
ated in, given the current sensor signals of the robot.
By predicting the current room or scene, a rough self
localization is possible which can also be further uti-
lized in object recognition tasks [17]. The dataset of
[10] consists of seven different room categories and
images captured by a standard CCD camera and range
data obtained using a time-of-flight sensor [11].
Example images of this dataset are depicted in Fig. 2.

We derive two classification experiments from this
database: (1) a small-scale scenario using two
sequences with 697 examples for training and six
sequences with 2759 examples for testing, which fol-
lows directly the setup used in [10]; (2) a medium-
scale scenario which was derived by swapping both sets
and using the larger one for training.

5.1.1. Experimental setup of the place recognition
experiment. In our experimental setting, we follow
[10] and employ a combination of different image-
based features using both a standard camera and a
time-of-flight sensor. For both sensors, the following
features are computed:

1) a bank of reduced Gabor filter responses with 8
different orientations and 4 different scales and;

2) 16 slopes and offsets of oriented Fourier power
spectra.

For range images, additional information in terms
of;

3) range histograms and

4) surface normal histograms are taken into
account.

All features are concatenated and thus treated as
one combined feature vector. As covariance function,
we use a radial basis function kernel (RBF-kernel):

PATTERN RECOGNITION AND IMAGE ANALYSIS

K(x,x') = exp(=ylx—x*), (3)

where y denotes the bandwidth parameter of the ker-
nel.

For comparison of RDF, GP classifier and our
combined approach from the previous section (RDF-
GP), average recognition rate is used as an unbiased
accuracy measure. In our setting, we utilize RDFs
with five decision trees and a varying number L € {5,
6, ..., 200} of the maximum number of examples in leaf
nodes. Note that [10] uses more decision trees result-
ing in a higher recognition rate. The parameters of the
kernel function can be optimized efficiently using the
GP framework by maximizing the marginal likelihood
of the training data [13]. However, we applied this
model selection technique to each classifier in a leaf of
the decision tree but without a significant performance
gain. This might be due to the small amount of training
data in some leaves, which leads to overfitting.

5.1.2. Evaluation of the place recognition experi-
ments. The results of all methods for the place recog-
nition scenario are illustrated in Fig. 3 for the small-
scale and in Fig. 4 for the medium-scale experiment.
The left plots show the classification accuracy and it
can be seen that the GP classifier performs best and
RDF clearly exhibits inferior performance compared
to the other methods. Recognition rates for A > 100 are
not displayed for the RDF classifier, since no improve-
ment was observed with an increasing number of
examples in leaf nodes. By augmenting the RDF with
GP classifiers in each node, however, progress in terms
of accuracy is achieved. The accuracy increases with
increasing A which is due to the fact that more and
more training examples are fed into the GP classifiers
located in the leaf nodes.

In order to compare the computational demand of
the respective methods, the runtime behavior for
training and testing is investigated. The results on a
standard office computer (2.80 GHz) are depicted in
the plots on the right in Figs. 3 and 4 and training and
testing times are summed up to yield one final value.
The gap between RDF-GP and GP is apparent and
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corresponds to a significant speedup, which is more
prevalent in the medium scale experiment. Increasing
the parameter L leads to a slower runtime as expected
by the theoretical analysis given in Table 1.

These experiments validate hypotheses 1 and 2,
which state that RDF-GP clearly outperforms RDF
for large L and RDF-GP is substantially faster than
the full GP classifier approach for a large number of
samples for training.

5.2. Large-Scale Problems and Comparison
with Previous Work

In the following experiments, we show that RDF-
GP is also applicable for very large databases. In most
of these settings, standard GP classifiers are not appli-
cable due to high memory requirements and cubic
runtime behavior.

5.2.1. Experimental setup of the large-scale prob-
lems. The datasets used for comparison are described
in Table 2. We follow [3] and use the same experimen-

PATTERN RECOGNITION AND IMAGE ANALYSIS
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tal setup as proposed in their article to allow a fair
comparison. Each dataset is split into three parts,
where two thirds are used for training and the last third is
equally split into a validation and test set. According to
this partition strategy, the problem size for training ranges
between seven thousand and three million examples.
Unlike [3], we are thus not able to compare our approach
to the original (GP) classifier for every dataset since the
Cholesky decomposition of K demands memory capac-
ity beyond available resources.

The parameters L and y are computed automati-
cally by maximizing recognition accuracy on the vali-
dation datasets. The upper bound for A is given by the
limited memory capacity (12GB in our case) and usu-
ally varies between 200 and 5 000. Since GP classifica-
tion has no tunable trade-off parameter C, optimiza-
tion only takes place in the two-dimensional space
using the heuristics mentioned in [3] and a modified

version of the related available implementation.1

1 http://ocrwks11.iis.sinica.edu.tw/~dar/Download/WebPages/
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Table 2. Details of large-scale databases used in our experiments and the evaluation of [3]

Data set Classes Dimension Training Validation Testing All
Pen Hand Written (PHW) 10 16 7227 1872 1893 10992
Letter 26 16 13294 3336 3370 20000
Shuttle 7 9 38664 9573 9763 58000
Poker 10 10 16674 4165 4171 25010
Consus Income (CI) 2 14 30148 7537 7537 45222
Forest 7 54 387343 96835 96834 581012
PPI 2 14 836544 206635 206635 1249814
KDD 5 41 3265623 816405 816403 4898431

Table 3. Recognition rates obtained on different large datasets. DT. decision tree, DT-GP: decision tree in combination with
GP classifier, DTSVM: decision tree in combination with SVM, LIBSVM: SVM using RBF kernel, LIBLINEAR: SVM using
linear kernel, GP-Reg: Gaussian process regression with RBF Kernel

PHW Letter Shuttle Poker CI Forest PPI KDD
DT-GP (ours) 99.31 95.31 99.92 55.79 84.99 93.90 92.29 99.99
DTSVM [3] 99.52 97.66 99.89 56.75 84.81 94.59 92.29 99.99
DT [3] 95.51 87.18 99.95 49.72 80.97 93.31 88.11 99.99
LIBSVM [3] 99.63 97.66 99.91 56.25 84.13 — — —
LIBLINEAR [3] 91.13 68.58 91.95 43.30 80.54 71.50 87.43 99.72
GP-Reg [13] 99.32 95.97 - - - - - —

It was noted in [3] that a single deterministic deci-
sion tree (DT) in combination with SVMs was suffi-
cient and multiple trees did not lead to superior
results. For a fair comparison, we will follow this
approach by using a DT instead of an RDF in the fol-
lowing experiments. The resulting combined classifier
will be denoted by DT-GP.

5.2.2. Evaluation of the large-scale experiments.
The results of DT-GP and the method proposed in [3]
(DTSVM) are illustrated in Table 3. To enable a com-
parison of the involved base classifiers, we further
added the results of standard decision trees, standard
SVM (LIBSVM) and linear SVM (LIBLINEAR)
published in [3] and the results obtained with a Gaus-
sian process classifier.

While all tree-based classifiers can cope with very
large amounts of data, standard SVM cannot be
applied on three datasets. Although this fact can be
circumvented by utilizing an efficient linear SVM
implementation [6], computational feasibility is
accompanied by a loss in prediction accuracy due to
the low capacity of linear decision functions. This
behavior is not shared by DT-GP, DTSVM and DT,
since both tractability and flexibility are simulta-
neously achieved. Both treed kernel methods achieve
excellent accuracies and substantially outperform

PATTERN RECOGNITION AND IMAGE ANALYSIS

standard decision trees in most cases. This highlights
the additional modeling power embedded in DT-GP
and DT-SVM by utilizing non-linear decision bound-
aries. These findings clearly support hypothesis 3
and 4.

We also analyzed the speed of DT-GP on a stan-
dard office computer (one core of an Intel(R)
Core(TM) i7 CPU 930 2.8G Hz). As opposed to [3],
we decided to provide absolute runtimes (in seconds)
to give an impression of how DT-GP scales for real
world applications. The performances are given in
Table 4 and clearly support the suitability of our
approach to large-scale problems, since all experi-
ments were completed in at most a few minutes. The
highest computational load was measured for the sec-
ond largest dataset (PPI) with a duration of approxi-
mately 25 minutes including both training and testing.
It is hence important to note, that the runtime does
not solely depend on the number of examples and the
dimensionality of the input space. This stems from the
fact that the partitioning of the feature space accom-
plished by the DT has a high effect on speed. Ifthe DT
favors large homogeneous leaf nodes, only very few
GP classifiers with a moderate size of training exam-
ples are learned on the remaining heterogeneous
leaves.

2012
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Table 4. Runtimes for training and testing a DT-GP classifier (in seconds)
PHW Letter Shuttle Poker CI Forest PPI KDD
Training 59 181 0.9 97 196 930 1436 243
Testing 0.90 1.84 0.03 1.41 0.88 5.27 34.3 1.27
6. CONCLUSIONS AND FURTHER WORK Problems,” J. Mach. Learn. Res. 11, 2935-2972

This work presents a new approach for boosting the
runtime behavior of Gaussian process (GP) classifiers
using a random decision forest (RDF) to compute a
pre-clustering of the input space. We empirically eval-
uate this combined classifier on a place recognition
task containing a moderate number of examples.
While maintaining a good level of accuracy, our
method is substantially faster than the full GP classi-
fier. Moreover, in order to assess the suitability for
large-scale scenarios, several benchmark datasets con-
taining up to three million training examples are uti-
lized. The latter experiment is also used to compare
against [3], a combination of SVM and decision trees,
which was published in parallel to our conference pub-
lication [7]. Results clearly show that our combined
classifier can easily cope with very large amounts of
data, as all computation was done in several minutes
and encouraging recognition rates, comparable to
those in [3], are produced.

One important topic is hyperparameter estimation
in the proposed framework. It would be interesting to
investigate whether the possibility to automatically
search for appropriate hyperparameters can be inher-
ited from GP classifiers to improve upon initial
parameter estimates without invoking external valida-
tion experiments. This future research direction also
extends to automatic selection of suitable kernels and
multiple kernel learning.

In [3], theoretical error error bounds for treed
SVMs are derived using results from statistical learning
theory. It is an interesting problem whether it is possi-
ble to extend their results to more general situations
which also include our method.
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